Techno-Economic Evaluation of Phosphorous Recovery in Soybean Biodiesel Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Process Description
2.1.1. Conventional Soybean Biodiesel Process
2.1.2. Soybean Biodiesel Processes Modified for Phosphorous Recovery
2.2. Economic Analysis
3. Results and Discussion
3.1. Phosphorus Flow
3.2. Process Economics
3.2.1. Base Case (CSB)
3.2.2. P Recovery Case (PRSS and PRWW)
3.2.3. Lecithin Recovery Case (SBL)
3.3. Phosphorous Recovered
3.4. Implications and Challenges of P Recovery in Soybean Biodiesel Process
3.5. Phosphorous Release in Soybean Meal Processing Operations
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, H.; Long, S.; Singh, V. Techno-economic analysis of biodiesel and ethanol co-production from lipid-producing sugarcane. Biofuels Bioprod. Biorefining 2016, 10, 299–315. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 2009, 50, 14–34. [Google Scholar] [CrossRef]
- ERS. Oil Crops Yearbook, Economic Research Service, USDA. 2021. Available online: https://www.ers.usda.gov/data-products/oil-crops-yearbook/ (accessed on 14 October 2021).
- EIA. Soybean Oil Comprises a Larger Share of Domestic Biodiesel Production. U.S. Energy Information Administration. 2019. Available online: https://www.eia.gov/todayinenergy/detail.php?id=39372 (accessed on 29 May 2022).
- EIA. Sales of Distillate Fuel Oil by End Use. Energy Information Administration. 2022. Available online: https://www.eia.gov/dnav/pet/pet_cons_821dsta_dcu_nus_a.htm (accessed on 16 July 2022).
- Singh, R.; Liu, H.; Shanklin, J.; Singh, V. Hydrothermal pretreatment for valorization of genetically engineered bioenergy crop for lipid and cellulosic sugar recovery. Bioresour. Technol. 2021, 341, 125817. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, S.; Kannan, B.; Karan, R.; Sanahuja, G.; Liu, H.; Garcia-Ruiz, E.; Kumar, D.; Singh, V.; Zhao, H.; Long, S. Towards oilcane: Engineering hyperaccumulation of triacylglycerol into sugarcane stems. GCB Bioenergy 2020, 12, 476–490. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef]
- Viswanathan, M.B.; Park, K.; Cheng, M.-H.; Cahoon, E.B.; Dweikat, I.; Clemente, T.; Singh, V. Variability in structural carbohydrates, lipid composition, and cellulosic sugar production from industrial hemp varieties. Ind. Crops Prod. 2020, 157, 112906. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Peng, W.; Tabatabaei, M.; Kalogirou, S.A.; Soltanian, S.; Hosseinzadeh-Bandbafha, H.; Mahian, O.; Lam, S.S. Machine learning technology in biodiesel research: A review. Prog. Energy Combust. Sci. 2021, 85, 100904. [Google Scholar] [CrossRef]
- Satyanarayana, M.; Muraleedharan, C. Prediction of acid values of vegetable oils having high free fatty acids using artificial neural networks. Energy Sources Part A Recovery Util. Environ. Eff. 2010, 32, 1479–1489. [Google Scholar] [CrossRef]
- Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.; Masjuki, H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Farobie, O.; Hasanah, N.; Matsumura, Y. Artificial neural network modeling to predict biodiesel production in supercritical methanol and ethanol using spiral reactor. Procedia Environ. Sci. 2015, 28, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.X.; Lim, S.; Ong, H.C.; Pang, Y.L.; Fitranto, K.; Goh, B.H.H.; Chong, C.T. Two-step catalytic reactive extraction and transesterification process via ultrasonic irradiation for biodiesel production from solid Jatropha oil seeds. Chem. Eng. Processing-Process Intensif. 2019, 146, 107687. [Google Scholar] [CrossRef]
- Shams Esfandabadi, Z.; Ranjbari, M.; Scagnelli, S. The imbalance of food and biofuel markets amid Ukraine-Russia crisis: A systems thinking perspective. Biofuel Res. J. 2022, 9, 1640–1647. [Google Scholar] [CrossRef]
