Comparative Static Analysis on the Agricultural Mechanization Development Levels in China’s Provincial Areas
Abstract
:1. Introduction
2. Assessment Method
3. The Selection of Indicators and the Determining of Whitening Weighted Function
3.1. Selection of Indicators
3.2. The Determining of Whitening Weighted Function
3.3. Determining the Weight of Each Indicator
4. Cluster Result and Analysis
4.1. Cluster Result
4.2. Cluster Results Analysis
5. Conclusions and Policy Recommendations
- (1)
- We should transform our concepts in developing the agricultural machinery industry and enhance the awareness that agricultural mechanization is representative of agricultural modernization.
- (2)
- The government should increase input in developing agricultural mechanization. At the current stage, the income level of farmers in China is generally low, so the government should strengthen support for the farmers by providing them with more capital investment, financial support and agricultural machinery subsidies.
- (3)
- We should speed up the infrastructure of agricultural facilities. The inadequate construction of standardized farmland and water conservation facilities both hinder the development of agricultural mechanization. Improving the infrastructure will be conducive to expanding the land turnover scale and developing the whole process of mechanizing agriculture [22].
- (4)
- We should give priority to innovations in the scientific research of agricultural mechanization and boost the input in agricultural mechanization research. We should promote regional agricultural mechanization technologies and research innovation. As different regions have different climates and land features, they should coordinate with and complement each other in the R&D and manufacturing of agricultural machinery.
- (5)
- We should innovate the environment protection design of agricultural mechanization. We should speed up the promotion of electric-power-driven agricultural machines, and develop a new type of energy-saving diesel and gasoline agricultural machines. Electric agricultural machines should be promoted in farmland irrigation, farmland development and agricultural and by-products processing so as to contribute to energy saving and emission reduction.
- (6)
- Based on the results in this paper, the government can utilize multi-part cooperation to improve the agricultural infrastructure, including digital facility investment, integrative agricultural management and many other areas. A series of agricultural machinery management modes can be established or ameliorated through analyzing the practical feedback, internet advantage, information exchange and sharing. As a result, the macro decision of agricultural machinery management can be optimized by the research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manogaran, G.; Alazab, M.; Muhammad, K.; de Albuquerque, V.H.C. Smart Sensing Based Functional Control for Reducing Uncertainties in Agricultural Farm Data Analysis. IEEE Sens. J. 2021, 21, 17469–17478. [Google Scholar] [CrossRef]
- Chen, T.; Rizwan, M.; Abbas, A. Exploring the role of agricultural services in production efficiency in Chinese agriculture: A case of the socialized agricultural service system. Land 2022, 11, 347. [Google Scholar] [CrossRef]
