Research on Load Optimal Dispatch for High-Temperature CHP Plants through Grey Wolf Optimization Algorithm with the Levy Flight
Abstract
:1. Introduction
- (1)
- To solve the LOD problems better, an improved Levy–GWO algorithm is proposed to boost the ability of global and local searches in solution space.
- (2)
- To deal with the complex constraints, a new constraint handling method is devised to achieve strictly feasible solutions.
- (3)
- The effectiveness of the proposed approach is proved by two test plants, from simple to complex.
2. Mathematical Model of LOD Problem
2.1. Description of the Objective Function
2.2. Method for Processing Constraint
- (1)
- Cogeneration unit load constraints (individual constraints)
- (2)
- Total load constraints of the heating and power networks (global constraints)
3. Solution Methods
3.1. Classic Grey Wolf Algorithm
- (1)
- Encircling prey.
- (2)
- Hunting.
3.2. Levy-GWO Algorithm
- (1)
- Nonlinear convergence of control factor a.
- (2)
- Individual position update strategy
4. Results and Discussions
4.1. Test System I
4.2. Test System II
4.3. Performance Comparison between GWO Algorithm and Levy–GWO Algorithm
5. Conclusions
- (1)
- The optimization results of Test systems 1 and 2 show that the two GWO algorithms used in this article can be used to solve the power plant LOD problem. It is proved that the improved strategy of the algorithm strengthens the ability of the search performance.
- (2)
- By comparing with the literature results, the optimized operating cost of the Levy–GWO algorithm is lower, showing better performance than the GWO algorithm. The proposed Levy–GWO algorithm can effectively reduce the cost from $ 9265.1 to CNY 9231.41 in the 3-unit CHP plants, and the cost of the 7-unit plants decreases from $ 10,317 to $ 10,111.79 with respect to the reported data.
- (3)
- The tested results also show that the constraint processing method also brings advantages to solving the LOD problem, ensuring that the obtained solution is within the practicable operation range.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fankhauser, S.; Smith, S.M.; Allen, M.; Axelsson, K.; Hale, T.; Hepburn, C.; Kendall, J.M.; Khosla, R.; Lezaun, J.; Mitchell-Larson, E.; et al. The meaning of net zero and how to get it right. Nat. Clim. Chang. 2022, 12, 15–21. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Guillén Bolaños, T.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K. The human imperative of stabilizing global climate change at 1.5 C. Science 2019, 365, eaaw6974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.-M.; et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wang, S.; Zhang, C.; Li, Q.; Xu, X.; Huo, E. Experimental study of micro-scale organic Rankine cycle system based on scroll expander. Energy 2019, 188, 115930. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Li, Q.; Wang, X.; Wang, S. Dynamic behavior of supercritical organic Rankine cycle using zeotropic mixture working fluids. Energy 2020, 191, 116576. [Google Scholar] [CrossRef]
- Olabi, A.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Mathew, M. Nuclear energy: A pathway towards mitigation of global warming. Prog. Nucl. Energy 2022, 143, 104080. [Google Scholar] [CrossRef]
- Hu, J.; Liu, C.; Li, Q.; Shi, X. Molecular simulation of thermal energy storage of mixed CO2/IRMOF-1 nanoparticle nanofluid. Int. J. Heat Mass Transf. 2018, 125, 1345–1348. [Google Scholar] [CrossRef]
- Li, Q.; Xiao, Y.; Shi, X.; Song, S. Rapid evaporation of water on graphene/graphene-oxide: A molecular dynamics study. Nanomaterials 2017, 7, 265. [Google Scholar] [CrossRef]
