Emerging Pollutants in Wastewater, Advanced Oxidation Processes as an Alternative Treatment and Perspectives
Abstract
:1. Introduction
2. Emerging Pollutants and Their Relationship with the Water Cycle
2.1. Pharmaceuticals
2.2. Personal Care Products
2.3. Pesticides
2.4. Hormones
2.5. SARS-CoV-2, an Important Factor in Wastewater Today
3. Emerging Pollutants Treatments in Wastewater
3.1. Advanced Oxidation Processes (AOPs)
3.1.1. Chemicals
Fenton
Ozonization
3.1.2. UV-Based
Photo-Fenton
UV/O3
3.1.3. Electrochemicals
3.2. Biological Treatments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOP | Advanced Oxidation Process |
EC | Emerging Contaminants or Pollutants |
References
- Ramírez-Sánchez, I.M.; Martínez-Austria, P.; Quiroz-Alfaro, M.A.; Bandala, E.R. Efectos de los estrógenos como contaminantes emergentes en la salud y el ambiente. Tecnol. Cienc. Agua 2015, 6, 31–42. [Google Scholar]
- Tejada, C.; Quiñonez, E.; Peña, M. Contaminantes emergentes en aguas: Metabolitos de fármacos. Una revisión. Rev. Fac. Cienc. Básicas 2014, 10, 80–101. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017, 323, 361–380. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ramírez, J. Contaminantes emergentes en nuestros sistemas acuáticos: Enemigos invisibles. Ing. Reg. 2018, 19, 18–21. [Google Scholar] [CrossRef]
- American Chemical Society. Available online: https://www.cas.org (accessed on 18 August 2021).
- Caviedes Rubio, D.I.; Delgado, D.R.; Olaya Amaya, A. Normatividad ambiental dirigida a regular la presencia de los productos farmacéuticos residuales en ambientes acuáticos. Rev. Juríd. Piélagus 2017, 16, 121–130. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Vorontsov, A.V. Advancing Fenton and photo-Fenton wáter treatment through the catalyst design. J. Hazard. Mater. 2019, 372, 103–112. [Google Scholar] [CrossRef]
- Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. 2016, 4, 762–787. [Google Scholar] [CrossRef] [Green Version]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Bautista, P.; Mohedano, A.F.; Casas, J.A.; Zazo, J.A.; Rodriguez, J.J. An overview of the application of Fenton oxidation to industrial wastewaters treatment. J. Chem. Technol. Biotechnol. 2008, 83, 1323–1338. [Google Scholar] [CrossRef]
- Deblonde, T.; Cossu-Leguille, C.; Hartemann, P. Emerging pollutants in wastewater: A review of the literature. Int. J. Hyg. Environ. Health 2011, 214, 442–448. [Google Scholar] [CrossRef]
- Zhou, Y.; Meng, J.; Zhang, M.; Chen, S.; He, B.; Zhao, H.; Li, Q.; Zhang, S.; Wang, T. Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants? Environ. Int. 2019, 131, 104982. [Google Scholar] [CrossRef]
- Contaminación y Calidad Química Del Agua: El Problema de Los Contaminantes Emergentes. Available online: https://fnca.eu/phocadownload/P.CIENTIFICO/inf_contaminacion.pdf (accessed on 19 August 2021).
- Saidulu, D.; Gupta, B.; Gupta, A.K.; Ghosal, P.S. A review on occurrences, eco-toxic effects, and remediation of emerging contaminants from wastewater: Special emphasis on biological treatment based hybrid systems. J. Environ. Chem. 2021, 9, 105282. [Google Scholar] [CrossRef]
- Lee, C.C.; Hsieh, C.Y.; Chen, C.S.; Tien, C.J. Emergent contaminants in sediments and fishes from the Tamsui River (Taiwan): Their spatial-temporal distribution and risk to aquatic ecosystems and human health. Environ. Pollut. 2020, 258, 113733. [Google Scholar] [CrossRef]
- Malmborg, J.; Magnér, J. Pharmaceutical residues in sewage sludge: Effect of sanitization and anaerobic digestion. J. Environ. Manag. 2015, 153, 1–10. [Google Scholar] [CrossRef]
- Castillo-Zacarías, C.; Barocio, M.E.; Hidalgo-Vázquez, E.; Sosa-Hernández, J.E.; Parra-Arroyo, L.; López-Pacheco, I.Y.; Barceló, D.; Iqbal, H.N.M.; Parra-Saldívar, R. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. Sci. Total Environ. 2021, 757, 143722. [Google Scholar] [CrossRef]
- Heberer, T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol. Lett. 2002, 131, 5–17. [Google Scholar] [CrossRef]
- Jones, O.A.H.; Voulvoulis, N.; Lester, J.N. Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res. 2002, 36, 5013–5022. [Google Scholar] [CrossRef]
- Stuart, M.; Lapworth, D.; Crane, E.; Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 2012, 416, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Scott, L.C.; Wilson, M.J.; Esser, S.M.; Lee, N.L.; Wheeler, M.E.; Aubee, A.; Aw, T.G. Assessing visitor use impact on antibiotic resistant bacteria and antibiotic resistance genes in soil and water environments of Rocky Mountain National Park. Sci. Total Environ. 2021, 785, 147122. [Google Scholar] [CrossRef]
