Clustering Analysis of Voltage Sag Events Based on Waveform Matching
Abstract
:1. Introduction
2. Methodology
2.1. Fast Projection Segmentation Algorithm
2.1.1. Signal Modeling Based on Filtering
2.1.2. Detection Parameter Based on Sharp Drop Point
2.1.3. Extracting Voltage Anomaly Segment
2.2. Clustering Analysis of Voltage Sag Events
2.2.1. Waveform Matching Based on Shapedtw
- The monotonicity constraint guarantees the time ordering.
- The boundary constraints: and .
- The step size conditions: and ; see Equation (3).
2.2.2. Spectral Clustering Based on shapeDTW
Algorithm 1: NJW spectral clustering algorithm. |
Input: Dataset in and the number of clusters k Output:k-way partition of the input data Construct the affinity matrix :
|
2.3. Procedure Flow Chart of the Methodology
3. Empirical Analysis
3.1. Data
3.2. Empirical Results
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vegunta, S.C.; Milanovic, J.V. Estimation of cost of downtime of industrial processdue to voltage sags. IEEE Trans. Power Deliv. 2011, 26, 576–587. [Google Scholar] [CrossRef]
- Arias-Guzman, S. Analysis of voltage sag severity case study in an industrial circuit. IEEE Trans. Ind. Appl. 2017, 53, 15–21. [Google Scholar] [CrossRef]
- Mei, F.; Ren, Y.; Wu, Q.; Zhang, C.; Pan, Y.; Sha, H.; Zheng, J. Online recognition method for voltage sags based on a deep belief network. Energies 2018, 12, 43. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.Y.; Chen, Y.Z.; Wang, Y.; Ma, Y.Q. Multi-attribute analysis on voltage sag insurance mechanisms and their feasibility for sensitive customers. Iet. Gener. Transm. Dis. 2018, 12, 3892–3899. [Google Scholar] [CrossRef]
- Polajzer, B.; Tumberger, G.S.; Seme, S.; Dolinar, D. Detection of voltage sag sources based on instantaneous voltage and current vectors and orthogonal Clarke’s transformation. IET Gener. Transm. Distrib. 2008, 2, 219–226. [Google Scholar] [CrossRef]
- Kezunovic, M.; Liao, Y. A new method for classification and characterization of voltage sags. Electr. Pow. Syst. Res. 2001, 58, 27–35. [Google Scholar] [CrossRef]
- Sadigh, A.K.; Smedley, K.M. Fast and precise voltage sag detection method for dynamic voltage restorer (DVR) application. Electr. Pow. Syst. Res. 2016, 130, 192–207. [Google Scholar] [CrossRef]
- Xi, Y.; Li, Z.; Zeng, X.; Tang, X.; Liu, Q.; Xiao, H. Detection of power quality disturbances using an adaptive process noise covariance Kalman filter. Digit. Signal. Process. 2018, 76, 34–49. [Google Scholar] [CrossRef]
- Saini, M.K.; Beniwal, R.K. Detection and classification of power quality disturbances in wind-grid integrated system using fast time-time transform and small residual-extreme learning machine. Int. Trans. Electr. Energy Syst. 2018, 28, e2519. [Google Scholar] [CrossRef]
- Jeevitha, S.R.S.; Mabel, M.C. Novel optimization parameters of power quality disturbances using novel bio-inspired algorithms: A comparative approach. Biomed. Signal Process. Control. 2018, 42, 253–266. [Google Scholar] [CrossRef]