- Saio, K.; Koyama, E.; Watanabe, T. Protein-Calcium-Phytic Acid Relationships in Soybean. Agric. Biol. Chem. 1967, 31, 1195–1200. [Google Scholar]
- Haas, M.J.; McAloon, A.J.; Yee, W.C.; Foglia, T.A. A process model to estimate biodiesel production costs. Bioresour. Technol. 2006, 97, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Batal, A.B.; Dale, N.M.; Saha, U.K. Mineral composition of corn and soybean meal. J. Appl. Poult. Res. 2010, 19, 361–364. [Google Scholar] [CrossRef] [Green Version]
- Medic, J.; Atkinson, C.; Hurburgh, C.R. Current Knowledge in Soybean Composition. J. Am. Oil Chem. Soc. 2014, 91, 363–384. [Google Scholar] [CrossRef]
- Thrane, M.; Paulsen, P.V.; Orcutt, M.W.; Krieger, T.M. Chapter 2—Soy Protein: Impacts, Production, and Applications. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 23–45. [Google Scholar]
- Alibhai, Z.; Mondor, M.; Moresoli, C.; Ippersiel, D.; Lamarche, F. Production of soy protein concentrates/isolates: Traditional and membrane technologies. Desalination 2006, 191, 351–358. [Google Scholar] [CrossRef]
- List, G. Soybean lecithin: Food, industrial uses, and other applications. In Polar Lipids; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–33. [Google Scholar]
- Dale, V.H.; Wright, D.; Kling, C.L.; Boynton, W.; Meyer, J.L.; Mankin, K.; Sanders, J.; Opaluch, J.; Conley, D.J.; Stallworth, H.; et al. Hypoxia in the Northern Gulf of Mexico; Springer: New York, NY, USA, 2010. [Google Scholar]
- Vaquer-Sunyer, R.; Duarte, C. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. USA 2008, 105, 15452–15457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dressing, S.A. National Management Measures for the Control of Nonpoint Pollution from Agriculture; US Environmental Protection Agency, Office of Water: Washington, DC, USA, 2003.
- Hatten, L.F.; Ingram, D.R.; Pittman, S.T. Effect of Phytase on Production Parameters and Nutrient Availability in Broilers and Laying Hens: A Review. J. Appl. Poult. Res. 2001, 10, 274–278. [Google Scholar] [CrossRef]
- Rausch, K.D.; Belyea, R.L. The future of coproducts from corn processing. Appl. Biochem. Biotechnol. 2006, 128, 47–86. [Google Scholar] [CrossRef]
- Rausch, K.D.; Raskin, L.M.; Belyea, R.L.; Agbisit, R.M.; Daugherty, B.J.; Clevenger, T.E.; Tumbleson, M. Phosphorus concentrations and flow in maize wet-milling streams. Cereal Chem. 2005, 82, 431–435. [Google Scholar] [CrossRef]
- Juneja, A.; Cusick, R.; Singh, V. Recovering phosphorus as a coproduct from corn dry grind plants: A techno-economic evaluation. Cereal Chem. 2020, 97, 449–458. [Google Scholar] [CrossRef]
- Juneja, A.; Sharma, N.; Cusick, R.; Singh, V. Techno-economic feasibility of phosphorus recovery as a coproduct from corn wet milling plants. Cereal Chem. 2019, 96, 380–390. [Google Scholar] [CrossRef]
- Avilés-Gaxiola, S.; Chuck-Hernández, C.; Serna Saldívar, S.O. Inactivation Methods of Trypsin Inhibitor in Legumes: A Review. J. Food Sci. 2018, 83, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angel, R.; Tamim, N.; Applegate, T.; Dhandu, A.; Ellestad, L. Phytic acid chemistry: Influence on phytin-phosphorus availability and phytase efficacy. J. Appl. Poult. Res. 2002, 11, 471–480. [Google Scholar] [CrossRef]
- ERS. Livestock, Dairy, and Poultry Outlook, Economic Research Service, USDA. 2021. Available online: https://www.ers.usda.gov/data-products/livestock-meat-domestic-data/ (accessed on 16 October 2021).
- Gollehon, N.R.; Caswell, M.; Ribaudo, M.; Kellogg, R.L.; Lander, C.; Letson, D. Confined Animal Production and Manure Nutrients Resource Economics Division, Economic Research Service, U.S. Department of Agriculture. Agriculture Information Bulletin No. 771. 2001. Available online: https://www.ers.usda.gov/webdocs/publications/42398/17786_aib771_1_.pdf?v=0 (accessed on 16 October 2021).