- Zaied, B.K.; Rashid, M.; Nasrullah, M.; Zularisam, A.W.; Pant, D.; Singh, L. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Sci. Total Environ. 2020, 726, 138095. [Google Scholar] [CrossRef] [PubMed]
- Teixeira-Lemos, E.; Teixeira-Lemos, L.P.; Oliveira, J.; Pais do Amaral, J. Pharmaceuticals in the Environment: Focus on Drinking-Water. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 325–335. [Google Scholar] [CrossRef]
- Mohd Nasir, F.A.; Praveena, S.M.; Aris, A.Z. Public awareness level and occurrence of pharmaceutical residues in drinking water with potential health risk: A study from Kajang (Malaysia). Ecotoxicol. Environ. Saf. 2019, 185, 109681. [Google Scholar] [CrossRef] [PubMed]
- Kondor, A.C.; Molnár, É.; Vancsik, A.; Filep, T.; Szeberényi, J.; Szabó, L.; Maász, G.; Pirger, Z.; Weiperth, A.; Ferincz, Á.; et al. Occurrence and health risk assessment of pharmaceutically active compounds in riverbank filtrated drinking wáter. J. Water Process Eng. 2021, 41, 102039. [Google Scholar] [CrossRef]
- Figueiredo, L.; Erny, G.l.; Santos, L.; Alves, A. Applications of molecularly imprinted polymers to the análisis and removal of personal care products: A review. Talanta 2016, 146, 754–765. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; He, Y.; Jekel, M.; Reinhard, M.; Gin, K.Y.-H. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ. Int. 2014, 71, 46–62. [Google Scholar] [CrossRef]
- Delgado, N.; Bermeo, L.; Hoyos, D.A.; Peñuela, G.A.; Capparelli, A.; Marino, D.; Navarro, A.; Casas-Zapata, J.C. Occurrence and removal of pharmaceutical and personal care products using subsurface horizontal flow constructed wetlands. Water Res. 2020, 187, 116448. [Google Scholar] [CrossRef]
- Pemberthy, M.D.; Padilla, Y.; Echeverri, A.; Peñuela, G.A. Monitoring pharmaceuticals and personal care products in water and fish from the Gulf of Urabá, Colombia. Heliyon 2020, 6, e04215. [Google Scholar] [CrossRef]
- Bartrons, M.; Peñuelas, J. Pharmaceuticals and Personal-Care Products in Plants. Trends Plant Sci. 2017, 22, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Lemus, N.; López-Serna, R.; Pérez-Elvira, S.I.; Barrado, E. Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review. Anal. Chim. Acta 2019, 1083, 19–40. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Liu, W.; Liu, X.; Zhang, J.; Peng, M.; Zhang, T. A review on analytical methods for pharmaceutical and personal care products and their transformation products. J. Environ. Sci. 2021, 101, 260–281. [Google Scholar] [CrossRef]
- He, B.; Ni, Y.; Jin, Y.; Fu, Z. Pesticides-induced energy metabolic disorders. Sci. Total Environ. 2020, 729, 139033. [Google Scholar] [CrossRef]
- Hassaan, M.A.; El Nemr, A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Chow, R.; Scheidegger, R.; Doppler, T.; Dietzel, A.; Fenicia, F.; Stamm, C. A review of long-term pesticide monitoring studies to assess surface water quality trends. Water Res. 2020, 9, 100064. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, J.; Wang, B.; Duan, L.; Zhang, Y.; Zhao, W.; Wang, F.; Sui, Q.; Chen, Z.; Xu, D.; et al. Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China. Environ. Pollut. 2020, 265, 114953. [Google Scholar] [CrossRef]
- Md Meftaul, I.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Pesticides in the urban environment: A potential threat that knocks at the door. Sci. Total Environ. 2020, 711, 134612. [Google Scholar] [CrossRef]
- Rezaei Kalantary, R.; Barzegar, G.; Jorfi, S. Monitoring of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers using Monte Carlo simulation in Behbahan City, Iran. Chemosphere 2022, 286, 131667. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Robinson, B.; Ohashi, A.; Ozaki, N.; Kindaichi, T.; Farraji, H.; Vakili, M. Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere 2020, 253, 126646. [Google Scholar] [CrossRef]
- Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches. Environ. Technol. Innov. 2020, 19, 101026. [Google Scholar] [CrossRef]
- Sacdal, R.; Madriaga, J.; Espino, M.P. Overview of the analysis, occurrence and ecological effects of hormones in lake waters in Asia. Environ. Res. 2020, 182, 109091. [Google Scholar] [CrossRef]
- Hormonas Esteroides. 7. Hormonas Esteroidesnivel 3—Participación Plástica y Funcional (Biopsicologia.net). Available online: https://biopsicologia.net/nivel-3-participaci%C3%B3n-pl%C3%A1stica-y-funcional/7.-hormonas-esteroides (accessed on 28 August 2021).
