Recent Progression Developments on Process Optimization Approach for Inherent Issues in Production Shop Floor Management for Industry 4.0
Abstract
:1. Introduction
1.1. Process Optimization Approach Used in Operation Management on the Shop Floor
1.2. Introductory Glance and Scientific Advancement on Production Shop Floor Management System
1.3. Hybrid Integration of Lean, Six Sigma, and Smart Manufacturing Approach for the Purpose of Enhancing the Operational Excellence and Productivity
2. Purpose and Methodology
2.1. Formulating the Research Objective
2.2. Selecting Relevant Research in Process Optimization Methods Implementation for Production Shop Floor Management
2.3. Reviewing Previous Research Works for the Identification of Different Strategies and Problems
2.3.1. Identification of Strategies for the Implementation of an Optimization Approach
- S1 Implementing process optimization approach.
- S2 Analyzing worker’s perception.
- S3 Analyzing the impact level of process optimization approaches on operations management.
- S4 Developing a production shop floor management system.
- S5 Implementing hybrid approaches for enhancing operations management efficiency on the shop floor.
2.3.2. Identification of Problems in Implementation of Process Optimization Approach for the Shop Floor Management
- P1 Lack of clarity in the production planning.
- P2 Unsystematic layout.
- P3 Higher downtime.
- P4 Ergonomic issues of the shop floor.
- P5 Instability of production conditions.
- P6 Selection of an appropriate approach.
P1 Lack of Clarity in the Production Planning
P2 Unsystematic Layout
P3 Higher Downtime
P4 Ergonomic Issues of the Shop Floor
P5 Instability of Production Conditions
P6 Selection of an Appropriate Approach
2.4. Analysis of the Findings Obtained in Achieving Operational Excellence on the Shop Floor
2.5. Outcomes for Achieving Operational Excellence on the Shop Floor within Limited Constraints
3. Incorporation of the Knowledgably Insights in This Work
4. Results and Discussion
Keys for Enhancing Operational Excellence in Shop Floor Management System in Industry 4.0 by Comparing with the Present and Previous Research Findings in Operations Management
5. Enhancement in Productivity, Operational Excellence, Financial Profitability, and Resource Utilization Using a Suitable Strategy with an Efficient Process Optimization Approach
5.1. Implementation of a Suitable Process Optimization Approach for Enhancing Operational Efficiency in Production Shop Floor Management Systems
5.2. Improvement in Operational Performance through Identification of the Problems in Industry 4.0
5.3. Contribution in Production and Organization Management in Industries
6. Conclusions
- i
- It has been observed that the selection of process optimization approach plays a vital role in achieving operational excellence on the shop floor, including industry 4.0.
- ii
- The present research describes the strategies used to implement the suitable process optimization approach for achieving yield efficiency in the production processes on the shop floor by eliminating problems encountered in operations management on the shop floor.
- iii
- It has been observed that hybrid approaches like lean six sigma, smart lean manufacturing, lean-kaizen, and computational intelligence were superior to other individual process optimization approaches in relation to improving operational performance on the production shop floor management.
- iv
- The present research provides a decision-making key for achieving economic sustainability for industry personnel.