- Pashchenko, D.; Mustafin, R.; Karpilov, I. Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system. Energy 2022, 252, 124081. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, Q.; Zhang, Z.; Li, Q.; Wu, C.; Wang, X. Development and performance assessment of a novel combined power system integrating a supercritical carbon dioxide Brayton cycle with an absorption heat transformer. Energy Convers. Manag. 2022, 251, 114992. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Liu, C.; Liu, Z.; Lan, S.; Li, Q.; Wang, X. Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery. Energy 2021, 231, 120956. [Google Scholar] [CrossRef]
- Xiao, T.; Liu, C.; Wang, X.; Wang, S.; Xu, X.; Li, Q.; Li, X. Life cycle assessment of the solar thermal power plant integrated with air-cooled supercritical CO2 Brayton cycle. Renew. Energ. 2022, 182, 119–133. [Google Scholar] [CrossRef]
- Kazda, K.; Li, X. A critical review of the modeling and optimization of combined heat and power dispatch. Processes 2020, 8, 441. [Google Scholar] [CrossRef] [Green Version]
- Haakana, J.; Tikka, V.; Lassila, J.; Partanen, J. Methodology to analyze combined heat and power plant operation considering electricity reserve market opportunities. Energy 2017, 127, 408–418. [Google Scholar] [CrossRef]
- Wu, C.; Xu, X.; Li, Q.; Li, X.; Liu, L.; Liu, C. Performance assessment and optimization of a novel geothermal combined cooling and power system integrating an organic flash cycle with an ammonia-water absorption refrigeration cycle. Energy Convers. Manag. 2021, 227, 113562. [Google Scholar] [CrossRef]
- Vasebi, A.; Fesanghary, M.; Bathaee, S.M.T. Combined heat and power economic dispatch by harmony search algorithm. Int. J. Electr. Power Energy Syst. 2007, 29, 713–719. [Google Scholar] [CrossRef]
- Su, C.-T.; Chiang, C.-L. An incorporated algorithm for combined heat and power economic dispatch. Electr. Power Syst. Res. 2004, 69, 187–195. [Google Scholar] [CrossRef]
- Song, Y.H.; Xuan, Q.Y. Combined Heat and Power Economic Dispatch Using Genetic Algorithm Based Penalty Function Method. Electr. Mach. Power Syst. 1998, 26, 363–372. [Google Scholar] [CrossRef]
- Tao, G.; Henwood, M.I.; Ooijen, M.V. An algorithm for combined heat and power economic dispatch. IEEE Trans. Power Syst. 1996, 11, 1778–1784. [Google Scholar] [CrossRef]
- Basu, M. Combined Heat and Power Economic Dispatch by Using Differential Evolution. Electr. Power Compon. Syst. 2010, 38, 996–1004. [Google Scholar] [CrossRef]
- Basu, M. Artificial bee colony optimization for multi-area economic dispatch. Int. J. Electr. Power Energy Syst. 2013, 49, 181–187. [Google Scholar] [CrossRef]
- Basu, M. Artificial immune system for combined heat and power economic dispatch. Int. J. Electr. Power Energy Syst. 2012, 43, 1–5. [Google Scholar] [CrossRef]
- Narang, N.; Sharma, E.; Dhillon, J.S. Combined heat and power economic dispatch using integrated civilized swarm optimization and Powell’s pattern search method. Appl. Soft Comput. 2017, 52, 190–202. [Google Scholar] [CrossRef]
- Moradi-Dalvand, M.; Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Galavani, S.; Rabiee, A. A two-stage mathematical programming approach for the solution of combined heat and power economic dispatch. IEEE Syst. J. 2019, 14, 2873–2881. [Google Scholar] [CrossRef]
- Chen, X.; Li, K.; Xu, B.; Yang, Z. Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem. Knowl. -Based Syst. 2020, 208, 106463. [Google Scholar] [CrossRef]
- Alomoush, M.I. Optimal Combined Heat and Power Economic Dispatch Using Stochastic Fractal Search Algorithm. J. Mod. Power Syst. Clean Energy 2020, 8, 276–286. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, M.; Mirjalili, S.; Nazari-Heris, M.; Parvathysankar, D.S.; Sundaram, A.; Charles Gnanakkan, C.A.R. A hybrid Grasshopper Optimization Algorithm and Harris Hawks Optimizer for Combined Heat and Power Economic Dispatch problem. Eng. Appl. Artif. Intell. 2022, 111, 104753. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Sharma, I.; Kumar, V.; Sharma, S. A comprehensive survey on grey wolf optimization. Recent Adv. Comput. Sci. Commun. (Former. Recent Pat. Comput. Sci.) 2022, 15, 323–333. [Google Scholar] [CrossRef]