- Branco, H.M.; Oleskovicz, M.; Coury, D.V.; Delbem, A.C. Multiobjective optimization for power quality monitoring allocation considering voltage sags in distribution systems. Int. J. Electr. Power Energy Syst. 2018, 97, 1–10. [Google Scholar] [CrossRef]
- Bagheri, A.; Gu, I.; Bollen, M.; Balouji, E. A Robust Transform-Domain Deep Convolutional Network for Voltage Dip Classification. IEEE Trans. Power Deliv. 2018, 33, 2794–2802. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, R.; Gupta, R.; Jha, S.; Kumar, R. Boosting performance of power quality event identification with KL Divergence measure and standard deviation. Measurement 2018, 126, 134–142. [Google Scholar] [CrossRef]
- Gururajapathy, S.S.; Mokhlis, H.; Illias, H.A.; Awalin, L.J. Support vector classification and regression for fault location in distribution system using voltage sag profile. IEEE J. Trans. Electr. Electron. Eng. 2017, 12, 519–526. [Google Scholar] [CrossRef]
- Garcia-Sánchez, T.; Gómez-Lázaro, E.; Muljadi, E.; Kessler, M.; Muñoz-Benavente, I.; Molina-Garcia, A. Identification of linearised RMS-voltage dip patterns based on clustering in renewable plants. IET Gener. Transm. Distrib. 2018, 12, 1256–1262. [Google Scholar]
- Daud, K.; Abidin, A.F.; Ismail, A.P. Voltage Sags and Transient Detection and Classification Using Half/One-Cycle Windowing Techniques Based on Continuous S-Transform with Neural Network. In Proceedings of the 2nd International Conference on Applied Physics and Engineering (ICAPE), Penang, Malaysia, 2–3 November 2016. [Google Scholar]
- Meena, P.; Rao, K.U.; Ravishankar, D. A modified simple algorithm for detection of voltage sags and swells in practical loads. IEEE Int. Conf. Power Syst. 2009, 12, 1–6. [Google Scholar]
- Latran, M.B.; Teke, A. A novel wavelet transform based voltage sag/swell detection algorithm. Int. J. Electr. Power Energy Syst. 2015, 71, 131–139. [Google Scholar] [CrossRef]
- Styvaktakis, E.; Bollen, M.H.; Gu, I.Y. Expert system for classification and analysis of power system events. IEEE Trans. Power Deliv. 2002, 17, 423–428. [Google Scholar] [CrossRef]
- Chu, J.W.; Yuan, X.D.; Chen, B.; Wang, X.C.; Qiu, H.F.; Gu, W. A Method for Distribution Network Voltage Sag Source Identification Combining Wavelet Analysis and Modified DTW Distance. Power Syst. Technol. 2018, 42, 637–643. [Google Scholar]
- Nunez, V.B.; Velandia, R.; Hernandez, F.; Melendez, J.; Vargas, H. Relevant Attributes for Voltage Event Diagnosis in Power Distribution Networks. Rev. Iberoam. Autom. Inform. Ind. 2013, 10, 73–84. [Google Scholar]
- Tang, Y.; Wei, R.; Chen, K.; Fang, Y. Voltage sag source identification based on the sign of internal resistance in a “Thevenin’s equivalent circuit”. Int. Trans. Electr. Energy Syst. 2017, 27, e2461. [Google Scholar] [CrossRef]
