Application of Data Envelopment Analysis in the Ventilation and Cooling Efficiency Evaluation of Hot Development Headings
Abstract
:1. Introduction
2. Methodology
2.1. CFD Numerical Simulation
2.1.1. Governing Equations
2.1.2. Geometry Model
2.1.3. Mesh Generation and Mesh Independence Tests
2.1.4. Boundary Conditions and Solution Schemes
2.1.5. Model Validation
2.2. Numerical Studied Cases
2.3. Evaluation Indices
2.3.1. Index of Cooling Efficiency
2.3.2. Index of Ventilation Efficiency
2.4. Evaluation Method
2.4.1. Introduction to the DEA Model
2.4.2. CCR and Super-Efficiency DEA Models
3. Results and Analysis
3.1. Performance Evaluations with Separate Indices
3.1.1. Cooling Efficiency
3.1.2. Ventilation Efficiency
3.2. Overall Performance Evaluation with the DEA Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lowndes, I.S.; Yang, Z.Y.; Jobling, S.; Yates, C. A parametric analysis of a tunnel climatic prediction and planning model. Tunn. Undergr. Space Technol. 2006, 21, 520–532. [Google Scholar] [CrossRef]
- Roghanchi, P.; Kocsis, K.C. Challenges in selecting an appropriate heat stress index to protect workers in hot and humid underground mines. Saf. Health Work 2018, 9, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Kurnia, J.C.; Sasmito, A.P.; Mujumdar, A.S. CFD simulation of methane dispersion and innovative methane management in underground mining faces. Appl. Math. Model. 2014, 38, 3467–3484. [Google Scholar] [CrossRef]
- Kurnia, J.C.; Sasmito, A.P.; Mujumdar, A.S. Simulation of a novel intermittent ventilation system for underground mines. Tunn. Undergr. Space Technol. 2014, 42, 206–215. [Google Scholar] [CrossRef]
- Hasheminasab, F.; Bagherpour, R.; Aminossadati, S.M. Numerical simulation of methane distribution in development zones of underground coal mines equipped with auxiliary ventilation. Tunn. Undergr. Space Technol. 2019, 89, 68–77. [Google Scholar] [CrossRef]
- Torano, J.; Torno, S. On the prediction of toxic fumes from underground blasting operations and dilution ventilation. Conventional and numerical models. Tunn. Undergr. Space Technol. 2020, 96, 103194. [Google Scholar] [CrossRef]
- Cheng, W.M.; Yu, H.M.; Zhou, G.; Nie, W. The diffusion and pollution mechanisms of airborne dusts in fully-mechanized excavation face at mesoscopic scale based on CFD-DEM. Process Saf. Environ. Prot. 2016, 104, 240–253. [Google Scholar] [CrossRef]
- Liu, Q.; Nie, W.; Hua, Y.; Peng, H.T.; Liu, C.Q.; Wei, C.H. Research on tunnel ventilation systems: Dust Diffusion and Pollution Behaviour by air curtains based on CFD technology and field measurement. Build. Environ. 2019, 147, 444–460. [Google Scholar] [CrossRef]
- Kurnia, J.C.; Sasmito, A.P.; Wong, W.Y.; Mujumdar, A.S. Prediction and innovative control strategies for oxygen and hazardous gases from diesel emission in underground mines. Sci. Total Environ. 2014, 481, 317–334. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Zheng, Y.; Tien, J.C. DPM simulation in an underground entry: Comparison between particle and species models. Int. J. Min. Sci. Technol. 2016, 26, 487–494. [Google Scholar] [CrossRef]