- Carlson, T. Low Phosphorus Animal Feed and Method for Making Same. U.S. Patent 4963371A, 2005. [Google Scholar]
- Thompson, L.B. Field Evaluation of the Availability for Corn and Soybean of Phosphorus Recovered as Struvite from Corn Fiber Processing for Bioenergy; Iowa State University: Ames, IA, USA, 2013. [Google Scholar]
- Kataki, S.; West, H.; Clarke, M.; Baruah, D.C. Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour. Conserv. Recycl. 2016, 107, 142–156. [Google Scholar] [CrossRef]
- USDA. USDA Economic Research Service. Feed Grains Data: Yearbook. 2021. Available online: https://www.ers.usda.gov/data-products/feed-grains-database/feed-grains-yearbook-tables/ (accessed on 13 August 2021).
- Potrich, E.; Miyoshi, S.C.; Machado, P.F.; Furlan, F.F.; Ribeiro, M.P.; Tardioli, P.W.; Giordano, R.L.; Cruz, A.J.; Giordano, R.C. Replacing hexane by ethanol for soybean oil extraction: Modeling, simulation, and techno-economic-environmental analysis. J. Clean. Prod. 2020, 244, 118660. [Google Scholar] [CrossRef]
- Tao, L.; Aden, A. The economics of current and future biofuels. Biofuels 2011, 45, 37–69. [Google Scholar]
- Peters, M.S.; Timmerhaus, K.D.; West, R.E. Plant Design and Economics for Chemical Engineers; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Kumar, D.; Long, S.P.; Singh, V. Biorefinery for combined production of jet fuel and ethanol from lipid-producing sugarcane: A techno-economic evaluation. GCB Bioenergy 2018, 10, 92–107. [Google Scholar] [CrossRef] [Green Version]
- Kurambhatti, C.; Kumar, D.; Rausch, K.D.; Tumbleson, M.E.; Singh, V. Improving technical and economic feasibility of water based anthocyanin recovery from purple corn using staged extraction approach. Ind. Crops Prod. 2020, 158, 112976. [Google Scholar] [CrossRef]
- Kurambhatti, C.; Lee, J.W.; Jin, Y.-S.; Juneja, A.; Kumar, D.; Rausch, K.D.; Tumbleson, M.E.; Bekal, S.; Singh, V. Process design and techno-economic analysis of 2′-fucosyllactose enriched distiller’s dried grains with solubles production in dry grind ethanol process using genetically engineered Saccharomyces cerevisiae. Bioresour. Technol. 2021, 341, 125919. [Google Scholar] [CrossRef] [PubMed]
- Kurambhatti, C.; Kumar, D.; Singh, V. Technical and economic feasibility of an integrated ethanol and anthocyanin coproduction process using purple corn stover. Biofuels Bioprod. Biorefining 2021, 15, 719–735. [Google Scholar] [CrossRef]
- SuperPro Designer—User’s Guide; Intelligen, Inc.: Scotch Plains, NJ, USA, 2014.
- Wilcox, J.R.; Premachandra, G.S.; Young, K.A.; Raboy, V. Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci. 2000, 40, 1601–1605. [Google Scholar] [CrossRef] [Green Version]
- ERS. Feed Grains Data Delivery System, Economic Research Service, USDA. 2021. Available online: www.ers.usda.gov/db/feedgrains/ (accessed on 16 September 2021).
- He, J.; Zhang, G.; Lu, H. Treatment of soybean wastewater by a wild strain Rhodobacter sphaeroides and to produce protein under natural conditions. Front. Environ. Sci. Eng. China 2010, 4, 334–339. [Google Scholar] [CrossRef]
- EIA. United States Natural Gas Industrial Price. U.S. Energy Information Administration. 2021. Available online: https://www.eia.gov/dnav/ng/ng_pri_sum_a_epg0_pin_dmcf_m.htm (accessed on 19 April 2021).