- Saini, M.K.; Aggarwal, A. Fractionally delayed Legendre wavelet transform based detection and optimal features based classification of voltage sag causes. J. Renew. Sustain. Energy 2019, 11, 25–36. [Google Scholar] [CrossRef]
- Zhuang, D.; Liu, Y.; Liu, S.; Ma, T.; Ong, S.H. A shape-based cutting and clustering algorithm for multiple change-point detection. J. Comput. Appl. Math. 2020, 6, 112623. [Google Scholar] [CrossRef]
- Rabiner, L.R. Considerations in dynamic time warping algorithms for discrete word recognition. J. Acoust. Soc. Am. 1978, 63, 575–582. [Google Scholar] [CrossRef]
- Sakoe, H.; Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. 1978, 26, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.P.; Laurent, I. Shapedtw: Shape dynamic time warping. Pattern Recogn. 2018, 74, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Chung, F.R.K. Spectral Graph Theory, Regional Conference Series in Mathematics. AMS 1997, 92, 142–162. [Google Scholar]
- Luxburg, U. A tutorial on spectral clustering. Stat Comput. 2007, 17, 395–416. [Google Scholar] [CrossRef]
- Shi, J.; Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905. [Google Scholar]
- Ng, A.; Jordan, M.; Weiss, Y. On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems (NIPS); MIT Press: Cambridge, MA, USA, 2002; Volume 17. [Google Scholar]
Type | Number | id |
---|---|---|
1 | 10 | 01, 02, 03, 04, 05, 06, 07, 08, 09, 10 |
2 | 6 | 11, 12, 13, 14, 15, 16 |
3 | 4 | 17, 18, 19, 20 |
id | A-Phase | B-Phase | C-Phase | |||
---|---|---|---|---|---|---|
RMS | FPSA | RMS | FPSA | RMS | FPSA | |
01 | [1600,1888] | [1406,2694] | [1602,1893] | [1405,2746] | [1605,1886] | [1404,2718] |
02 | [1569,1950] | [1461,2848] | [1604,1912] | [1460,2797] | [1610,1945] | [1460,2627] |
03 | [1593,1862] | [1379,2768] | [1556,1885] | [1379,2718] | [1560,1886] | [1377,2680] |
04 | [1627,1818] | [1420,2663] | [1612,1896] | [1419,2747] | [1607,1903] | [1417,2704] |
05 | [1591,1860] | [1381,2793] | [1586,1879] | [1376,3233] | [1580,1888] | [1376,2944] |
06 | [1611,1895] | [1409,2802] | [1601,1902] | [1407,3050] | [1609,1899] | [1407,2714] |
07 | [1563,1847] | [1364,2782] | [1567,1866] | [1364,2706] | [1568,1857] | [1363,2667] |
08 | [1598,1777] | [1376,2985] | [1603,1786] | [1373,2932] | [1607,1791] | [1371,2934] |
09 | [1591,1804] | [1394,2870] | [1586,1810] | [1393,2735] | [1593,1805] | [1392,2694] |
10 | [1530,1910] | [1427,2868] | [1528,1905] | [1426,2755] | [1550,1912] | [1425,2677] |
11 | [1431,1885] | [1368,2263] | [1422,1887] | [1408,2600] | [1431,1879] | [1369,2330] |
12 | [1471,1927] | [1409,2306] | [1476,1931] | [1417,2640] | [1481,1933] | [1409,2370] |
13 | [1471,1926] | [1408,2306] | [1478,1935] | [1429,2639] | [1476,1931] | [1409,2370] |
14 | [1468,1916] | [1402,2304] | [1470,1918] | [1399,2796] | [1471,1821] | [1402,2451] |
15 | [1404,1953] | [1439,2341] | [1408,1962] | [1436,2707] | [1402,1956] | [1439,2487] |