- Sasmito, A.P.; Kurnia, J.C.; Birgersson, E.; Mujumdar, A.S. Computational evaluation of thermal management strategies in an underground mine. Appl. Therm. Eng. 2015, 90, 1140–1150. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, C.; Yang, W.; Xu, H.; Li, S.; Li, C.; Ma, H.; Qi, G. In Situ Measurements and CFD Numerical Simulations of Thermal Environment in Blind Headings of Underground Mines. Processes 2019, 7, 313. [Google Scholar] [CrossRef] [Green Version]
- Mao, N.; Pan, D.; Chan, M.; Deng, S. Performance evaluation of an air conditioning system with different heights of supply outlet applied to a sleeping environment. Energy Build. 2014, 77, 281–291. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M.; Esen, M. A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling. Build. Environ. 2007, 42, 1955–1965. [Google Scholar] [CrossRef]
- Habibi, M.; Aligolzadeh, F.; Hakkaki-Fard, A. A techno-economic analysis of geothermal ejector cooling system. Energy 2020, 193, 116760. [Google Scholar] [CrossRef]
- Ozyogurtcu, G.; Mobedi, M.; Ozerdem, B. Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy. Energy Build. 2014, 72, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Aste, N.; Buzzetti, M.; Del Pero, C.; Leonforte, F. Glazing’s techno-economic performance: A comparison of window features in office buildings in different climates. Energy Build. 2018, 159, 123–135. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Xin, S.; Wang, W.H.; Zhang, N.N.; Zhang, C.; Yuan, S.; Li, H.; Yang, W.Y. Comparative studies on control of thermal environment in development headings using force/exhaust overlap ventilation systems. J. Build. Eng. 2021, 38, 102227. [Google Scholar] [CrossRef]
- Fluent Inc. Airpak 3.0 User’s Guide; Fluent Inc.: Lebanon, NH, USA, 2007. [Google Scholar]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Sadafi, M.H.; Ruiz, J.; Lucas, M.; Jahn, I.; Hooman, K. Numerical and experimental study on a single cone saline water spray in a wind tunnel. Int. J. Therm. Sci. 2017, 120, 190–202. [Google Scholar] [CrossRef]
- Peltier, M.; Loria, A.F.R.; Lepage, L.; Garin, E.; Laloui, L. Numerical investigation of the convection heat transfer driven by airflows in underground tunnels. Appl. Therm. Eng. 2019, 159, 113844. [Google Scholar] [CrossRef]
- McPherson, M.J. Subsurface Ventilation and Environmental Engineering; Chapman and Hall: New York, NY, USA, 1993. [Google Scholar]
- Gan, G.H. Evaluation of room air distribution systems using computational fluid dynamics. Energy Build. 1995, 23, 83–93. [Google Scholar] [CrossRef]
- Sandberg, M.; Sjöberg, M. The use of moments for assessing air quality in ventilated rooms. Build. Environ. 1983, 18, 181–197. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Dynamic DEA with network structure: A slacks-based measure approach. Omega 2014, 42, 124–131. [Google Scholar] [CrossRef] [Green Version]
- ANSI/ASHRAE Standard 55-2017; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Atlanta, GA, USA, 2017.