- Hui, X.; Sun, Y.; Yin, F.; Dun, W. Trend Prediction of Agricultural Machinery Power in China coastal areas based on grey relational analysis. J. Coast. Res. 2020, 103 (Suppl. 1), 299–304. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, H. China’s Agricultural Mechanization: Diesel Consumption Trend Analysis and Energy-saving Strategic Measures. Agric. Eng. J. 2007, 23, 280–284. [Google Scholar]
- Manogaran, G.; Hsu, C.-H.; Rawal, B.S.; Muthu, B.A.; Mavromoustakis, C.X.; Mastorakis, G. ISOF: Information Scheduling and Optimization Framework for Improving the Performance of Agriculture Systems Aided by Industry 4.0. IEEE Internet Things J. 2021, 8, 3120–3129. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, N. Medium to Long Term Prediction of the Demand of Diesel for Agricultural Use in China. Agric. Technol. Econ. 2011, 7, 104–112. [Google Scholar]
- Yang, C.; Yang, W. Assessment System of the Agricultural Mechanization Development Level in Xinjiang. Agric. Eng. J. 2014, 4, 1–5. [Google Scholar]
- Wang, M. Assessment of the Agricultural Mechanization Development Level in Tianjin City. Agric. Eng. 2012, 2, 5–8. [Google Scholar]
- Li, J.; Feng, F.; Ma, S.; Zhao, F. Developed and test study on covering-soil machine for grape vines. J. Agric. Mech. Res. 2011, 33, 150–152. [Google Scholar]
- Meng, H.W.; Li, J.J.; Kan, Z. Development of PM-1200 Suspended Grape Vine Burying Machine. J. Agric. Mech. Res. 2012, 34, 97–100. [Google Scholar]
- Maddikunta, P.K.; Hakak, S.; Alazab, M.; Bhattacharya, S.; Gadekallu, T.R.; Khan, W.Z.; Pham, Q. Unmanned Aerial Vehicles in Smart Agriculture: Applications, Requirements, and Challenges. IEEE Sens. J. 2021, 21, 17608–17619. [Google Scholar] [CrossRef]
- Lu, B.; Han, W.; Zhu, M. Comparison of the Assessment Instruments of Agricultural Mechanization Development Level. Agric. Eng. J. 2015, 31, 46–49. [Google Scholar]
- Zhang, Y.; Xu, H. Analysis on the Spatial Layout of the Agricultural Mechanical Power in China. Agric. Mech. Study 2015, 11, 12–16. [Google Scholar]
- Liu, S.; Xie, N. Gray System Theory and Its Application, 6th ed.; Science Publisher: Beijing, China, 2013; pp. 88–89. [Google Scholar]
- Zhang, L.; Yang, Y.; Gao, J.; Liu, X. Study on Amplified Spontaneous Emission Properties of EnBOD Material. Chin. J. Lumin. 2015, 36, 661–665. [Google Scholar] [CrossRef]
- Han, C.; Zhang, B.; Chen, H.; Wei, Z.; Liu, Y. Spatially distributed crop model based on remote sensing. Agric. Water Manag. 2019, 218, 165–173. [Google Scholar] [CrossRef]
- Hum, D. The Relative Returns Frown Research and Teaching: A Market Perspective. J. Educ. Adm. Found. 2000, 15, 23–32. [Google Scholar]
- De, Q. Research on the Development of Mechanized Vine-bury Techniques. Agric. Sci. Technol. Equip. 2011, 2, 113–114. [Google Scholar]
- Shahriar, R.; Al Sunny, S.M.N.; Liu, X.; Leu, M.C.; Hu, L.; Nguyen, N.-T. MTComm Based Virtualization and Integration of Physical Machine Operations with Digital-Twins in Cyber-Physical Manufacturing Cloud. In Proceedings of the 2018 5th IEEE International Conference on Cer Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), Shanghai, China, 2–7 July 2018; pp. 46–51. [Google Scholar] [CrossRef]
- Dong, X.; Zhu, R.; Tang, J. Evaluation and Analysis of the Level of Agricultural Mechanization in Shanxi Province. J. Agric. Mech. Res. 2011, 60, 53–56. [Google Scholar]