16 | [1485,1928] | [1406,2834] | [1486,1931] | [1416,2666] | [1479,1929] | [1406,2629] |
17 | [1247,2130] | [971,3247] | [1251,2133] | [975,3275] | [1248,2110] | [876,3121] |
18 | [1161,1793] | [1032,2943] | [1170,1812] | [923,3068] | [1173,1821] | [1036,3070] |
19 | [1249,2380] | [1213,3389] | [1253,2376] | [1118,3515] | [1257,2374] | [1128,3654] |
20 | [1394,1613] | [314,3120] | [1402,1619] | [314,3123] | [1407,1609]] | [314,3121] |
id | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01 | 0.000 | 0.981 | 0.963 | 0.984 | 0.939 | 0.969 | 0.974 | 0.944 | 00.977 | 0.987 | 0.804 | 0.794 | 0.795 | 0.800 | 0.803 | 0.886 | 0.777 | 0.705 | 0.740 | 0.736 |
02 | 0.981 | 0.000 | 0.970 | 0.974 | 0.953 | 0.976 | 0.980 | 0.951 | 0.983 | 0.980 | 0.812 | 0.802 | 0.805 | 0.810 | 0.812 | 0.901 | 0.788 | 0.711 | 0.759 | 0.744 |
03 | 0.963 | 0.970 | 0.000 | 0.965 | 0.977 | 0.987 | 0.982 | 0.965 | 0.985 | 0.956 | 0.765 | 0.758 | 0.759 | 0.764 | 0.767 | 0.858 | 0.778 | 0.798 | 0.745 | 0.731 |
04 | 0.984 | 0.974 | 0.965 | 0.000 | 0.944 | 0.973 | 0.973 | 0.945 | 0.977 | 0.984 | 0.801 | 0.789 | 0.791 | 0.801 | 0.805 | 0.881 | 0.774 | 0.703 | 0.737 | 0.730 |
05 | 0.939 | 0.953 | 0.977 | 0.944 | 0.000 | 0.973 | 0.967 | 0.970 | 0.972 | 0.931 | 0.747 | 0.740 | 0.742 | 0.754 | 0.757 | 0.837 | 0.787 | 0.788 | 0.754 | 0.726 |
06 | 0.969 | 0.976 | 0.987 | 0.973 | 0.973 | 0.000 | 0.991 | 0.965 | 0.990 | 0.962 | 0.773 | 0.764 | 0.765 | 0.770 | 0.773 | 0.864 | 0.775 | 0.798 | 0.740 | 0.729 |
07 | 0.974 | 0.980 | 0.982 | 0.973 | 0.967 | 0.991 | 0.000 | 0.960 | 0.990 | 0.966 | 0.783 | 0.774 | 0.775 | 0.781 | 0.784 | 0.872 | 0.777 | 0.701 | 0.742 | 0.733 |
08 | 0.944 | 0.951 | 0.965 | 0.945 | 0.970 | 0.965 | 0.960 | 0.000 | 0.963 | 0.937 | 0.757 | 0.750 | 0.751 | 0.752 | 0.756 | 0.839 | 0.808 | 0.709 | 0.774 | 0.748 |
09 | 0.977 | 0.983 | 0.985 | 0.977 | 0.972 | 0.990 | 0.990 | 0.963 | 0.000 | 0.971 | 0.784 | 0.774 | 0.775 | 0.781 | 0.785 | 0.874 | 0.781 | 0.704 | 0.747 | 0.735 |
10 | 0.987 | 0.980 | 0.956 | 0.984 | 0.931 | 0.962 | 0.966 | 0.937 | 0.971 | 0.000 | 0.813 | 0.802 | 0.804 | 0.810 | 0.815 | 0.892 | 0.777 | 0.707 | 0.741 | 0.736 |
11 | 0.804 | 0.812 | 0.765 | 0.801 | 0.747 | 0.773 | 0.783 | 0.757 | 0.784 | 0.813 | 0.000 | 0.985 | 0.985 | 0.967 | 0.963 | 0.920 | 0.686 | 0.776 | 0.699 | 0.657 |
12 | 0.794 | 0.802 | 0.758 | 0.789 | 0.740 | 0.764 | 0.774 | 0.750 | 0.774 | 0.802 | 0.985 | 0.000 | 0.988 | 0.967 | 0.965 | 0.916 | 0.669 | 0.762 | 0.690 | 0.629 |
13 | 0.795 | 0.805 | 0.759 | 0.791 | 0.742 | 0.765 | 0.775 | 0.751 | 0.775 | 0.804 | 0.985 | 0.988 | 0.000 | 0.966 | 0.964 | 0.917 | 0.680 | 0.770 | 0.695 | 0.652 |
14 | 0.800 | 0.810 | 0.764 | 0.801 | 0.754 | 0.770 | 0.781 | 0.752 | 0.781 | 0.810 | 0.967 | 0.967 | 0.966 | 0.000 | 0.982 | 0.916 | 0.686 | 0.767 | 0.702 | 0.665 |
15 | 0.803 | 0.812 | 0.767 | 0.805 | 0.757 | 0.773 | 0.784 | 0.756 | 0.785 | 0.815 | 0.963 | 0.965 | 0.964 | 0.982 | 0.000 | 0.921 | 0.682 | 0.770 | 0.697 | 0.656 |