- Joshi, V.; Kumar, S. Meat Analogues: Plant based alternatives to meat products-A review. Int. J. Food Ferment. Technol. 2015, 5, 107–119. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Dekkers, B.; van der Goot, A.J. Plant-based meat analogues. In Sustainable Meat Production and Processing; Elsevier: Amsterdam, The Netherlands, 2019; pp. 103–126. [Google Scholar]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A review of research on plant-based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2639–2656. [Google Scholar] [CrossRef]
- Kumar, S. Meat Analogs “Plant based alternatives to meat products: Their production technology and applications”. Crit. Rev. Food Sci. Nutr. 2016; just-accepted. [Google Scholar]
- Rubio, N.R.; Xiang, N.; Kaplan, D.L. Plant-based and cell-based approaches to meat production. Nat. Commun. 2020, 11, 6276. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.A. Environmental sustainability tools in the biofuel industry. Biofuel Res. J. 2018, 5, 751–752. [Google Scholar] [CrossRef] [Green Version]
- Aghbashlo, M.; Khounani, Z.; Hosseinzadeh-Bandbafha, H.; Gupta, V.K.; Amiri, H.; Lam, S.S.; Morosuk, T.; Tabatabaei, M. Exergoenvironmental analysis of bioenergy systems: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 149, 111399. [Google Scholar] [CrossRef]
Coproducts | CSB | PRSS | PRWW | SBL |
---|---|---|---|---|
Biodiesel (million gal/yr) | 34.54 | 34.54 | 34.54 | 34.54 |
Soybean hulls (MT/yr) | 25,081 | 25,081 | 25,081 | 25,081 |
Soybean meal (MT/yr) | 459,451 | 459,451 | 459,451 | 399,571 |
80% Glycerol (MT/yr) | 29,354 | 29,354 | 29,354 | 29,354 |
P coproduct (MT/yr) | - | 424 | 510 | - |
Crude lecithin (MT/yr) | - | - | - | 59,880 |
Process | CSB | PRSS | PRWW | SBL | Reference |
---|---|---|---|---|---|
Capital Cost (×USD 1000) | 90,561 | 91,285 | 91,452 | 90,668 | [1] |
Operating Cost (×USD 1000/yr) | 268,166 | 268,865 | 270,017 | 268,484 | |
Raw materials | 224,923 | 225,023 | 226,122 | 224,923 | [1,3] |
Labor-dependent | 18,151 | 18,541 | 18,541 | 18,541 | [46] |
Facility-dependent | 17,968 | 18,112 | 18,145 | 17,912 | [46] |
Laboratory/QC/QA | 2723 | 2781 | 2781 | 2781 | [46] |
Utilities | 4401 | 4407 | 4427 | 4327 | [46] |
Revenue (×USD 1000/yr) | 324,765 | 324,932 | 324,966 | 401,710 | |
Soybean hulls | 4515 | 4515 | 4515 | 4515 | [1] |
Soybean meal | 161,038 | 161,038 | 161,038 | 140,050 | [48] |
Biodiesel | 149,032 | 149,032 | 149,032 | 149,032 | [1] |
80% Glycerol | 10,180 | 10,182 | 10,182 | 10,180 | [1] |
P coproduct | - | 165 | 199 | - | [29,30] |
Crude lecithin | - | - | - | 97,933 | [39] |
Biodiesel Production Cost (×USD/gal) | 2.68 | 2.69 | 2.72 | 0.46 |
Process | PRSS | PRWW |
---|---|---|
Capital cost (USD) | 724,000 | 891,000 |
Operating cost (USD/yr) | 699,000 | 1,851,000 |
Raw materials | 100,000 | 1,199,000 |
Utilities | 6000 | 26,000 |
Revenue (USD/yr) | 165,371 | 198,603 |
Reduction of P in mainstream product (MT/d) | 0.95 | 1.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juneja, A.; Kurambhatti, C.; Kumar, D.; Singh, V. Techno-Economic Evaluation of Phosphorous Recovery in Soybean Biodiesel Process. Processes 2022, 10, 1512. https://doi.org/10.3390/pr10081512
Juneja A, Kurambhatti C, Kumar D, Singh V. Techno-Economic Evaluation of Phosphorous Recovery in Soybean Biodiesel Process. Processes. 2022; 10(8):1512. https://doi.org/10.3390/pr10081512
Chicago/Turabian StyleJuneja, Ankita, Chinmay Kurambhatti, Deepak Kumar, and Vijay Singh. 2022. "Techno-Economic Evaluation of Phosphorous Recovery in Soybean Biodiesel Process" Processes 10, no. 8: 1512. https://doi.org/10.3390/pr10081512
APA StyleJuneja, A., Kurambhatti, C., Kumar, D., & Singh, V. (2022). Techno-Economic Evaluation of Phosphorous Recovery in Soybean Biodiesel Process. Processes, 10(8), 1512. https://doi.org/10.3390/pr10081512