Adsorption and Self-Diffusion of R32/R1234yf in MOF-200 Nanoparticles by Molecular Dynamics Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Model of Adsorption and Diffusion
2.2. Simulation Details
3. Results
3.1. Adsorption Capacity
3.2. Adsorption Heat
3.3. Self-Diffusivity Coefficients of R32-R1234yf in MOF-200
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, J.; Hu, K.; Lu, X.; Huang, X.; Liu, K.; Wu, X. A review of geothermal energy resources, development, and applications in China: Current status and prospects. Energy 2015, 93, 466–483. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Zhang, C.; Xu, X.; Li, Q. Thermo-economic evaluations of dual pressure organic Rankine cycle (DPORC) driven by geothermal heat source. J. Renew. Sustain. Energy 2018, 10, 063901. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, J.; Zhang, C.; Li, Q. Thermodynamic Analysis of the Air-Cooled Transcritical Rankine Cycle Using CO2/R161 Mixture Based on Natural Draft Dry Cooling Towers. Energies 2019, 12, 3342. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Liu, C.; Liu, Z.; Lan, S.; Li, Q.; Wang, X. Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery. Energy 2021, 231, 120956. [Google Scholar] [CrossRef]
- Liu, C.; Wang, S.; Zhang, C.; Li, Q.; Xu, X.; Huo, E. Experimental study of micro-scale organic Rankine cycle system based on scroll expander. Energy 2019, 188, 115930. [Google Scholar] [CrossRef]
- Wu, C.; Xu, X.; Li, Q.; Li, X.; Liu, L.; Liu, C. Performance assessment and optimization of a novel geothermal combined cooling and power system integrating an organic flash cycle with an ammonia-water absorption refrigeration cycle. Energy Convers. Manag. 2021, 227, 113562. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Li, Q.; Wang, X.; Wang, S. Dynamic behavior of supercritical organic Rankine cycle using zeotropic mixture working fluids. Energy 2020, 191, 116576. [Google Scholar] [CrossRef]
- Yamamoto, T.; Furuhata, T.; Arai, N.; Mori, K. Design and testing of the Organic Rankine Cycle. Energy 2001, 26, 239–251. [Google Scholar] [CrossRef]
- Vivian, J.; Manente, G.; Lazzaretto, A. A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources. Appl. Energy 2015, 156, 727–746. [Google Scholar] [CrossRef]
- Nasihatgozar, M. Analysis of buckling in concrete beams containing nanoparticles utilising numerical approach. Int. J. Hydromechatronics 2019, 2, 179–187. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Zhang, Z.G.; Yu, W.; Lockwood, F.E.; Grulke, E.A. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 2001, 79, 2252. [Google Scholar] [CrossRef]
- Li, Q.; Xiao, Y.; Shi, X.; Song, S. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study. Nanomaterials 2017, 7, 265. [Google Scholar] [CrossRef] [PubMed]
- Mcgrail, B.P.; Thallapally, P.K.; Blanchard, J.; Nune, S.K.; Jenks, J.J.; Dang, L.X. Metal-organic heat carrier nanofluids—ScienceDirect. Nano Energy 2013, 2, 845–855. [Google Scholar] [CrossRef]