16 | 0.886 | 0.901 | 0.858 | 0.881 | 0.837 | 0.864 | 0.872 | 0.839 | 0.874 | 0.892 | 0.920 | 0.916 | 0.917 | 0.916 | 0.921 | 0.000 | 0.763 | 0.864 | 0.770 | 0.727 |
17 | 0.777 | 0.788 | 0.778 | 0.774 | 0.787 | 0.775 | 0.777 | 0.808 | 0.781 | 0.777 | 0.686 | 0.669 | 0.680 | 0.686 | 0.682 | 0.763 | 0.000 | 0.867 | 0.939 | 0.885 |
18 | 0.705 | 0.711 | 0.798 | 0.703 | 0.788 | 0.798 | 0.701 | 0.709 | 0.704 | 0.707 | 0.776 | 0.762 | 0.770 | 0.767 | 0.770 | 0.864 | 0.867 | 0.000 | 0.838 | 0.811 |
19 | 0.740 | 0.759 | 0.745 | 0.737 | 0.754 | 0.740 | 0.742 | 0.774 | 0.747 | 0.741 | 0.699 | 0.690 | 0.695 | 0.702 | 0.697 | 0.770 | 0.939 | 0.838 | 0.000 | 0.843 |
20 | 0.736 | 0.744 | 0.731 | 0.730 | 0.726 | 0.729 | 0.733 | 0.748 | 0.735 | 0.736 | 0.657 | 0.629 | 0.652 | 0.665 | 0.656 | 0.727 | 0.885 | 0.811 | 0.843 | 0.000 |
id | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01 | 0.000 | 0.986 | 0.977 | 0.986 | 0.942 | 0.972 | 0.985 | 0.952 | 0.985 | 0.986 | 0.777 | 0.777 | 0.777 | 0.858 | 0.854 | 0.874 | 0.800 | 0.877 | 0.720 | 0.734 |
02 | 0.986 | 0.000 | 0.973 | 0.985 | 0.935 | 0.969 | 0.984 | 0.948 | 0.985 | 0.988 | 0.766 | 0.765 | 0.766 | 0.845 | 0.842 | 0.863 | 0.797 | 0.876 | 0.722 | 0.732 |
03 | 0.977 | 0.973 | 0.000 | 0.978 | 0.955 | 0.978 | 0.986 | 0.966 | 0.986 | 0.967 | 0.786 | 0.786 | 0.787 | 0.859 | 0.856 | 0.884 | 0.805 | 0.879 | 0.713 | 0.730 |
04 | 0.986 | 0.985 | 0.978 | 0.000 | 0.947 | 0.975 | 0.983 | 0.954 | 0.985 | 0.984 | 0.776 | 0.776 | 0.777 | 0.852 | 0.850 | 0.872 | 0.802 | 0.880 | 0.727 | 0.735 |
05 | 0.942 | 0.935 | 0.955 | 0.947 | 0.000 | 0.967 | 0.951 | 0.975 | 0.949 | 0.930 | 0.779 | 0.777 | 0.776 | 0.839 | 0.834 | 0.855 | 0.833 | 0.907 | 0.747 | 0.754 |
06 | 0.972 | 0.969 | 0.978 | 0.975 | 0.967 | 0.000 | 0.979 | 0.976 | 0.979 | 0.963 | 0.779 | 0.778 | 0.778 | 0.858 | 0.852 | 0.873 | 0.817 | 0.893 | 0.724 | 0.744 |
07 | 0.985 | 0.984 | 0.986 | 0.983 | 0.951 | 0.979 | 0.000 | 0.960 | 0.991 | 0.979 | 0.783 | 0.783 | 0.783 | 0.862 | 0.858 | 0.882 | 0.804 | 0.879 | 0.714 | 0.732 |
08 | 0.952 | 0.948 | 0.966 | 0.954 | 0.975 | 0.976 | 0.960 | 0.000 | 0.960 | 0.942 | 0.776 | 0.776 | 0.776 | 0.840 | 0.840 | 0.865 | 0.833 | 0.910 | 0.750 | 0.759 |
09 | 0.985 | 0.985 | 0.986 | 0.985 | 0.949 | 0.979 | 0.991 | 0.960 | 0.000 | 0.981 | 0.782 | 0.783 | 0.784 | 0.862 | 0.858 | 0.882 | 0.802 | 0.879 | 0.715 | 0.731 |
10 | 0.986 | 0.988 | 0.967 | 0.984 | 0.930 | 0.963 | 0.979 | 0.942 | 0.981 | 0.000 | 0.763 | 0.764 | 0.764 | 0.842 | 0.840 | 0.859 | 0.792 | 0.870 | 0.722 | 0.730 |
11 | 0.777 | 0.766 | 0.786 | 0.776 | 0.779 | 0.779 | 0.783 | 0.776 | 0.782 | 0.763 | 0.000 | 0.990 | 0.994 | 0.911 | 0.914 | 0.891 | 0.745 | 0.758 | 0.654 | 0.738 |
12 | 0.777 | 0.765 | 0.786 | 0.776 | 0.777 | 0.778 | 0.783 | 0.776 | 0.783 | 0.764 | 0.990 | 0.000 | 0.991 | 0.909 | 0.913 | 0.890 | 0.740 | 0.753 | 0.652 | 0.730 |