- v
- The present review work would provide revolutionary changes in the production shop floor management scenario and enhance operational excellence in available resources within confined constraints.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
S. No. | Year | Reference No. | Industry/Area/Applied | Strategy | ||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||||
1 | 2000 | Detty et al. [44] | Electronic product | x | x | |||
2 | 2002 | Mcdonald et al. [45] | Industrial motor | x | x | |||
3 | 2005 | Seth et al. [46] | Motorcycle frames | x | ||||
4 | 2006 | Singh et al. [47] | Die casting unit | x | x | |||
5 | 2006 | Bragila et al. [48] | Refrigerator production | x | x | |||
6 | 2008 | Sahoo et al. [144] | Forging company | x | x | |||
7 | 2009 | Pattanaik et al. [7] | Ammunition components | x | x | |||
8 | 2009 | Vinodh et al. [148] | Crankshaft gear manufacturing | x | ||||
9 | 2009 | Stump et al. [129] | Mass customization | x | ||||
10 | 2010 | Eswarmoorthi et al. [49] | Machine tool industry | x | x | |||
11 | 2009 | Vinodh et al. [148] | Stiffer camshaft | x | x | |||
12 | 2010 | Schaeffer et al. [50] | Mechanical products, Mechanical components, Elevators | x | x | |||
13 | 2011 | Coppini et al. [51] | Industrial gear box | x | ||||
14 | 2011 | Gurumurthy et al. [52] | Poly-vinyl chloride door and window | x | ||||
15 | 2011 | Hodge et al. [97] | Textile industry | x | x | |||
16 | 2012 | Rahani et al. [98] | Front Disc | x | x | |||
17 | 2012 | Dotoli et al. [118] | Forklift trucks | x | x | |||
18 | 2012 | Unver et al. [119] | Manufacturing intelligence system | x | ||||
19 | 2012 | Salleh et al. [53] | Forming | x | ||||
20 | 2012 | Bhaskaran et al. [111] | Automotive component | x | ||||
21 | 2012 | Jiménez et al. [54] | Wine sector | x | x | |||
22 | 2012 | Boateng-Okrah et al. [99] | Mining company | x | x | |||
23 | 2012 | Mandahawi et al. [100] | Paper manufacturing | x | x | |||
24 | 2012 | Timans et al. [112] | SMEs | x | x | |||
25 | 2013 | Das et al. [145] | Air conditioning coil manufacturing | x | ||||
26 | 2013 | Bertolini et al. [55] | Bottling lines | x | x | |||
27 | 2013 | Jeyaraj et al. [171] | Rear front pedestal manufacturing | x | ||||
28 | 2013 | Ismail et al. [130] | Biopharmaceutical | x | ||||
29 | 2013 | Rahman et al. [101] | Automotive manufacturer | x | x | |||
30 | 2014 | Amin et al. [28] | Shock absorber | x | ||||
31 | 2014 | Barbosa et al. [120] | Aircraft production | x | x | |||
32 | 2014 | Jasti et al. [57] | Ancillary component | x | x | |||
33 | 2014 | Kumar et al. [77] | Hydraulic cylinders | x | ||||
34 | 2015 | Choomlucksana et al. [59] | Sheet metal stamping | x | x | |||
35 | 2015 | Mwanza et al. [60] | Chemical manufacturing | x | x | |||
36 | 2015 | Rohani et al. [61] | Industrial and building paint | x | ||||
37 | 2015 | Esa et al. [146] | Automotive manufacturing | x | ||||
38 | 2015 | Lingam et al. [102] | T-shirt manufacturing | x | x | |||
39 | 2015 | Alhuraish et al. [113] | French industries | x | x | |||
40 | 2015 | Andrade et al. [178] | Clutch discs | x | ||||
41 | 2015 | Schneider et al. [103] | Pharmaceutical company | x | x | |||
42 | 2015 | Marodin et al. [104] | Automotive, electronic component | x | x | |||
43 | 2015 | Wang et al. [42] | Solar module production line | x | x | |||
44 | 2014 | Vinodh et al. [148] | Automotive component | x | ||||
45 | 2015 | Sharma et al. [176] | Machine tool industries | x | x | |||
46 | 2015 | Singh et al. [172] | Steel manufacturing | x | x | |||
47 | 2015 | Tyagi et al. [62] | Gas turbine manufacturer | x | x | x | ||
48 | 2015 | Chlebus et al. [63] | Copper mines | x | ||||
49 | 2015 | Indrawati et al. [131] | Iron ore industry | x | ||||
50 | 2015 | Helleno et al. [40] | Automotive vehicle | x | x | |||
51 | 2016 | Salonitis et al. [114] | Greek manufacturing sector | x | x | |||