- Roghanchi, P.; Kocsis, K.C.; Sunkpal, M. Sensitivity analysis of the effect of airflow velocity on the thermal comfort in underground mines. J. Sustain. Min. 2016, 15, 175–180. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.; Li, M.; Zhang, C.; Wang, W.; Zhang, N.; Yuan, S.; Yang, W. Numerical study on dust suppression and cooling performance of an external spray system in load-haul-dump vehicles. Case Stud. Therm. Eng. 2021, 27, 101332. [Google Scholar] [CrossRef]
- GB 16423-2018; Safety Regulations for Metal and Non-Metal Mines. National Standard of China: Beijing, China, 2018; p. 49.
- State Administration of Work Safety. Safety Regulations for Coal Mines; Coal Industry Press: Beijing, China, 2016; p. 54. [Google Scholar]
- Xue, D.H. Air Conditioning; Tsinghua University Press: Beijing, China, 2005. [Google Scholar]
Rock Type | Thermal Conductivity (W/(m·K)) | Specific Heat Capacity (J/(kg·K)) | Thermal Diffusivity ×10−6 (m2/s) | Density (kg/m3) |
---|---|---|---|---|
Granite | 2.8 | 790 | 1.41 | 2693 |
Equipment | Airway VariableMeasured | Range | Accuracy |
---|---|---|---|
KE-COS-03 data-logging device | Air temperature (°C) | −40–80 °C | 0.2 °C |
Relative humidity (%) | 0–100% | 1.5% | |
Testo 440anemometer | Air velocity (m/s) | 0–50 m/s | 0.03 m/s + 4% measuredvalue |
Period of Measuring Time | Measurement Points | |
---|---|---|
Relative Humidity/% | Moisture Content (g/kg Dry Air) | |
Before 8:00 a.m. | 52 | 13.95 |
8:40–9:45 a.m. | 53 | 13.99 |
9:45–11:15 a.m. | 41 | 14.67 |
11:15–11:45 a.m. | 44 | 14.62 |
11:45 a.m.–1:00 p.m. | 45 | 14.35 |
After 1:00 p.m. | 50 | 14.13 |
Boundary | Conditions |
---|---|
Air duct outlet | ts = 25 °C, v = 12 m/s, relative humidity = 70%, I = 3%, l = 0.056 m |
Airway outlet | Pressure outlet, I = 4%, l = 0.329 m |
Wall of strata | Thermal conductivity 2.8 W/(m·°C), Heat flux 71.4 W/m2, average height of the surface texture 0.01 m |
Wall of LHD | Fixed heat flux 31.3 kW |
Wall of the air duct | Adiabatic |
Measuring Point | a1 | a2 | a3 | b1 | b2 | b3 |
---|---|---|---|---|---|---|
tdm | 0.32 | 0.30 | 0.29 | 0.32 | 0.31 | 0.33 |
tds | 0.28 | 0.33 | 0.33 | 0.29 | 0.30 | 0.31 |
deviation | 12.5% | 10.0% | 13.7% | 9.4% | 3.2% | 6.1% |
Air Supply Conditions | Case Number | |||||
---|---|---|---|---|---|---|
v (m/s) | ts (°C) | Zm = 5 m | Zm = 10 m | Zm = 15 m | Zm = 20 m | Zm = 25 m |
8 | 21 | 1.1 | 2.1 | 3.1 | 4.1 | 5.1 |
8 | 23 | 1.2 | 2.2 | 3.2 | 4.2 | 5.2 |
8 | 25 | 1.3 | 2.3 | 3.3 | 4.3 | 5.3 |
10 | 21 | 1.4 | 2.4 | 3.4 | 4.4 | 5.4 |
10 | 23 | 1.5 | 2.5 | 3.5 | 4.5 | 5.5 |
10 | 25 | 1.6 | 2.6 | 3.6 | 4.6 | 5.6 |
12 | 21 | 1.7 | 2.7 | 3.7 | 4.7 | 5.7 |
12 | 23 | 1.8 | 2.8 | 3.8 | 4.8 | 5.8 |
12 | 25 | 1.9 | 2.9 | 3.9 | 4.9 | 5.9 |
DMU (Case) | Zm (m) | Input | Output | CCR-Model | |||
---|---|---|---|---|---|---|---|
v (m/s) | ts (°C) | CE/% | VE/% | Score | Rank | ||
1.1 | 5 | 8 | 21 | 127.1 | 78.8 | 0.941 | 16 |
1.2 | 5 | 8 | 23 | 125.4 | 81.15 | 0.966 | 12 |
1.3 | 5 | 8 | 25 | 121.8 | 84.2 | 0.999 | 6 |
1.4 | 5 | 10 | 21 | 143.8 | 77.95 | 0.885 | 28 |
1.5 | 5 | 10 | 23 | 141.1 | 79.45 | 0.943 | 15 |
1.6 | 5 | 10 | 25 | 138.3 | 81.15 | 0.998 | 7 |
1.7 | 5 | 12 | 21 | 142.7 | 79.95 | 0.858 | 33 |
1.8 | 5 | 12 | 23 | 142 | 80.15 | 0.925 | 22 |
1.9 | 5 | 12 | 25 | 141.3 | 80.75 | 1 | 1 |
2.1 | 10 | 8 | 21 | 158.9 | 82.25 | 1 | 1 |
2.2 | 10 | 8 | 23 | 129 | 81.4 | 0.971 | 9 |
2.3 | 10 | 8 | 25 | 125.4 | 84.3 | 1 | 1 |