13 | 0.777 | 0.766 | 0.787 | 0.777 | 0.776 | 0.778 | 0.783 | 0.776 | 0.784 | 0.764 | 0.994 | 0.991 | 0.000 | 0.910 | 0.914 | 0.891 | 0.739 | 0.753 | 0.651 | 0.730 |
14 | 0.858 | 0.845 | 0.859 | 0.852 | 0.839 | 0.858 | 0.862 | 0.840 | 0.862 | 0.842 | 0.911 | 0.909 | 0.910 | 0.000 | 0.985 | 0.972 | 0.713 | 0.769 | 0.612 | 0.659 |
15 | 0.854 | 0.842 | 0.856 | 0.850 | 0.834 | 0.852 | 0.858 | 0.840 | 0.858 | 0.840 | 0.914 | 0.913 | 0.914 | 0.985 | 0.000 | 0.981 | 0.713 | 0.773 | 0.614 | 0.658 |
16 | 0.874 | 0.863 | 0.884 | 0.872 | 0.855 | 0.873 | 0.882 | 0.865 | 0.882 | 0.859 | 0.891 | 0.890 | 0.891 | 0.972 | 0.981 | 0.000 | 0.716 | 0.784 | 0.615 | 0.652 |
17 | 0.800 | 0.797 | 0.805 | 0.802 | 0.833 | 0.817 | 0.804 | 0.833 | 0.802 | 0.792 | 0.745 | 0.740 | 0.739 | 0.713 | 0.713 | 0.716 | 0.000 | 0.902 | 0.902 | 0.885 |
18 | 0.877 | 0.876 | 0.879 | 0.880 | 0.907 | 0.893 | 0.879 | 0.910 | 0.879 | 0.870 | 0.758 | 0.753 | 0.753 | 0.769 | 0.773 | 0.784 | 0.902 | 0.000 | 0.841 | 0.819 |
19 | 0.720 | 0.722 | 0.713 | 0.727 | 0.747 | 0.724 | 0.714 | 0.750 | 0.715 | 0.722 | 0.654 | 0.652 | 0.651 | 0.612 | 0.614 | 0.615 | 0.902 | 0.841 | 0.000 | 0.858 |
20 | 0.734 | 0.732 | 0.730 | 0.735 | 0.754 | 0.744 | 0.732 | 0.759 | 0.731 | 0.730 | 0.738 | 0.730 | 0.730 | 0.659 | 0.658 | 0.652 | 0.885 | 0.819 | 0.858 | 0.000 |
id | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01 | 0.000 | 0.967 | 0.947 | 0.980 | 0.917 | 0.966 | 0.974 | 0.909 | 0.972 | 0.978 | 0.932 | 0.935 | 0.932 | 0.958 | 0.957 | 0.955 | 0.702 | 0.786 | 0.714 | 0.678 |
02 | 0.967 | 0.000 | 0.978 | 0.946 | 0.949 | 0.946 | 0.954 | 0.954 | 0.954 | 0.924 | 0.961 | 0.894 | 0.944 | 0.954 | 0.886 | 0.962 | 0.679 | 0.757 | 0.691 | 0.659 |
03 | 0.947 | 0.978 | 0.000 | 0.960 | 0.964 | 0.984 | 0.975 | 0.961 | 0.976 | 0.925 | 0.898 | 0.901 | 0.897 | 0.911 | 0.912 | 0.949 | 0.764 | 0.833 | 0.768 | 0.728 |
04 | 0.980 | 0.946 | 0.960 | 0.000 | 0.932 | 0.975 | 0.981 | 0.924 | 0.979 | 0.955 | 0.928 | 0.932 | 0.928 | 0.946 | 0.947 | 0.949 | 0.711 | 0.795 | 0.726 | 0.683 |
05 | 0.917 | 0.949 | 0.964 | 0.932 | 0.000 | 0.954 | 0.946 | 0.982 | 0.946 | 0.941 | 0.877 | 0.879 | 0.876 | 0.891 | 0.891 | 0.939 | 0.808 | 0.882 | 0.805 | 0.768 |
06 | 0.966 | 0.946 | 0.984 | 0.975 | 0.954 | 0.000 | 0.987 | 0.950 | 0.987 | 0.944 | 0.912 | 0.915 | 0.911 | 0.929 | 0.929 | 0.945 | 0.746 | 0.824 | 0.752 | 0.713 |
07 | 0.974 | 0.954 | 0.975 | 0.981 | 0.946 | 0.987 | 0.000 | 0.940 | 0.989 | 0.951 | 0.921 | 0.925 | 0.921 | 0.938 | 0.938 | 0.939 | 0.731 | 0.814 | 0.740 | 0.701 |
08 | 0.909 | 0.954 | 0.961 | 0.924 | 0.982 | 0.950 | 0.940 | 0.000 | 0.940 | 0.948 | 0.871 | 0.875 | 0.870 | 0.884 | 0.885 | 0.941 | 0.814 | 0.883 | 0.812 | 0.772 |
09 | 0.972 | 0.954 | 0.976 | 0.979 | 0.946 | 0.987 | 0.989 | 0.940 | 0.000 | 0.964 | 0.895 | 0.846 | 0.858 | 0.889 | 0.838 | 0.941 | 0.734 | 0.815 | 0.743 | 0.704 |