- Fonseca, J.; Gong, T.; Jiao, L.; Jiang, H.L. Metal–organic frameworks (MOFs) beyond crystallinity: Amorphous MOFs, MOF liquids and MOF glasses. J. Mater. Chem. A 2021, 9, 10562–10611. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Yuan, X.; Zhang, J.; Chew, J.W. Metal-organic framework membranes for wastewater treatment and water regeneration. Coord. Chem. Rev. 2020, 404, 213116. [Google Scholar] [CrossRef]
- Qiu, S.; Xue, M.; Zhu, G. Metal–organic framework membranes: From synthesis to separation application. Chem. Soc. Rev. 2014, 43, 6116–6140. [Google Scholar] [CrossRef]
- Rezk, A.; Al-Dadah, R.; Mahmoud, S.; Elsayed, A. Investigation of Ethanol/metal organic frameworks for low temperature adsorption cooling applications. Appl. Energy 2013, 112, 1025–1031. [Google Scholar] [CrossRef]
- Kandilli, C.; Mertoglu, B. Optimisation design and operation parameters of a photovoltaic thermal system integrated with natural zeolite. Int. J. Hydromechatronics 2020, 3, 128–139. [Google Scholar] [CrossRef]
- Hu, J.; Liu, C.; Liu, L.; Li, Q. Thermal Energy Storage of R1234yf, R1234ze, R134a and R32/MOF-74 Nanofluids: A Molecular Simulation Study. Materials 2018, 11, 1164. [Google Scholar] [CrossRef]
- Hu, J.; Liu, C.; Li, Q.; Shi, X. Molecular simulation of thermal energy storage of mixed CO2/IRMOF-1 nanoparticle nanofluid. Int. J. Heat Mass Transf. 2018, 125, 1345–1348. [Google Scholar] [CrossRef]
- Zheng, J.; Vemuri, R.S.; Estevez, L.; Koech, P.K.; Varga, T.; Camaioni, D.M.; Blake, T.A.; McGrail, B.P.; Motkuri, R.K. Pore-Engineered Metal–Organic Frameworks with Excellent Adsorption of Water and Fluorocarbon Refrigerant for Cooling Applications. J. Am. Chem. Soc. 2017, 139, 10601–10604. [Google Scholar] [CrossRef]
- Barpaga, D.; Nguyen, V.T.; Medasani, B.K.; Chatterjee, S.; McGrail, B.P.; Motkuri, R.K.; Dang, L.X. Insight into Fluorocarbon Adsorption in Metal-Organic Frameworks via Experiments and Molecular Simulations. Sci. Rep. 2019, 9, 10289. [Google Scholar] [CrossRef] [PubMed]
- García, E.; Bahamon, D.; Vega, L.F. Systematic Search of Suitable Metal–Organic Frameworks for Thermal Energy-Storage Applications with Low Global Warming Potential Refrigerants. ACS Sustain. Chem. Eng. 2021, 9, 3157–3171. [Google Scholar] [CrossRef]
- Xu, G.; Meng, Z.; Guo, X.; Zhu, H.; Deng, K.; Xiao, C.; Liu, Y. Molecular simulations on CO2 adsorption and adsorptive separation in fullerene impregnated MOF-177, MOF-180 and MOF-200. Comput. Mater. Sci. 2019, 168, 58–64. [Google Scholar] [CrossRef]
- Ullah, S.; Bustam, M.A.; Al-Sehemi, A.G.; Assiri, M.A.; Kareem, F.A.A.; Mukhtar, A.; Ayoub, M.; Gonfa, G. Influence of post-synthetic graphene oxide (GO) functionalization on the selective CO2/CH4 adsorption behavior of MOF-200 at different temperatures; an experimental and adsorption isotherms study—ScienceDirect. Microporous Mesoporous Mater. 2020, 296, 110002. [Google Scholar] [CrossRef]