2.4 | 10 | 10 | 21 | 144.3 | 78.2 | 0.888 | 27 |
2.5 | 10 | 10 | 23 | 141.7 | 79.7 | 0.947 | 14 |
2.6 | 10 | 10 | 25 | 138.9 | 81.25 | 1 | 1 |
2.7 | 10 | 12 | 21 | 150.6 | 79.85 | 0.901 | 26 |
2.8 | 10 | 12 | 23 | 150 | 80.1 | 0.970 | 10 |
2.9 | 10 | 12 | 25 | 131.2 | 80.7 | 0.979 | 8 |
3.1 | 15 | 8 | 21 | 125 | 75.75 | 0.907 | 24 |
3.2 | 15 | 8 | 23 | 121.6 | 78.65 | 0.936 | 18 |
3.3 | 15 | 8 | 25 | 118.3 | 81.7 | 0.969 | 11 |
3.4 | 15 | 10 | 21 | 128.8 | 73.3 | 0.802 | 39 |
3.5 | 15 | 10 | 23 | 128.4 | 74.7 | 0.865 | 31 |
3.6 | 15 | 10 | 25 | 125 | 76.3 | 0.928 | 20 |
3.7 | 15 | 12 | 21 | 145.2 | 76.1 | 0.869 | 29 |
3.8 | 15 | 12 | 23 | 145.1 | 76.3 | 0.937 | 17 |
3.9 | 15 | 12 | 25 | 144.4 | 76.95 | 1 | 1 |
4.1 | 20 | 8 | 21 | 123.5 | 75.35 | 0.901 | 25 |
4.2 | 20 | 8 | 23 | 118.7 | 78.2 | 0.929 | 19 |
4.3 | 20 | 8 | 25 | 115.2 | 81.2 | 0.963 | 13 |
4.4 | 20 | 10 | 21 | 129.5 | 72.75 | 0.803 | 38 |
4.5 | 20 | 10 | 23 | 128.2 | 74 | 0.862 | 32 |
4.6 | 20 | 10 | 25 | 126.9 | 75.4 | 0.924 | 23 |
4.7 | 20 | 12 | 21 | 134.8 | 72.75 | 0.808 | 36 |
4.8 | 20 | 12 | 23 | 134.1 | 72.95 | 0.868 | 30 |
4.9 | 20 | 12 | 25 | 132.2 | 73.4 | 0.927 | 21 |
5.1 | 25 | 8 | 21 | 83.3 | 65.6 | 0.778 | 40 |
5.2 | 25 | 8 | 23 | 79.9 | 67.75 | 0.803 | 37 |
5.3 | 25 | 8 | 25 | 77.9 | 69.4 | 0.823 | 34 |
5.4 | 25 | 10 | 21 | 99.3 | 63.4 | 0.645 | 45 |
5.5 | 25 | 10 | 23 | 98.6 | 64 | 0.705 | 43 |
5.6 | 25 | 10 | 25 | 97.2 | 65.25 | 0.774 | 41 |
5.7 | 25 | 12 | 21 | 113.3 | 66.9 | 0.690 | 44 |
5.8 | 25 | 12 | 23 | 113.5 | 67.15 | 0.758 | 42 |
5.9 | 25 | 12 | 25 | 111.8 | 67.45 | 0.823 | 35 |
DMU (Case) 5.4 | Evaluation Results | Improvement Goals | Difference between Goals and Results |
---|---|---|---|
v (m/s) | 10.0 | 6.5 | −3.5 |
ts (°C) | 21.0 | 24.3 | 3.3 |
CE/% | 99.3 | 99.3 | 0 |
VE/% | 63.4 | 63.4 | 0 |
DMUs | Input | Output | Super-SBM-I-C | |||
---|---|---|---|---|---|---|
v (m/s) | ts (°C) | CE/% | VE/% | Score | Rank | |
1.9 | 12 | 25 | 141.3 | 80.75 | 1.004 | 5 |
2.1 | 8 | 21 | 158.9 | 82.25 | 1.166 | 1 |
2.3 | 8 | 25 | 125.4 | 84.3 | 1.123 | 2 |
2.6 | 10 | 25 | 138.9 | 81.25 | 1.013 | 3 |
3.9 | 12 | 25 | 144.4 | 76.95 | 1.012 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, S.; Han, X.; Li, S.; Xiao, Y.; Yang, W. Application of Data Envelopment Analysis in the Ventilation and Cooling Efficiency Evaluation of Hot Development Headings. Processes 2022, 10, 1375. https://doi.org/10.3390/pr10071375
Xin S, Han X, Li S, Xiao Y, Yang W. Application of Data Envelopment Analysis in the Ventilation and Cooling Efficiency Evaluation of Hot Development Headings. Processes. 2022; 10(7):1375. https://doi.org/10.3390/pr10071375
Chicago/Turabian StyleXin, Song, Xuefei Han, Sasa Li, Yue Xiao, and Wenyu Yang. 2022. "Application of Data Envelopment Analysis in the Ventilation and Cooling Efficiency Evaluation of Hot Development Headings" Processes 10, no. 7: 1375. https://doi.org/10.3390/pr10071375
APA StyleXin, S., Han, X., Li, S., Xiao, Y., & Yang, W. (2022). Application of Data Envelopment Analysis in the Ventilation and Cooling Efficiency Evaluation of Hot Development Headings. Processes, 10(7), 1375. https://doi.org/10.3390/pr10071375