10 | 0.978 | 0.924 | 0.925 | 0.955 | 0.941 | 0.944 | 0.951 | 0.948 | 0.964 | 0.000 | 0.939 | 0.940 | 0.939 | 0.960 | 0.960 | 0.962 | 0.687 | 0.764 | 0.695 | 0.663 |
11 | 0.932 | 0.961 | 0.898 | 0.928 | 0.877 | 0.912 | 0.921 | 0.871 | 0.895 | 0.939 | 0.000 | 0.987 | 0.996 | 0.956 | 0.955 | 0.949 | 0.677 | 0.751 | 0.684 | 0.662 |
12 | 0.935 | 0.894 | 0.901 | 0.932 | 0.879 | 0.915 | 0.925 | 0.875 | 0.846 | 0.940 | 0.987 | 0.000 | 0.987 | 0.957 | 0.957 | 0.962 | 0.683 | 0.755 | 0.690 | 0.671 |
13 | 0.932 | 0.944 | 0.897 | 0.928 | 0.876 | 0.911 | 0.921 | 0.870 | 0.858 | 0.939 | 0.996 | 0.987 | 0.000 | 0.956 | 0.955 | 0.923 | 0.676 | 0.749 | 0.683 | 0.660 |
14 | 0.958 | 0.954 | 0.911 | 0.946 | 0.891 | 0.929 | 0.938 | 0.884 | 0.889 | 0.960 | 0.956 | 0.957 | 0.956 | 0.000 | 0.986 | 0.962 | 0.682 | 0.760 | 0.691 | 0.658 |
15 | 0.957 | 0.886 | 0.912 | 0.947 | 0.891 | 0.929 | 0.938 | 0.885 | 0.838 | 0.960 | 0.955 | 0.957 | 0.955 | 0.986 | 0.000 | 0.965 | 0.684 | 0.762 | 0.693 | 0.661 |
16 | 0.955 | 0.962 | 0.949 | 0.949 | 0.939 | 0.945 | 0.939 | 0.941 | 0.941 | 0.962 | 0.949 | 0.962 | 0.923 | 0.962 | 0.965 | 0.000 | 0.714 | 0.805 | 0.715 | 0.689 |
17 | 0.702 | 0.679 | 0.764 | 0.711 | 0.808 | 0.746 | 0.731 | 0.814 | 0.734 | 0.687 | 0.677 | 0.683 | 0.676 | 0.682 | 0.684 | 0.714 | 0.000 | 0.868 | 0.934 | 0.872 |
18 | 0.786 | 0.757 | 0.833 | 0.795 | 0.882 | 0.824 | 0.814 | 0.883 | 0.815 | 0.764 | 0.751 | 0.755 | 0.749 | 0.760 | 0.762 | 0.805 | 0.868 | 0.000 | 0.833 | 0.804 |
19 | 0.714 | 0.691 | 0.768 | 0.726 | 0.805 | 0.752 | 0.740 | 0.812 | 0.743 | 0.695 | 0.684 | 0.690 | 0.683 | 0.691 | 0.693 | 0.715 | 0.934 | 0.833 | 0.000 | 0.854 |
20 | 0.678 | 0.659 | 0.728 | 0.683 | 0.768 | 0.713 | 0.701 | 0.772 | 0.704 | 0.663 | 0.662 | 0.671 | 0.660 | 0.658 | 0.661 | 0.689 | 0.872 | 0.804 | 0.854 | 0.000 |
id | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.000 | 0.978 | 0.962 | 0.983 | 0.933 | 0.969 | 0.978 | 0.935 | 0.978 | 0.984 | 0.838 | 0.835 | 0.835 | 0.872 | 0.871 | 0.905 | 0.760 | 0.856 | 0.725 | 0.716 |
2 | 0.978 | 0.000 | 0.974 | 0.968 | 0.946 | 0.964 | 0.973 | 0.951 | 0.974 | 0.964 | 0.846 | 0.820 | 0.838 | 0.870 | 0.847 | 0.909 | 0.755 | 0.848 | 0.724 | 0.712 |
3 | 0.962 | 0.974 | 0.000 | 0.968 | 0.965 | 0.983 | 0.981 | 0.964 | 0.982 | 0.949 | 0.816 | 0.815 | 0.814 | 0.845 | 0.845 | 0.897 | 0.782 | 0.870 | 0.742 | 0.730 |
4 | 0.983 | 0.968 | 0.968 | 0.000 | 0.941 | 0.974 | 0.979 | 0.941 | 0.980 | 0.974 | 0.835 | 0.832 | 0.832 | 0.866 | 0.867 | 0.901 | 0.762 | 0.859 | 0.730 | 0.716 |
5 | 0.933 | 0.946 | 0.965 | 0.941 | 0.000 | 0.965 | 0.955 | 0.976 | 0.956 | 0.934 | 0.801 | 0.799 | 0.798 | 0.828 | 0.827 | 0.877 | 0.809 | 0.892 | 0.769 | 0.749 |
6 | 0.969 | 0.964 | 0.983 | 0.974 | 0.965 | 0.000 | 0.986 | 0.964 | 0.985 | 0.956 | 0.821 | 0.819 | 0.818 | 0.852 | 0.851 | 0.894 | 0.779 | 0.872 | 0.739 | 0.729 |
7 | 0.978 | 0.973 | 0.981 | 0.979 | 0.955 | 0.986 | 0.000 | 0.953 | 0.990 | 0.965 | 0.829 | 0.827 | 0.826 | 0.860 | 0.860 | 0.898 | 0.771 | 0.865 | 0.732 | 0.722 |