- Sta Ana, K.M.; Espino, M.P. Occurrence and distribution of hormones and bisphenol A in Laguna Lake, Philippines. Chemosphere 2020, 256, 127122. [Google Scholar] [CrossRef]
- Jálová, V.; Jarošová, B.; Bláha, L.; Giesy, J.P.; Ocelka, T.; Grabic, R.; Jurčíková, J.; Vrana, B.; Hilscherová, K. Estrogen-, androgen- and aryl hydrocarbon receptormediated activities in passive and composite samples from municipal waste and surface Waters. Environ. Int. 2013, 59, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.; Lin, C.Y.; Zhu, Y.; Chen, W.; Pan, H.Y.; Sun, Z.; Sweetman, A.; Zhang, Q.; He, M.C. Estrogens in municipal wastewater and receiving waters in the Beijing-Tianjin-Hebei region, China: Occurrence and risk assessment of mixtures. J. Hazard. Mater. 2019, 389, 121891. [Google Scholar] [CrossRef] [PubMed]
- Jarošová, B.; Bláha, L.; Giesy, J.P.; Hilscherová, K. What level of estrogenic activity determined by in vitro assays in municipal waste waters can be considered as safe? Environ. Int. 2014, 64, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Aris, A.Z.; Shamsuddin, A.S.; Praveena, S.M. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: A review. Environ. Int. 2014, 69, 104–119. [Google Scholar] [CrossRef]
- Ojoghoro, J.O.; Scrimshaw, M.D.; Sumpter, J.P. Steroid hormones in the aquatic environment. Sci. Total Environ. 2021, 792, 148306. [Google Scholar] [CrossRef]
- Ahmad, J.; Ahmad, M.; Usman, A.R.A.; Al-Wabel, M.I. Prevalence of human pathogenic viruses in wastewater: A potential transmission risk as well as an effective tool for early outbreak detection for COVID-19. J. Environ. Manag. 2021, 298, 113486. [Google Scholar] [CrossRef]
- Hu, L.; Deng, W.J.; Ying, G.G.; Hong, H. Environmental perspective of COVID-19: Atmospheric and wastewater environment in relation to pandemic. Ecotoxicol. Environ. Saf. 2021, 219, 112297. [Google Scholar] [CrossRef]
- Cao, Y.; Francis, R. On forecasting the community-level COVID-19 cases from the concentration of SARS-CoV-2 in wastewater. Sci. Total Environ. 2021, 786, 147451. [Google Scholar] [CrossRef]
- Ai, Y.; Davis, A.; Jones, D.; Lemeshow, S.; Tu, H.; He, F.; Ru, P.; Pan, X.; Bohrerova, Z.; Lee, J. Wastewater SARS-CoV-2 monitoring as a community-level COVID-19 trend tracker and variants in Ohio, United States. Sci. Total Environ. 2021, 801, 149757. [Google Scholar] [CrossRef]
- Chan, K.H.; Sridhar, S.; Zhang, R.R.; Chu, H.; Fung, A.Y.; Chan, G.; Chan, J.F.; To, K.K.; Hung, I.F.; Cheng, V.C.; et al. Factors affecting stability and infectivity of SARS-CoV-2. J. Hosp. Infect. 2020, 106, 226–231. [Google Scholar] [CrossRef]
- Rempel, A.; Gutkoski, J.P.; Nazari, M.T.; Biolchi, G.N.; Cavanhi, V.A.F.; Treichel, H.; Colla, L.M. Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. Sci. Total Environ. 2021, 772, 144918. [Google Scholar] [CrossRef]
- Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chem. Eng. J. 2016, 284, 582–598. [Google Scholar] [CrossRef]
- Aleksić, M.; Kušić, H.; Koprivanac, N.; Leszczynska, D.; Božić, A.L. Heterogeneous Fenton type processes for the degradation of organic dye pollutant in water—The application of zeolite assisted AOPs. Desalination 2010, 257, 22–29. [Google Scholar] [CrossRef]
- Oller, I.; Malato, S.; Sánchez-Pérez, J.A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Sci. Total Environ. 2011, 409, 4141–4166. [Google Scholar] [CrossRef]
- Liu, Z.; Demeestere, K.; Hulle, S.V. Comparison and performance assessment of ozone-based AOPs in view of trace organic contaminants abatement in water and wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105599. [Google Scholar] [CrossRef]