52 | 2016 | Thomas et al. [105] | Aero structures | x | x | x | ||
53 | 2016 | Ali Naqvi et al. [64] | Switchgear | x | ||||
54 | 2016 | Prasad et al. [65] | Foundry industry | x | x | |||
55 | 2016 | Omogbai et al. [66] | Print packaging manufacturing | x | ||||
56 | 2016 | Al Askari et al. [67] | Soft drink company | x | x | |||
57 | 2016 | Al-Refaie et al. [68] | Electro-erosion process | x | x | x | ||
58 | 2017 | Chugani et al. [34] | Kick starter | x | ||||
59 | 2017 | Méndez et al. [71] | Auto-parts for automotive assembly plants | x | ||||
60 | 2017 | Roriz et al. [70] | Carton company | x | ||||
61 | 2017 | Diaz et al. [72] | Wing spar | x | ||||
62 | 2017 | Seth et al. [73] | Power transformer | x | x | |||
63 | 2017 | Garre et al. [150] | Pressure vessel (Aerospace manufacturing) | x | ||||
64 | 2018 | Kurilova-Palisaitiene et al. [74] | Forklift trucks manufacturer, engine remanufacturer, computer, and smartphones remanufacturer, a remanufacturer of filling machines | x | x | |||
65 | 2018 | Nallusamy et al. [156] | Foundry industry | x | x | |||
66 | 2018 | Tripathi et al. [190] | Automobile industry | x | x | |||
67 | 2018 | Raja Sreedharan et al. [115] | Indian manufacturing industries | x | x | |||
68 | 2018 | Yadav et al. [106] | Indian machine tool manufacturing | x | x | x | ||
69 | 2018 | Kumar et al. [69] | High-density polythene and linear low-density polythene water tank and drums | x | x | x | ||
70 | 2018 | Hill et al. [132] | Aerospace engine maintenance repair and overhaul facility | x | ||||
71 | 2019 | Sana et al. [121] | Plastic industry | x | x | |||
72 | 2018 | Cannas et al. [78] | Chocolate and confectionery | x | x | |||
73 | 2018 | Munteanu et al. [79] | SMEs in Romania | x | ||||
74 | 2018 | Garza-Reyes et al. [80] | Manufacturing organizations | x | x | |||
75 | 2018 | Gijo et al. [123] | Auto ancillary | x | x | |||
76 | 2018 | Zhang et al. [124] | Plant layout design | x | ||||
77 | 2019 | Dadashnejad et al. [81] | Gas ball valve | x | x | |||
78 | 2019 | Stadnicka et al. [82] | Door seals (Automotive industry) | x | x | x | ||
79 | 2019 | Choudhary et al. [83] | Packaging-manufacturing | x | x | x | ||
80 | 2019 | Shou et al. [84] | Turnaround maintenance | x | x | |||
81 | 2019 | Ramani et al. [126] | Gas-insulated switchgear | x | x | |||
82 | 2020 | Yadav et al. [85] | Pump part manufacturing | x | x | x | ||
83 | 2019 | Mahajan et al. [86] | Motor manufacturing | x | ||||
84 | 2019 | Gleeson et al. [127] | Manufacturing productivity | x | x | |||
85 | 2019 | Gonzalez et al. [117] | U.S. industries | x | x | |||
86 | 2019 | Ur Rehman et al. [87] | Water heater manufacturing | x | ||||
87 | 2019 | Suhardi et al. [109] | Dining armchair manufacturing | x | x | |||
88 | 2019 | Masuti et al. [88] | Excavator manufacturing | x | ||||
89 | 2019 | Liao et al. [183] | Production delivery | x | ||||
90 | 2020 | Priya et al. [180] | Automotive assembly plants | x | ||||
91 | 2020 | Qu et al. [128] | Solar industry | x | x | |||
92 | 2020 | Mundra et al. [133] | Interpretive structural modeling | x | ||||
93 | 2020 | Balamurugan et al. [89] | Connecting rod manufacturing | x | ||||
94 | 2020 | Aghdasinia et al. [90] | Rotary kiln | x | ||||
95 | 2020 | Prasad et al. [75] | Textile industry | x | ||||
96 | 2020 | Saqlain et al. [179] | Auto-ancillary unit | x | ||||
97 | 2020 | Abubakr et al. [184] | Network of discrete | x | x | |||
98 | 2020 | Sutharsan et al. [92] | Mono block shallow well jet pump | x | ||||
99 | 2020 | Amrani et al. [93] | Aerospace | x | x | x | ||
100 | 2020 | Sivaraman et al. [94] | Engine assembly | x | ||||
101 | 2020 | Khan et al. [95] | Power generation system | x | x | |||
102 | 2020 | Jayanth et al. [96] | Electronics | x | ||||
103 | 2021 | Tripathi et al. [173] | Earthmoving equipment | x | x | x | ||