8 | 0.935 | 0.951 | 0.964 | 0.941 | 0.976 | 0.964 | 0.953 | 0.000 | 0.954 | 0.942 | 0.801 | 0.800 | 0.799 | 0.825 | 0.827 | 0.882 | 0.818 | 0.901 | 0.779 | 0.760 |
9 | 0.978 | 0.974 | 0.982 | 0.980 | 0.956 | 0.985 | 0.990 | 0.954 | 0.000 | 0.972 | 0.820 | 0.801 | 0.806 | 0.844 | 0.827 | 0.899 | 0.772 | 0.866 | 0.735 | 0.723 |
10 | 0.984 | 0.964 | 0.949 | 0.974 | 0.934 | 0.956 | 0.965 | 0.942 | 0.972 | 0.000 | 0.838 | 0.835 | 0.836 | 0.871 | 0.872 | 0.904 | 0.752 | 0.847 | 0.719 | 0.710 |
11 | 0.838 | 0.846 | 0.816 | 0.835 | 0.801 | 0.821 | 0.829 | 0.801 | 0.820 | 0.838 | 0.000 | 0.987 | 0.992 | 0.945 | 0.944 | 0.920 | 0.703 | 0.762 | 0.679 | 0.686 |
12 | 0.835 | 0.820 | 0.815 | 0.832 | 0.799 | 0.819 | 0.827 | 0.800 | 0.801 | 0.835 | 0.987 | 0.000 | 0.989 | 0.944 | 0.945 | 0.923 | 0.697 | 0.757 | 0.677 | 0.677 |
13 | 0.835 | 0.838 | 0.814 | 0.832 | 0.798 | 0.818 | 0.826 | 0.799 | 0.806 | 0.836 | 0.992 | 0.989 | 0.000 | 0.944 | 0.944 | 0.910 | 0.698 | 0.757 | 0.676 | 0.681 |
14 | 0.872 | 0.870 | 0.845 | 0.866 | 0.828 | 0.852 | 0.860 | 0.825 | 0.844 | 0.871 | 0.945 | 0.944 | 0.944 | 0.000 | 0.984 | 0.950 | 0.694 | 0.765 | 0.668 | 0.661 |
15 | 0.871 | 0.847 | 0.845 | 0.867 | 0.827 | 0.851 | 0.860 | 0.827 | 0.827 | 0.872 | 0.944 | 0.945 | 0.944 | 0.984 | 0.000 | 0.956 | 0.693 | 0.768 | 0.668 | 0.658 |
16 | 0.905 | 0.909 | 0.897 | 0.901 | 0.877 | 0.894 | 0.898 | 0.882 | 0.899 | 0.904 | 0.920 | 0.923 | 0.910 | 0.950 | 0.956 | 0.000 | 0.731 | 0.818 | 0.700 | 0.689 |
17 | 0.760 | 0.755 | 0.782 | 0.762 | 0.809 | 0.779 | 0.771 | 0.818 | 0.772 | 0.752 | 0.703 | 0.697 | 0.698 | 0.694 | 0.693 | 0.731 | 0.000 | 0.879 | 0.925 | 0.881 |
18 | 0.856 | 0.848 | 0.870 | 0.859 | 0.892 | 0.872 | 0.865 | 0.901 | 0.866 | 0.847 | 0.762 | 0.757 | 0.757 | 0.765 | 0.768 | 0.818 | 0.879 | 0.000 | 0.837 | 0.811 |
19 | 0.725 | 0.724 | 0.742 | 0.730 | 0.769 | 0.739 | 0.732 | 0.779 | 0.735 | 0.719 | 0.679 | 0.677 | 0.676 | 0.668 | 0.668 | 0.700 | 0.925 | 0.837 | 0.000 | 0.852 |
20 | 0.716 | 0.712 | 0.730 | 0.716 | 0.749 | 0.729 | 0.722 | 0.760 | 0.723 | 0.710 | 0.686 | 0.677 | 0.681 | 0.661 | 0.658 | 0.689 | 0.881 | 0.811 | 0.852 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, C.; Jin, J. Clustering Analysis of Voltage Sag Events Based on Waveform Matching. Processes 2022, 10, 1337. https://doi.org/10.3390/pr10071337
Hao C, Jin J. Clustering Analysis of Voltage Sag Events Based on Waveform Matching. Processes. 2022; 10(7):1337. https://doi.org/10.3390/pr10071337
Chicago/Turabian StyleHao, Chenyan, and Jun Jin. 2022. "Clustering Analysis of Voltage Sag Events Based on Waveform Matching" Processes 10, no. 7: 1337. https://doi.org/10.3390/pr10071337
APA StyleHao, C., & Jin, J. (2022). Clustering Analysis of Voltage Sag Events Based on Waveform Matching. Processes, 10(7), 1337. https://doi.org/10.3390/pr10071337