- Rubio-Clemente, A.; Chica, E.; Peñuela, G.A. Procesos de tratamiento de aguas residuales para la eliminación de contaminantes orgánicos emergentes. Rev. Ambient. Água 2013, 8, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Dai, Q.; Shen, K.; Deng, W.; Cai, Y.; Yan, J.; Wu, J.; Guo, L.; Liu, R.; Wang, X.; Zhan, W. HCl-Tolerant HXPO4/RuOX–CeO2 Catalysts for Extremely Efficient Catalytic Elimination of Chlorinated VOCs. Environ. Sci. Technol. 2021, 55, 4007–4016. [Google Scholar] [CrossRef]
- Chen, C.X.; Yang, S.S.; Ding, J.; Wang, G.Y.; Zhong, L.; Zhao, S.Y.; Zang, Y.N.; Jiang, J.Q.; Ding, L.; Zhao, Y.; et al. Non-covalent self-assembly synthesis of AQ2S@rGO nanocomposite for the degradation of sulfadiazine under solar irradiation: The indispensable effect of chloride. Appl. Catal. B 2021, 298, 120495. [Google Scholar] [CrossRef]
- Cai, Q.Q.; Jothinathan, L.; Deng, S.H.; Ong, S.L.; Ng, H.Y.; Hu, J.Y. Fenton- and ozone-based AOP processes for industrial effluent treatment. In Advanced Oxidation Processes for Effluent Treatment Plants, 1st ed.; Maulin, P.S., Ed.; Elsevier: Singapore, 2021; Volume 11, pp. 199–254. [Google Scholar] [CrossRef]
- Legrini, O.; Oliveros, E.; Braun, A.M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671–698. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, N.; Zhou, J.; Jiang, P.; Liu, G. Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash. J. Hazard. Mater. 2012, 201–202, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zheng, T.; Jiang, J.; Lung, W.; Miao, X.; Wang, P. Pilot-scale treatment of p-Nitrophenol wastewater by microwave-enhanced Fenton oxidation process: Effects of system parameters and kinetics study. Chem. Eng. J. 2014, 239, 351–359. [Google Scholar] [CrossRef]
- Pastrana-Martínez, L.M.; Pereira, N.; Lima, R.; Faria, J.L.; Gomes, H.T.; Silva, A.M.T. Degradation of diphenhydramine by photo-Fenton using magnetically recoverable iron oxide nanoparticles as catalyst. Chem. Eng. J. 2015, 261, 45–52. [Google Scholar] [CrossRef]
- López, N.; Plaza, S.; Afkhami, A.; Marco, P.; Giménez, J.; Esplugas, S. Treatment of Diphenhydramine with different AOPs including photo-Fenton at circumneutral pH. Chem. Eng. J. 2017, 318, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Carmona, P.B. Tratamiento de Aguas Residuales de la Industria Cosmética Mediante el Proceso Fenton y con el Sistema Fe/γ-Al2O3/H2O2. Ph.D. Thesis, Universidad Autónoma de Madrid, Madrid, Spain, 2008. [Google Scholar]
- Taco Ugsha, M.; Mayorga Llerena, E. Aplicación del proceso Fenton en la disminución de materia orgánica en aguas residuales de la industria termoeléctrica. Quím. Cent. 2013, 3, 25–30. [Google Scholar] [CrossRef]
- Lai, C.; Shi, X.; Li, L.; Cheng, M.; Liu, X.; Liu, S.; Li, B.; Yi, H.; Qin, L.; Zhang, M.; et al. Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review. Sci. Total Environ. 2021, 775, 145850. [Google Scholar] [CrossRef]
- Ay, F.; Kargi, F. Advanced oxidation of amoxicillin by Fenton’s reagent treatment. J. Hazard. Mater. 2010, 179, 622–627. [Google Scholar] [CrossRef]
- Escalona, I.; Fortuny, A.; Stüber, F.; Bengoa, C.; Fabregat, A.; Font, J. Fenton coupled with nanofiltration for elimination of Bisphenol, A. Desalination 2014, 345, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Li, Y. Removal of steroid estrogens from waste activated sludge using Fenton oxidation: Influencing factors and degradation intermediates. Chemosphere 2014, 105, 24–30. [Google Scholar] [CrossRef]
- Van, H.T.; Nguyen, L.H.; Hoang, T.K.; Nguyen, T.T.; Tran, T.N.H.; Nguyen, T.B.H.; Vu, X.H.; Pham, M.T.; Tran, T.P.; Pham, T.T.; et al. Heterogeneous Fenton oxidation of paracetamol in aqueous solution using iron slag as a catalyst: Degradation mechanisms and kinetics. Environ. Technol. Innov. 2020, 18, 100670. [Google Scholar] [CrossRef]