- Zhang, B.; Xu, D.; Liu, Y.; Li, F.; Cai, J.; Du, L. Multi-scale evapotranspiration of summer maize and the controlling meteorological factors in north China. Agric. For. Meteorol. 2016, 216, 1–12. [Google Scholar] [CrossRef]
- Shi, X.; Gu, S. Predicative Analysis on the Deformation of Foundation Pit Based on Gray Association Weighted Combination Model. Proj. Qual. 2016, 34, 38–44. [Google Scholar]
Provincial Areas | ||||||||
---|---|---|---|---|---|---|---|---|
Beijing | 3.557 | 8.954 | 1.533 | 2.076 | 1.011 | 1.666 | 13.298 | 13.168 |
Tianjin | 4.450 | 7.491 | 2.736 | 2.105 | 0.929 | 1.411 | 11.971 | 11.142 |
Hebei | 3.266 | 3.856 | 1.834 | 2.028 | 0.957 | 0.755 | 4.925 | 18.845 |
Shanxi | 2.340 | 3.671 | 2.088 | 1.552 | 0.664 | 0.816 | 7.106 | 10.317 |
Neimenggu | 1.156 | 4.434 | 2.807 | 2.490 | 0.891 | 0.688 | 3.272 | 4.922 |
Liaoning | 1.099 | 2.463 | 1.706 | 1.059 | 0.212 | 0.305 | 3.936 | 5.078 |
Jilin | 0.570 | 3.518 | 0.713 | 0.884 | 0.046 | 0.438 | 2.617 | 3.564 |
Heilongjiang | 0.723 | 7.028 | 3.252 | 2.854 | 1.604 | 0.393 | 3.321 | 4.101 |
Shanghai | 0.916 | 3.986 | 1.633 | 0.321 | 1.383 | 1.136 | 1.788 | 5.657 |
Jiangsu | 1.106 | 1.464 | 1.384 | 0.749 | 1.336 | 0.872 | 4.980 | 3.922 |
Zhejiang | 2.591 | 0.552 | 1.215 | 0.014 | 0.902 | 1.282 | 12.740 | 9.885 |
Anhui | 1.521 | 1.382 | 1.449 | 0.894 | 1.277 | 0.904 | 5.992 | 4.420 |
Fujian | 1.398 | 0.196 | 0.590 | 0.001 | 0.090 | 0.759 | 8.167 | 9.869 |
Jiangxi | 1.014 | 0.729 | 1.061 | 0.040 | 0.576 | 0.990 | 4.541 | 5.615 |
Shandong | 2.348 | 5.815 | 1.402 | 1.374 | 0.948 | 0.963 | 7.849 | 20.710 |
Henan | 1.732 | 2.418 | 1.267 | 1.278 | 1.048 | 0.598 | 3.233 | 5.151 |
Hubei | 0.945 | 3.518 | 0.926 | 0.107 | 0.646 | 0.668 | 4.488 | 6.322 |
Hunan | 1.191 | 0.329 | 0.792 | 0.013 | 0.401 | 0.642 | 10.013 | 4.568 |
Guangdong | 1.361 | 0.423 | 0.957 | 0.002 | 0.259 | 0.473 | 4.676 | 4.891 |
Guangxi | 1.284 | 1.143 | 0.698 | 0.000 | 0.043 | 0.639 | 9.720 | 6.176 |
Hainan | 1.952 | 3.791 | 1.048 | 0.000 | 0.426 | 1.539 | 7.181 | 9.895 |
Chongqing | 0.664 | 0.009 | 0.334 | 0.003 | 0.025 | 0.308 | 4.112 | 2.854 |
Sichuan | 0.679 | 0.396 | 0.333 | 0.128 | 0.155 | 0.593 | 4.677 | 3.955 |
Guizhou | 0.878 | 1.207 | 0.210 | 0.005 | 0.047 | 0.232 | 2.692 | 2.789 |
Yunnan | 1.100 | 2.970 | 0.358 | 0.013 | 0.038 | 0.770 | 4.073 | 3.767 |
Tibet | 2.473 | 7.173 | 0.136 | 0.134 | 0.114 | 0.000 | 0.000 | 0.000 |
Shannxi | 1.371 | 3.404 | 1.585 | 1.470 | 0.824 | 0.853 | 4.481 | 5.934 |
Gansu | 1.681 | 2.187 | 1.720 | 1.035 | 0.479 | 0.805 | 6.636 | 9.716 |
Qinghai | 3.408 | 2.895 | 2.706 | 2.579 | 1.083 | 1.516 | 4.719 | 9.125 |
Ningxia | 1.875 | 4.469 | 1.753 | 1.323 | 0.401 | 0.705 | 7.019 | 6.461 |
Xinjiang | 0.994 | 10.529 | 2.553 | 2.560 | 0.938 | 0.944 | 6.615 | 4.658 |
Provincial Areas | ||||||||
---|---|---|---|---|---|---|---|---|
Beijing | 2.386 | 7.175 | 0.846 | 1.876 | 1.150 | 3.240 | 9.931 | 5.982 |
Tianjin | 3.680 | 8.138 | 2.357 | 2.518 | 1.385 | 2.214 | 12.352 | 10.655 |
Hebei | 3.411 | 5.800 | 1.787 | 2.108 | 1.152 | 1.113 | 6.682 | 10.336 |
Shanxi | 2.589 | 6.746 | 2.359 | 2.011 | 0.858 | 2.250 | 9.003 | 7.598 |
Neimenggu | 1.406 | 23.821 | 2.865 | 2.807 | 1.194 | 1.385 | 4.822 | 5.721 |