- Berens, S.; Chmelik, C.; Hillman, F.; Kärger, J.; Jeong, H.-K.; Vasenkov, S. Ethane diffusion in mixed linker zeolitic imidazolate framework-7-8 by pulsed field gradient NMR in combination with single crystal IR microscopy. Phys. Chem. Chem. Phys. 2018, 20, 23967–23975. [Google Scholar] [CrossRef]
- Eum, K.; Jayachandrababu, K.C.; Rashidi, F.; Zhang, K.; Leisen, J.; Graham, S.; Lively, R.P.; Chance, R.R.; Sholl, D.S.; Jones, C.W.; et al. Highly tunable molecular sieving and adsorption properties of mixed-linker zeolitic imidazolate frameworks. J. Am. Chem. Soc. 2015, 137, 4191–4197. [Google Scholar] [CrossRef]
- Popp, T.M.O.; Plantz, A.Z.; Yaghi, O.M.; Reimer, J.A. Precise Control of Molecular Self-Diffusion in Isoreticular and Multivariate Metal-Organic Frameworks. ChemPhysChem 2020, 21, 32–35. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, X.; Li, Z.; Lin, Y. Synthesis, characterization and gas transport properties of MOF-5 membranes. J. Membr. Sci. 2011, 382, 82–90. [Google Scholar] [CrossRef]
- Amirjalayer, S.; Tafipolsky, M.; Schmid, R. Molecular dynamics simulation of benzene diffusion in MOF-5: Importance of lattice dynamics. Angew. Chem. 2010, 46, 463–466. [Google Scholar] [CrossRef]
- Skoulidas, A.I.; Sholl, D.S. Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. J. Phys. Chem. B 2005, 109, 15760–15768. [Google Scholar] [CrossRef] [PubMed]
- Ford, D.C.; Dubbeldam, D.; Snurr, R.Q.; Künzel, V.; Wehring, M.; Stallmach, F.; Kärger, J.; Müller, U. Self-diffusion of chain molecules in the metal–organic framework IRMOF-1: Simulation and experiment. J. Phys. Chem. Lett. 2012, 3, 930–933. [Google Scholar] [CrossRef] [PubMed]
- Farzi, N.; Salehi, N.; Mahboubi, A. Molecular dynamics simulation of acetylene diffusion in MOF-508a and MOF-508b. Microporous Mesoporous Mater. 2017, 248, 246–255. [Google Scholar] [CrossRef]
- Liu, A.; Peng, X.; Jin, Q.; Jain, S.K.; Vicent-Luna, J.M.; Calero, S.; Zhao, D. Adsorption and Diffusion of Benzene in Mg-MOF-74 with Open Metal Sites. ACS Appl. Mater. Interfaces 2019, 11, 4686–4700. [Google Scholar] [CrossRef]
- Atci, E.; Erucar, I.; Keskin, S. Adsorption and Transport of CH4, CO2, H2 Mixtures in a Bio-MOF Material from Molecular Simulations. J. Phys. Chem. C 2011, 115, 6833–6840. [Google Scholar] [CrossRef]
- Li, J.; Ge, Z.; Duan, Y.; Yang, Z. Design and performance analyses for a novel organic Rankine cycle with supercritical-subcritical heat absorption process coupling. Appl. Energy 2019, 235, 1400–1414. [Google Scholar] [CrossRef]
- Deng, X.; Xiao, Y.; Li, Q.; He, C.; Wang, S. Evaporation of R1234yf, R1234ze(E) and R1234ze(Z) on Cu surface: A molecular dynamics study. J. Mol. Liq. 2021, 344, 117844. [Google Scholar] [CrossRef]
- Li, Q.; Ren, J.; Liu, Y.; Zhou, Y. Prediction of critical properties and boiling point of fluorine/chlorine-containing refrigerants. Int. J. Refrig. 2022, 5548. [Google Scholar] [CrossRef]