- Zhu, S.; Dong, B.; Yu, Y.; Bu, L.; Deng, J.; Zhou, S. Heterogeneous catalysis of ozone using ordered mesoporous Fe3O4 for degradation of atrazine. Chem. Eng. J. 2017, 328, 527–535. [Google Scholar] [CrossRef]
- Kwon, M.; Kye, H.; Jung, Y.; Yoon, Y.; Kang, J.W. Performance characterization and kinetic modeling of ozonation using a new method: ROH,O3 concept. Water Res. 2017, 122, 172–182. [Google Scholar] [CrossRef]
- Ikehata, K.; Li, Y. Ozone-Based Processes. In Advanced Oxidation Processes for Waste Water Treatment, 1st ed.; Ameta, S.C., Ameta, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 5, pp. 115–134. [Google Scholar] [CrossRef]
- Malik, S.N.; Ghosh, P.C.; Vaidya, A.N.; Mudliar, S.N. Hybrid ozonation process for industrial wastewater treatment: Principles and applications: A review. J. Water Process Eng. 2020, 35, 101193. [Google Scholar] [CrossRef]
- Egbuikwem, P.N.; Mierzwa, J.C.; Saroj, D.P. Evaluation of aerobic biological process with post-ozonation for treatment of mixed industrial and domestic wastewater for potential reuse in agriculture. Bioresour. Technol. 2020, 318, 124200. [Google Scholar] [CrossRef]
- Rekhate, C.V.; Srivastava, J.K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater—A review. Chem. Eng. J. Adv. 2020, 3, 100031. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z.; Demeestere, K.; Van Hulle, S. Ozonation in view of micropollutant removal from biologically treated landfill leachate: Removal efficiency, •OH exposure, and surrogate-based monitoring. Chem. Eng. J. 2021, 410, 128413. [Google Scholar] [CrossRef]
- Mathon, B.; Coquery, M.; Liu, Z.; Penru, Y.; Guillon, A.; Esperanza, M.; Miège, C.; Choubert, J.M. Ozonation of 47 organic micropollutants in secondary treated municipal effluents: Direct and indirect kinetic reaction rates and modelling. Chemosphere 2021, 262, 127969. [Google Scholar] [CrossRef]
- Polo-López, M.I.; Sánchez Pérez, J.A. Perspectives of the solar photo-Fenton process against the spreading of pathogens, antibioticresistant bacteria and genes in the environment. Curr. Opin. Green Sustain. Chem. 2021, 27, 100416. [Google Scholar] [CrossRef]
- Oller, I.; Malato, S. Photo-Fenton applied to the removal of pharmaceutical and other pollutants of emerging concern. Curr. Opin. Green Sustain. Chem. 2021, 29, 100458. [Google Scholar] [CrossRef]
- Cabrera-Reina, A.; Miralles-Cuevas, S.; Sánchez Pérez, J.A.; Salazar, R. Application of solar photo-Fenton in raceway pond reactors: A review. Sci. Total Environ. 2021, 800, 149653. [Google Scholar] [CrossRef]
- Gou, Y.; Chen, P.; Yang, L.; Li, S.; Peng, L.; Song, S.; Xu, Y. Degradation of fluoroquinolones in homogeneous and heterogeneous photo-Fenton processes: A review. Chemosphere 2021, 270, 129481. [Google Scholar] [CrossRef] [PubMed]
- Clarizia, L.; Russo, D.; Di Somma, I.; Marotta, R.; Andreozzi, R. Homogeneous photo-Fenton processes at near neutral pH: A review. Appl. Catal. B 2017, 209, 358–371. [Google Scholar] [CrossRef]
- Sánchez Proaño, R.G.; García Gualoto, K.J. Tratamiento de aguas residuales de cargas industriales con oxidación avanzada en sistemas convencionales. Granja 2018, 27, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Xavier, S.; Gandhimathi, R.; Nidheesh, P.V.; Ramesh, S.T. Comparative removal of Magenta MB from aqueous solution by homogeneous and heterogeneous photo-Fenton processes. Desalin. Water Treat. 2015, 57, 12832–12841. [Google Scholar] [CrossRef]