Liaoning | 1.274 | 8.587 | 1.937 | 1.442 | 0.499 | 1.506 | 5.468 | 4.993 |
Jilin | 0.755 | 10.329 | 1.433 | 1.312 | 0.400 | 1.338 | 4.107 | 4.563 |
Heilongjiang | 0.745 | 13.061 | 2.696 | 2.534 | 1.782 | 1.315 | 3.081 | 4.020 |
Shanghai | 0.879 | 4.877 | 3.334 | 0.448 | 1.400 | 3.237 | 2.253 | 2.905 |
Jiangsu | 1.217 | 2.989 | 1.712 | 1.007 | 1.481 | 1.213 | 7.011 | 5.706 |
Zhejiang | 3.150 | 1.090 | 1.865 | 0.198 | 1.169 | 2.526 | 20.467 | 14.847 |
Anhui | 1.756 | 4.048 | 2.291 | 1.171 | 1.709 | 1.503 | 11.096 | 4.733 |
Fujian | 1.822 | 0.393 | 1.373 | 0.039 | 0.337 | 1.843 | 14.130 | 7.213 |
Jiangxi | 1.947 | 0.849 | 1.483 | 0.199 | 1.137 | 0.797 | 7.434 | 6.617 |
Shandong | 2.682 | 9.819 | 1.504 | 1.884 | 1.542 | 1.232 | 10.187 | 11.901 |
Henan | 1.875 | 5.048 | 1.519 | 1.667 | 1.360 | 1.045 | 4.499 | 6.353 |
Hubei | 1.456 | 5.488 | 1.951 | 0.352 | 1.201 | 1.583 | 9.759 | 7.344 |
Hunan | 1.634 | 2.977 | 1.644 | 0.069 | 0.945 | 1.463 | 12.422 | 5.510 |
Guangdong | 1.782 | 1.398 | 2.353 | 0.055 | 0.908 | 1.773 | 8.935 | 11.035 |
Guangxi | 1.960 | 1.535 | 2.210 | 0.131 | 0.654 | 2.507 | 17.227 | 7.838 |
Hainan | 2.358 | 16.521 | 2.410 | 0.034 | 1.054 | 2.580 | 11.985 | 9.635 |
Chongqing | 0.927 | 0.285 | 1.385 | 0.076 | 0.194 | 1.221 | 6.777 | 4.669 |
Sichuan | 0.979 | 2.827 | 0.680 | 0.110 | 0.261 | 1.581 | 6.499 | 4.061 |
Guizhou | 1.556 | 2.278 | 0.567 | 0.029 | 0.089 | 0.946 | 4.899 | 3.363 |
Yunnan | 1.575 | 14.696 | 1.083 | 0.012 | 0.103 | 1.355 | 6.235 | 4.271 |
Tibet | 4.145 | 27.961 | 1.469 | 1.447 | 1.228 | 3.681 | 1.500 | 17.259 |
Shannxi | 1.717 | 6.937 | 2.152 | 1.641 | 1.178 | 2.239 | 6.610 | 7.163 |
Gansu | 2.064 | 7.639 | 1.858 | 1.256 | 0.643 | 1.259 | 7.915 | 13.315 |
Qinghai | 4.131 | 80.196 | 3.040 | 2.647 | 1.252 | 3.174 | 11.220 | 10.275 |
Ningxia | 2.045 | 7.833 | 2.310 | 1.812 | 1.071 | 1.956 | 7.199 | 6.628 |
Xinjiang | 1.088 | 18.519 | 2.973 | 2.811 | 1.328 | 2.921 | 7.451 | 4.991 |
Provincial Areas | ||||||||
---|---|---|---|---|---|---|---|---|
Beijing | 3.125 | 10.536 | 1.041 | 1.805 | 1.516 | 4.244 | 11.971 | 12.947 |
Tianjin | 3.039 | 8.693 | 2.101 | 2.306 | 1.920 | 2.958 | 8.914 | 9.315 |
Hebei | 3.253 | 7.569 | 1.615 | 1.969 | 1.483 | 2.826 | 6.822 | 9.154 |
Shanxi | 2.609 | 9.448 | 2.130 | 2.082 | 1.438 | 2.098 | 10.409 | 6.999 |
Neimenggu | 1.285 | 23.753 | 2.222 | 2.425 | 1.587 | 1.799 | 5.205 | 4.591 |
Liaoning | 1.363 | 11.156 | 1.907 | 1.645 | 0.906 | 1.247 | 5.939 | 4.824 |
Jilin | 0.800 | 13.183 | 1.366 | 1.372 | 0.800 | 1.359 | 4.581 | 4.228 |
Heilongjiang | 0.815 | 14.573 | 2.271 | 2.236 | 1.955 | 1.079 | 3.705 | 3.741 |
Shanghai | 1.051 | 6.424 | 3.189 | 0.568 | 1.376 | 5.726 | 2.587 | 3.123 |
Jiangsu | 1.306 | 4.246 | 1.673 | 1.233 | 1.463 | 1.919 | 7.817 | 4.279 |
Zhejiang | 3.217 | 1.595 | 1.912 | 0.299 | 1.223 | 2.808 | 21.814 | 16.296 |
Anhui | 1.799 | 5.633 | 2.086 | 1.325 | 1.763 | 1.651 | 14.137 | 4.453 |
Fujian | 2.070 | 0.529 | 1.577 | 0.207 | 0.587 | 1.044 | 15.402 | 6.182 |
Jiangxi | 0.986 | 0.661 | 1.821 | 0.286 | 1.467 | 1.194 | 7.382 | 4.841 |
Shandong | 2.780 | 11.000 | 1.303 | 1.834 | 1.540 | 1.352 | 10.329 | 8.476 |
Henan | 1.892 | 6.232 | 1.497 | 1.682 | 1.554 | 0.981 | 4.671 | 6.064 |
Hubei | 1.588 | 5.863 | 2.163 | 0.774 | 1.546 | 1.761 | 9.531 | 5.311 |
Hunan | 1.889 | 3.873 | 1.966 | 0.337 | 1.250 | 1.626 | 18.813 | 6.229 |