- Murlidhar, B.R.; Sinha, R.K.; Mohamad, E.T.; Sonkar, R.; Khorami, M. The effects of particle swarm optimisation and genetic algorithm on ANN results in predicting pile bearing capacity. International Journal of Hydromechatronics 2020, 3, 69–87. [Google Scholar] [CrossRef]
- Yang, X.; Suash, D. Cuckoo Search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
Unit | Cost Function Coefficient | Load Limitation (Unit) | |||||
---|---|---|---|---|---|---|---|
a | b | c | d | e | f | ||
1 | / | 50 | / | / | / | / | [0, 150] (MW) |
2 | 2650 | 14.5 | 0.0345 | 4.2 | 0.030 | 0.0311 | Shown as Figure 4a |
3 | 1250 | 36.0 | 0.0435 | 0.6 | 0.027 | 0.011 | Shown as Figure 4b |
4 | / | 23.4 | / | / | / | / | [0, 2695.2] (MWt/h) |
Items | PSO [19] | GA [19] | GWO | Levy–GWO |
---|---|---|---|---|
P1 (MW) | 0.05 | 0 | 0.05 | 0 |
P2 (MW) | 195.43 | 159.23 | 159.97 | 159.74 |
P3 (MW) | 40.57 | 40.77 | 40 | 40.25 |
H2 (MWt/h) | 39.97 | 39.94 | 40.00 | 40.00 |
H3 (MWt/h) | 75.03 | 75.06 | 75.00 | 75.00 |
H4 (MWt/h) | 0 | 0 | 0 | 0 |
Ptotal (MW) | 200.05 | 200 | 200.02 | 199.99 |
Htotal (MWt/h) | 115 | 115.83 | 115.00 | 115.00 |
Cost ($/h) | 9265.1 | 9267.21 | 9250.92 | 9231.41 |
Unit | Cost Function Coefficient | Load Limitation (Unit) | Active Power Loss Coefficient Matrix | |||||
---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | |||
1 | 25 | 2.0 | 0.008 | 100 | 0.042 | / | [0, 75] (MW) | |
2 | 60 | 1.8 | 0.003 | 140 | 0.040 | / | [20, 150] (MW) | |
3 | 100 | 2.1 | 0.0012 | 160 | 0.038 | / | [30, 175] (MW) | |
4 | 120 | 2.0 | 0.001 | 180 | 0.037 | / | [40, 250] (MW) | |
5 | 2650 | 14.5 | 0.0345 | 4.2 | 0.030 | 0.0311 | Shown Figure 4a | |
6 | 1250 | 36.0 | 0.0435 | 0.6 | 0.027 | 0.011 | Shown Figure 4b | |
7 | 950 | 2.0109 | 0.038 | / | / | / | [0,2695.2] (MWth) |
Items | PSO [21] | EP [21] | DE [21] | GWO | Levy–GWO |
---|---|---|---|---|---|
P1 (kW) | 18.46 | 61.36 | 44.21 | 55.82 | 51.78 |
P2 (kW) | 124.26 | 95.12 | 98.54 | 97.42 | 98.73 |
P3 (kW) | 112.78 | 99.94 | 112.69 | 122.04 | 113.05 |
P4 (kW) | 209.82 | 208.73 | 209.77 | 209.67 | 210.05 |
P5 (kW) | 98.81 | 98.8 | 98.82 | 92.56 | 93.50 |
P6 (kW) | 44.01 | 44.00 | 44.00 | 40.12 | 40.00 |
H5 (MWt/h) | 57.92 | 18.07 | 12.54 | 36.75 | 31.39 |
H6 (MWt/h) | 32.76 | 77.55 | 78.35 | 73.15 | 74.99 |
H7 (MWt/h) | 59.32 | 54.37 | 59.11 | 40.95 | 43.63 |
Ptotal (MWt/h) | 600.00 | 600.01 | 599.99 | 600.08 | 599.99 |
Htotal (MWt/h) | 150.00 | 150.00 | 149.99 | 149.95 | 150.01 |
PL (MWt/h) | 8.14 | 7.96 | 8.04 | 7.55 | 7.54 |
Cost ($/h) | 10,613 | 10,390 | 10,317 | 10,174.49 | 10,111.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yu, X.; Yang, L.; Li, J.; Zhang, J.; Liu, Y.; Sun, Y.; Yan, F. Research on Load Optimal Dispatch for High-Temperature CHP Plants through Grey Wolf Optimization Algorithm with the Levy Flight. Processes 2022, 10, 1546. https://doi.org/10.3390/pr10081546
Wang Y, Yu X, Yang L, Li J, Zhang J, Liu Y, Sun Y, Yan F. Research on Load Optimal Dispatch for High-Temperature CHP Plants through Grey Wolf Optimization Algorithm with the Levy Flight. Processes. 2022; 10(8):1546. https://doi.org/10.3390/pr10081546
Chicago/Turabian StyleWang, Yang, Xiaobing Yu, Li Yang, Jie Li, Jun Zhang, Yonglin Liu, Yongjun Sun, and Fei Yan. 2022. "Research on Load Optimal Dispatch for High-Temperature CHP Plants through Grey Wolf Optimization Algorithm with the Levy Flight" Processes 10, no. 8: 1546. https://doi.org/10.3390/pr10081546
APA StyleWang, Y., Yu, X., Yang, L., Li, J., Zhang, J., Liu, Y., Sun, Y., & Yan, F. (2022). Research on Load Optimal Dispatch for High-Temperature CHP Plants through Grey Wolf Optimization Algorithm with the Levy Flight. Processes, 10(8), 1546. https://doi.org/10.3390/pr10081546