- Huang, Y.H.; Tsai, S.T.; Huang, Y.F.; Chen, C.Y. Degradation of commercial azo dye reactive Black B in photo/ferrioxalate system. J. Hazard. Mater. 2007, 140, 382–388. [Google Scholar] [CrossRef]
- O’Dowd, K.; Pillai, S.C. Photo-Fenton disinfection at near neutral pH: Process, parameter optimization and recent advances. J. Environ. Chem. Eng. 2020, 8, 104063. [Google Scholar] [CrossRef]
- Elmolla, E.S.; Chaudhuri, M. Degradation of the antibiotics amoxicillin, ampicillin and cloxacillin in aqueous solution by the photo-Fenton process. J. Hazard. Mater. 2009, 172, 1476–1481. [Google Scholar] [CrossRef]
- Frontistis, Z.; Xekoukoulotakis, N.P.; Hapeshi, E.; Venieri, D.; Fatta-Kassinos, D.; Mantzavinos, D. Fast degradation of estrogen hormones in environmental matrices by photo-Fenton oxidation under simulated solar radiation. Chem. Eng. J. 2011, 178, 175–182. [Google Scholar] [CrossRef]
- Von Sonntag, C. Advanced oxidation processes: Mechanistic aspects. Water Sci. Technol. 2008, 58, 1015–1021. [Google Scholar] [CrossRef]
- Souza, F.S.; Féris, L.A. Degradation of Caffeine by Advanced Oxidative Processes: O3 and O3/UV. Ozone Sci. Eng. 2015, 37, 379–384. [Google Scholar] [CrossRef]
- Chang, E.E.; Liu, T.Y.; Huang, C.P.; Liang, C.H.; Chiang, P.C. Degradation of mefenamic acid from aqueous solutions by the ozonation and O3/UV processes. Sep. Purif. Technol. 2012, 98, 123–129. [Google Scholar] [CrossRef]
- Illés, E.; Szabó, E.; Takács, E.; Wojnárovits, L.; Dombi, A.; Gajda-Schrantz, K. Ketoprofen removal by O3 and O3/UV processes: Kinetics, transformation products and ecotoxicity. Sci. Total Environ. 2014, 472, 178–184. [Google Scholar] [CrossRef]
- Raj, R.; Tripathi, A.; Das, S.; Ghangrekar, M.M. Removal of caffeine from wastewater using electrochemical advanced oxidation process: A mini review. CSCEE 2021, 4, 100129. [Google Scholar] [CrossRef]
- Flores Tapia, N.E.; Roman Rodríguez, M.; Coba Cabrera, R.L.; Vélez Ortiz, J.J.; Sirés Sadornil, I.; Brillas Coso, E. Procesos Electroquímicos de Oxidación Avanzados en la degradación de los ácidos trans-cinámico y trans-ferúlico. Cienc. Digit. 2019, 3, 49–60. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Martínez-Huitle, C.A.; Oturan, M.A. Electrochemical advanced oxidation processes for wastewater treatment: Advances in formation and detection of reactive species and mechanisms. Curr. Opin. Electrochem. 2021, 27, 100678. [Google Scholar] [CrossRef]
- Brillas, E. Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation. J. Clean. Prod. 2021, 290, 125841. [Google Scholar] [CrossRef]
- Seibert, D.; Zorzo, C.F.; Borba, F.H.; de Souza, R.M.; Quesada, H.B.; Bergamasco, R.; Baptista, A.T.; Inticher, J.J. Occurrence, statutory guideline values and removal of contaminants of emerging concern by Electrochemical Advanced Oxidation Processes: A review. Sci. Total Environ. 2020, 748, 141527. [Google Scholar] [CrossRef]
- Brillas, E.; Sirés, I.; Arias, C.; Cabot, P.L.; Centellas, F.; Rodríguez, R.M.; Garrido, J.A. Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode. Chemosphere 2005, 58, 399–406. [Google Scholar] [CrossRef]
- Domínguez, J.R.; González, T.; Palo, P.; Sánchez-Martín, J. Anodic oxidation of ketoprofen on boron-doped diamond (BDD) electrodes. Role of operative parameters. Chem. Eng. J. 2010, 162, 1012–1018. [Google Scholar] [CrossRef]
- Donoso, G.; Domínguez, J.R.; González, T.; Correia, S.; Cuerda-Correa, E.M. Electrochemical and sonochemical advanced oxidation processes applied to tartrazine removal. Influence of operational conditions and aqueous matrix. Environ. Res. 2021, 202, 111517. [Google Scholar] [CrossRef]