104 | 2018 | Tripathi et al. [190] | Mining Machinery | x | x | x | x |
References
- Tripathi, V.; Saraswat, S.; Gautam, G.D. A Study on Implementation of Various Approaches for Shop Floor Management. In Lecture Notes in Electrical Engineering; Springer: Singapore, 2022; Volume 766. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.K.; Sharma, S.; Singh, J.; Pimenov, D.Y.; Giasin, K. An Innovative Agile Model of Smart Lean–Green Approach for Sustainability Enhancement in Industry 4.0. J. Open Innov. Technol. Mark. Complex. 2021, 7, 215. [Google Scholar] [CrossRef]
- Tripathi, V.; Saraswat, S.; Gautam, G.; Singh, D. Shop Floor Productivity Enhancement Using a Modified Lean Manufacturing Approach. In Recent Trends in Industrial and Production Engineering; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Singh, B.; Garg, S.; Sharma, S.; Grewal, C. Lean implementation and its benefits to production industry. Int. J. Lean Six Sigma 2010, 1, 157–168. [Google Scholar] [CrossRef]
- Gładysz, B.; Buczacki, A.; Haskins, C. Lean Management Approach to Reduce Waste in HoReCa Food Services. Resources 2020, 9, 144. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar, S.; Choudhury, A.K.; Tiwari, M.K. Lean tool selection in a die casting unit: A fuzzy-based decision support heuristic. Int. J. Prod. Res. 2017, 44, 1399–1429. [Google Scholar] [CrossRef]
- Pattanaik, L.N.; Sharma, B.P. Implementing lean manufacturing with cellular layout: A case study. Int. J. Adv. Manuf. Technol. 2009, 42, 772–779. [Google Scholar] [CrossRef]
- Abdulnour, S.; Baril, C.; Abdulnour, G.; Gamache, S. Implementation of Industry 4.0 Principles and Tools: Simulation and Case Study in a Manufacturing SME. Sustainability 2022, 14, 6336. [Google Scholar] [CrossRef]
- Tripathi, V.; Saraswat, S.; Gautam, G.D. Development of a Systematic Framework to Optimize the Production Process in Shop Floor Management. In Lecture Notes in Mechanical Engineering; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Pérez-Pucheta, C.E.; Olivares-Benitez, E.; Minor-Popocatl, H.; Pacheco-García, P.F.; Pérez-Pucheta, M.F. Implementation of Lean Manufacturing to Reduce the Delivery Time of a Replacement Part to Dealers: A Case Study. Appl. Sci. 2019, 9, 3932. [Google Scholar] [CrossRef]
- Mathiyazhagan, K.; Gnanavelbabu, A.; Agarwal, V. A framework for implementing sustainable lean manufacturing in the electrical and electronics component manufacturing industry: An emerging economies country perspective. J. Clean. Prod. 2022, 334, 130169. [Google Scholar] [CrossRef]
- Arya, A.K.; Choudhary, S. Assessing the application of Kaizen principles in Indian small-scale industry. Int. J. Lean Six Sigma 2015, 6, 369–396. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.K.; Sharma, S.; Li, C.; Di Bona, G. A Sustainable Methodology Using Lean and Smart Manufacturing for the Cleaner Production of Shop Floor Management in Industry 4.0. Mathematics 2022, 10, 347. [Google Scholar] [CrossRef]
- Ghobadian, A.; Gallear, D. Total quality management in SMEs. Omega 1996, 24, 83–106. [Google Scholar] [CrossRef]
- Kumar, S.; Sosnoski, M. Using DMAIC Six Sigma to systematically improve shopfloor production quality and costs. Int. J. Product. Perform. Manag. 2009, 58, 254–273. [Google Scholar] [CrossRef]
- Prateek, G.; Pathania, A.; Sharma, S.; Sá, J.C. Lean six-sigma implementation in an automobile axle manufacturing industry: A case study. Mater. Today Proc. 2022, 50, 1739–1746. [Google Scholar]
- Cherrafi, A.; Elfezazi, S.; Chiarini, A.; Mokhlis, A.; Benhida, K. The integration of lean manufacturing, Six Sigma and sustainability: A literature review and future research directions for developing a specific model. J. Clean. Prod. 2016, 139, 828–846. [Google Scholar] [CrossRef]