- Zhang, K.; Meng, Z.; Liu, S. Comparisons of Methane Adsorption/Desorption, Diffusion Behaviors on Intact Coals and Deformed Coals: Based on Experimental Analysis and Isosteric Heat of Adsorption. Energy Fuels 2021, 35, 5975–5987. [Google Scholar] [CrossRef]
Type | R32 | R32:R1234yf = 3:1 | R32:R1234yf = 1:1 | R32:R1234yf = 1:3 | R1234yf |
---|---|---|---|---|---|
R32 | 2000 | 1500 | 1000 | 500 | 0 |
R1234yf | 0 | 500 | 1000 | 1500 | 2000 |
Atom | ε (kcal/mol) | σ (Å) | q (e) |
---|---|---|---|
R32 | |||
C | 0.1085 | 3.15 | 0.43960 |
H | 0.0157 | 2.2293 | 0.04158 |
F | 0.0874 | 2.94 | −0.26138 |
R1234yf | |||
C=(CH2) | 0.41000 | 3.4 | −0.4191 |
C=(CF) | 0.41000 | 3.4 | 0.1974 |
C-(CF3) | 0.31091 | 3.4 | 0.6306 |
H | 0.06570 | 2.65 | 0.20473 |
F(C=) | 0.23617 | 2.90 | −0.18254 |
F(C-) | 0.23617 | 2.94 | −0.21196 |
Type | Force | Force constant | |
R32 | Bond | kd (kJ mol−1 Å−2) | r0 (Å) |
C-F | 1544.61 | 1.369 | |
C-H | 1472.89 | 1.094 | |
Angle | kφ (kJ mol−1 rad−2) | θ0 (deg) | |
H-C-H | 146.54 | 113.6 | |
F-C-F | 367.61 | 108.7 | |
H-C-F | 249.92 | 108.6 | |
R1234yf | Bond | kd (kJ mol−1 Å−2) | r0 (Å) |
C=C | 2831.69 | 1.331 | |
C-C | 1328.84 | 1.511 | |
C-H | 1627.07 | 1.086 | |
-C-F | 1544.61 | 1.353 | |
=C-F | 1864.73 | 1.330 | |
Angle | kφ (kJ mol−1 rad−2) | θ0 (deg) | |
H-C=C | 152.09 | 120.6 | |
F-C-F | 367.61 | 107.5 | |
F-C-C(=) | 313.17 | 111.3 | |
H-C-H | 122.63 | 118.7 | |
C=C-F | 211.38 | 122.6 | |
F-C(=)-C | 319.57 | 112.5 | |
C=C-C | 209.70 | 124.1 | |
HC-C-HC | 146.54 | 113.6 | |
HC-C-FC | 249.92 | 108.6 |
MOF-200 | Zn-MOF-74 | |
---|---|---|
R32 (g/g) | 4.06 | 0.624 |
R1234yf (g/g) | 4.76 | 0.513 |
Type | qst (kJ/mol) |
---|---|
R32 | 24.5 |
R1234yf | 25.8 |
R32 (R32:R1234yf = 1:1) | 17.32 |
R1234yf (R32:R1234yf = 1:1) | 21.74 |
R32 (R32:R1234yf = 1:3) | 11.78 |
R1234yf (R32:R1234yf = 1:3) | 24.39 |
R32 (R32:R1234yf = 3:1) | 19.45 |
R1234yf (R32:R1234yf = 3:1) | 20.62 |
Types | Ea (kJ/mol) | D0 (m2/s) |
---|---|---|
R32 | 9.078 | 28.587 |
R1234yf | 9.220 | 28.383 |
R32 (1:1) | 9.128 | 33.316 |
R1234yf (1:1) | 9.590 | 17.133 |
R32 (1:3) | 6.046 | 17.530 |
R1234yf (1:3) | 7.759 | 20.806 |
R32 (3:1) | 7.728 | 48.903 |
R1234yf (3:1) | 8.381 | 20.663 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, B.; Xia, D.; Wang, G. Adsorption and Self-Diffusion of R32/R1234yf in MOF-200 Nanoparticles by Molecular Dynamics Simulation. Processes 2022, 10, 1714. https://doi.org/10.3390/pr10091714
Jing B, Xia D, Wang G. Adsorption and Self-Diffusion of R32/R1234yf in MOF-200 Nanoparticles by Molecular Dynamics Simulation. Processes. 2022; 10(9):1714. https://doi.org/10.3390/pr10091714
Chicago/Turabian StyleJing, Biyu, Di Xia, and Guoqiang Wang. 2022. "Adsorption and Self-Diffusion of R32/R1234yf in MOF-200 Nanoparticles by Molecular Dynamics Simulation" Processes 10, no. 9: 1714. https://doi.org/10.3390/pr10091714
APA StyleJing, B., Xia, D., & Wang, G. (2022). Adsorption and Self-Diffusion of R32/R1234yf in MOF-200 Nanoparticles by Molecular Dynamics Simulation. Processes, 10(9), 1714. https://doi.org/10.3390/pr10091714