- Agrawal, K.; Bhatt, A.; Chaturvedi, V.; Verma, P. Bioremediation: An effective technology toward a sustainable environment via the remediation of emerging environmental pollutants. In Emerging Technologies in Environmental Bioremediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 165–196. [Google Scholar] [CrossRef]
- Azaroff, A.; Monperrus, M.; Miossec, C.; Gassie, C.; Guyoneaud, R. Microbial degradation of hydrophobic emerging contaminants from marine sediment slurries (Capbreton Canyon) to pure bacterial strain. J. Hazard. Mater. 2021, 402, 123477. [Google Scholar] [CrossRef] [PubMed]
- Meganathan, B.; Rathinavel, T.; Rangaraj, S. Trends in microbial degradation and bioremediation of emerging contaminants. Phys. Sci. Rev. 2021, 000010151520210060. [Google Scholar] [CrossRef]
- Alhefeiti, M.A.; Athamneh, K.; Vijayan, R.; Ashraf, S.S. Bioremediation of various aromatic and emerging pollutants by Bacillus cereus sp. isolated from petroleum sludge. Water Sci. Technol. 2021, 83, 1535–1547. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, D.L.; Ralph, P.J. Microalgal bioremediation of emerging contaminants-Opportunities and challenges. Water Res. 2019, 164, 114921. [Google Scholar] [CrossRef]
- Vale, F.; Sousa, C.A.; Sousa, H.; Santos, L.; Simões, M. Parabens as emerging contaminants: Environmental persistence, current practices and treatment processes. J. Clean. Prod. 2022, 347, 131244. [Google Scholar] [CrossRef]
- Singh, D.V.; Bhat, R.A.; Upadhyay, A.K.; Singh, R.; Singh, D.P. Microalgae in aquatic environs: A sustainable approach for remediation of heavy metals and emerging contaminants. Environ. Technol. Innov. 2021, 21, 101340. [Google Scholar] [CrossRef]
- Gondi, R.; Kavitha, S.; Kannah, R.Y.; Karthikeyan, O.P.; Kumar, G.; Tyagi, V.K.; Banu, J.R. Algal-based system for removal of emerging pollutants from wastewater: A review. Bioresour. Technol. 2022, 344, 126245. [Google Scholar] [CrossRef]
- Kumar, V.; Jaiswal, K.K.; Verma, M.; Vlaskin, M.S.; Nanda, M.; Chauhan, P.K.; Singh, A.; Kim, H. Algae-based sustainable approach for simultaneous removal of micropollutants, and bacteria from urban wastewater and its real-time reuse for aquaculture. Sci. Total Environ. 2021, 774, 145556. [Google Scholar] [CrossRef]
- García, J.; García-Galán, M.J.; Day, J.W.; Boopathy, R.; White, J.R.; Wallace, S.; Hunter, R.G. A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Bioresour. Technol. 2020, 307, 123228. [Google Scholar] [CrossRef]
- Gikas, G.D.; Papaevangelou, V.A.; Tsihrintzis, V.A.; Antonopoulou, M.; Konstantinou, I.K. Removal of Emerging Pollutants in Horizontal Subsurface Flow and Vertical Flow Pilot-Scale Constructed Wetlands. Processes 2021, 9, 2200. [Google Scholar] [CrossRef]
- Zdarta, J.; Jankowska, K.; Bachosz, K.; Degórska, O.; Kaźmierczak, K.; Nguyen, L.N.; Nghiem, L.D.; Jesionowski, T. Enhanced wastewater treatment by immobilized enzymes. Curr. Pollut. Rep. 2021, 7, 167–179. [Google Scholar] [CrossRef]
- Gomes, I.B.; Maillard, J.Y.; Simões, L.C.; Simões, M. Emerging contaminants affect the microbiome of water systems—Strategies for their mitigation. NPJ Clean Water 2020, 3, 39. [Google Scholar] [CrossRef]
- Sousa, H.; Sousa, C.A.; Simões, L.C.; Simões, M. Microalgal-based removal of contaminants of emerging concern. J. Hazard. Mater. 2022, 423, 127153. [Google Scholar] [CrossRef]
- Al-Maqdi, K.A.; Elmerhi, N.; Athamneh, K.; Bilal, M.; Alzamly, A.; Ashraf, S.S.; Shah, I. Challenges and Recent Advances in Enzyme-Mediated Wastewater Remediation—A Review. Nanomaterials 2021, 11, 3124. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Jeon, B.H. Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol. 2018, 36, 30–44. [Google Scholar] [CrossRef]