Guangdong | 1.938 | 2.069 | 2.684 | 0.182 | 1.164 | 1.278 | 11.478 | 9.072 |
Guangxi | 2.340 | 2.486 | 2.926 | 0.408 | 1.228 | 1.686 | 23.950 | 8.782 |
Hainan | 2.812 | 24.404 | 3.088 | 0.045 | 1.776 | 2.939 | 20.246 | 14.262 |
Chongqing | 1.077 | 0.329 | 1.789 | 0.108 | 0.281 | 0.892 | 8.215 | 4.401 |
Sichuan | 1.208 | 3.663 | 1.336 | 0.212 | 0.573 | 1.534 | 7.137 | 4.088 |
Guizhou | 2.083 | 3.568 | 1.251 | 0.051 | 0.242 | 1.284 | 5.616 | 3.760 |
Yunnan | 1.713 | 16.058 | 1.423 | 0.059 | 0.210 | 1.110 | 6.506 | 4.517 |
Tibet | 5.672 | 88.244 | 1.403 | 1.352 | 1.133 | 6.990 | 1.694 | 26.334 |
Shannxi | 2.080 | 8.290 | 2.333 | 1.633 | 1.477 | 1.873 | 9.205 | 7.458 |
Gansu | 2.174 | 12.321 | 2.081 | 1.312 | 0.823 | 1.932 | 8.676 | 10.930 |
Qinghai | 4.292 | 15.479 | 3.635 | 2.882 | 2.083 | 1.804 | 9.562 | 11.371 |
Ningxia | 2.182 | 13.178 | 2.418 | 1.839 | 1.487 | 2.029 | 8.078 | 6.049 |
Xinjiang | 1.219 | 25.768 | 3.231 | 3.238 | 1.553 | 3.390 | 7.856 | 4.873 |
Gray Cluster 1 | Gray Cluster 2 | Gray Cluster 3 | Gray Cluster 4 | Gray Cluster 5 |
---|---|---|---|---|
Provincial Areas | 2005 | 2010 | 2015 |
---|---|---|---|
Beijing | high | medium to high | medium |
Tianjin | high | high | high |
Hebei | medium to high | medium | medium to low |
Shanxi | medium to high | medium to high | medium to high |
Neimenggu | high | high | high |
Liaoning | medium | medium | medium |
Jilin | low | low | low |
Heilongjiang | high | medium | low |
Shanghai | medium to high | medium | medium to low |
Jiangsu | medium | medium | medium |
Zhejiang | low | medium to high | high |
Anhui | medium | medium to low | medium to low |
Fujian | low | low | low |
Jiangxi | medium to low | medium to low | medium to low |
Shandong | medium to high | medium to high | medium to high |
Henan | medium | medium | medium |
Hubei | medium to low | medium to low | medium to low |
Hunan | low | low | medium to low |
Guangdong | low | medium to low | medium to high |
Guangxi | low | low | medium to low |
Hainan | medium to high | medium to high | high |
Chongqing | low | low | low |
Sichuan | low | low | low |
Guizhou | low | low | low |
Yunnan | low | low | low |
Tibet | low | medium | high |
Shannxi | medium | medium | medium |
Gansu | medium | medium | medium |
Qinghai | high | high | high |
Ningxia | medium to high | medium to high | medium to high |
Xinjiang | high | high | high |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Sun, Y.; Yang, C. Comparative Static Analysis on the Agricultural Mechanization Development Levels in China’s Provincial Areas. Processes 2022, 10, 1332. https://doi.org/10.3390/pr10071332
Wang S, Sun Y, Yang C. Comparative Static Analysis on the Agricultural Mechanization Development Levels in China’s Provincial Areas. Processes. 2022; 10(7):1332. https://doi.org/10.3390/pr10071332
Chicago/Turabian StyleWang, Sheng, Yanhong Sun, and Chen Yang. 2022. "Comparative Static Analysis on the Agricultural Mechanization Development Levels in China’s Provincial Areas" Processes 10, no. 7: 1332. https://doi.org/10.3390/pr10071332
APA StyleWang, S., Sun, Y., & Yang, C. (2022). Comparative Static Analysis on the Agricultural Mechanization Development Levels in China’s Provincial Areas. Processes, 10(7), 1332. https://doi.org/10.3390/pr10071332