- Jaiswal, S.; Shukla, P. Alternative strategies for microbial remediation of pollutants via synthetic biology. Front. Microbiol. 2020, 11, 808. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M. Microbial bioremediation as a robust process to mitigate pollutants of environmental concern. Case Stud. Therm. Eng. 2020, 2, 100011. [Google Scholar] [CrossRef]
- Taoufik, N.; Boumya, W.; Achak, M.; Sillanpaa, M.; Barka, N. Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals. J. Environ. Manag. 2021, 288, 112404. [Google Scholar] [CrossRef]
Group | Extremely Toxic EC50 < 0.1 mgL−1 | Highly Toxic EC50 0.1–1 mgL−1 | Toxic EC50 1–10 mgL−1 | Harmful EC50 10–100 mgL−1 | Non-Toxic EC50 > 100 mgL−1 |
---|---|---|---|---|---|
Analgesics | D* | D*, E* | |||
Antibiotics | A* | B* | |||
Antidepressants | D* | ||||
Antiepileptics | C* | D*, E* | |||
Cardiovascular medicines | D* | ||||
Cytostatics | A* | D*, E* |
Contaminant | Type of Water | Hydrogen Potential (pH) | Catalyst Dose and Oxidant Dose | % Removal | Reference |
---|---|---|---|---|---|
Amoxicillin | Synthetic | 3.5 | [H2O2] = 255 mg/L [Fe2+] = 25 mg/L | 100% | [73] |
Bisphenol A | Synthetic | 3 | Fe2+/H2O2 = 0.012 | 100% (maximum) | [74] |
Estrogens * | Activated sludge waste | 3 | Fe2+/H2O2 = 0.167 | 70–98% | [75] |
Paracetamol | Synthetic | 3 | H2O2/Fe2+ = 2 | 70.37% | [76] |
Contaminant | Type of Water | Direct Ozonation (O3). % Removal | Indirect Ozonation (HO°). % Removal | % Large-Scale Removal | Reference |
---|---|---|---|---|---|
Paracetamol | Wastewater | 97% | 3% | ND* | [84] |
Estrogens * | Wastewater | 17–99% | 1–83% | 87–96% | [84] |
Ofloxacin | Wastewater | 7% | 93% | 80–92% | [84] |
Metformin | Wastewater | 1% | 99% | ND* | [84] |
Contaminant | Type of Water | Hydrogen Potential (pH) | Catalyst Dose and Oxidizer Dose | % Removal | Reference |
---|---|---|---|---|---|
Amoxicillin | Synthetic | 3 | H2O2/Fe2+ = 20 | 100% | [94] |
Ampicillin | Synthetic | 3 | H2O2/Fe2+ = 20 | 100% | [94] |
Cloxacillin | Synthetic | 3 | H2O2/Fe2+ = 20 | 100% | [94] |
17α-ethinylestradiol | Wastewater with spike | 3 | [Fe2+] = 5 mg/L [H2O2] = 4.3–15 mg/L | 100% | [95] |
Contaminant | Type of Water | % Maximum Removal | Reference |
---|---|---|---|
Caffeine | Synthetic | 95% | [97] |
Mefenamic acid | Synthetic | 60–80% | [98] |
Ketoprofen | Synthetic | 95% (mineralization) | [99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bracamontes-Ruelas, A.R.; Ordaz-Díaz, L.A.; Bailón-Salas, A.M.; Ríos-Saucedo, J.C.; Reyes-Vidal, Y.; Reynoso-Cuevas, L. Emerging Pollutants in Wastewater, Advanced Oxidation Processes as an Alternative Treatment and Perspectives. Processes 2022, 10, 1041. https://doi.org/10.3390/pr10051041
Bracamontes-Ruelas AR, Ordaz-Díaz LA, Bailón-Salas AM, Ríos-Saucedo JC, Reyes-Vidal Y, Reynoso-Cuevas L. Emerging Pollutants in Wastewater, Advanced Oxidation Processes as an Alternative Treatment and Perspectives. Processes. 2022; 10(5):1041. https://doi.org/10.3390/pr10051041
Chicago/Turabian StyleBracamontes-Ruelas, Alexis Rubén, Luis Alberto Ordaz-Díaz, Ana María Bailón-Salas, Julio César Ríos-Saucedo, Yolanda Reyes-Vidal, and Liliana Reynoso-Cuevas. 2022. "Emerging Pollutants in Wastewater, Advanced Oxidation Processes as an Alternative Treatment and Perspectives" Processes 10, no. 5: 1041. https://doi.org/10.3390/pr10051041
APA StyleBracamontes-Ruelas, A. R., Ordaz-Díaz, L. A., Bailón-Salas, A. M., Ríos-Saucedo, J. C., Reyes-Vidal, Y., & Reynoso-Cuevas, L. (2022). Emerging Pollutants in Wastewater, Advanced Oxidation Processes as an Alternative Treatment and Perspectives. Processes, 10(5), 1041. https://doi.org/10.3390/pr10051041