- Tripathi, V.; Saraswat, S.; Gautam, G.D. Improvement in shop floor management using ANN coupled with VSM: A case study. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 5651–5662. [Google Scholar] [CrossRef]
- Tuan-anh, T.; Ruppert, T.; Eigner, G.; Abonyi, J. Real-Time locating system and digital twin in Lean 4.0. In Proceedings of the 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 19–21 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 369–374. [Google Scholar]
- Daniel, S.; Diez, J.V.; Ordieres-Meré, J.; Gevers, R.; Schwiep, J.; Molina, M. Industry 4.0 lean shopfloor management characterization using EEG sensors and deep learning. Sensors 2020, 20, 2860. [Google Scholar]
- Maware, C.; Parsley, D.M., II. The Challenges of Lean Transformation and Implementation in the Manufacturing Sector. Sustainability 2022, 14, 6287. [Google Scholar] [CrossRef]
- Florescu, A.; Barabas, S. Development Trends of Production Systems through the Integration of Lean Management and Industry 4.0. Appl. Sci. 2022, 12, 4885. [Google Scholar] [CrossRef]
- Trehan, R.; Gupta, A.; Handa, M. Implementation of Lean Six Sigma framework in a large scale industry: A case study. Int. J. Six Sigma Compet. Advant. 2019, 11, 23–41. [Google Scholar] [CrossRef]
- Barot, R.S.; Patel, J.; Sharma, B.; Rathod, B.; Solanki, H.; Patel, Y. Lean six sigma feasibility and implementation aspect in cast iron foundry. Mater. Today Proc. 2020, 28, 1084–1091. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.K.; Saraswat, S.; Sharma, S.; Li, C.; Rajkumar, S.; Georgise, F.B. A Novel Smart Production Management System for the Enhancement of Industrial Sustainability in Industry 4.0. Math. Probl. Eng. 2022, 2022, 6424869. [Google Scholar] [CrossRef]
- Motwani, J. A business process change framework for examining lean manufacturing: A case study. Ind. Manag. Data Syst. 2003, 103, 339–346. [Google Scholar] [CrossRef]
- Verma, N.; Sharma, V. Energy Value Stream Mapping a Tool to Develop Green Manufacturing. Procedia Eng. 2016, 149, 526–534. [Google Scholar] [CrossRef]
- Amin, S.S.; Atre, R.; Vardia, A.; Sebastian, B. Lean machine manufacturing at Munjal Showa limited. Int. J. Product. Perform. Manag. 2014, 63, 644–664. [Google Scholar] [CrossRef]
- Song, T.; Zhou, J. Research and Implementation of Lean Production Mode in Shipbuilding. Processes 2021, 9, 2071. [Google Scholar] [CrossRef]
- Zhao, D.; Ye, W.; Gao, C. Research on process optimization for equipment maintenance based on lean six sigma management. In Proceedings of the 2012 International Conference on Quality, Reliability, Risk, Maintenance and Safety Engineering, Chengdu, China, 15–18 June 2012; IEEE: Piscataway, NJ, USA; pp. 1333–1337. [Google Scholar]
- Shahin, M.; Chen, F.F.; Bouzary, H.; Krishnaiyer, K. Integration of Lean practices and Industry 4.0 technologies: Smart manufacturing for next-generation enterprises. Int. J. Adv. Manuf. Technol. 2020, 107, 2927–2936. [Google Scholar] [CrossRef]
- Letchumanan, L.T.; Gholami, H.; Yusof, N.M.; Bin Ngadiman, N.H.A.; Salameh, A.A.; Štreimikienė, D.; Cavallaro, F. Analyzing the Factors Enabling Green Lean Six Sigma Implementation in the Industry 4.0 Era. Sustainability 2022, 14, 3450. [Google Scholar] [CrossRef]
- Snee, R.D. Lean Six Sigma—Getting better all the time. Int. J. Lean Six Sigma 2010, 1, 9–29. [Google Scholar] [CrossRef]
- Chugani, N.; Kumar, V.; Garza-Reyes, J.A.; Rocha-Lona, L.; Upadhyay, A. Investigating the green impact of Lean, Six Sigma and Lean Six Sigma: A systematic literature review. Int. J. Lean Six Sigma 2017, 8, 7–32. [Google Scholar] [CrossRef]
- Arnheiter, E.D.; Maleyeff, J. The integration of lean management and Six Sigma. TQM Mag. 2005, 17, 5–18. [Google Scholar] [CrossRef]
- Drohomeretski, E.; Gouvea da Costa, S.E.; Pinheiro de Lima, E.; Garbuio, P.A.D.R. Lean, Six Sigma and Lean Six Sigma: An analysis based on operations strategy. Int. J. Prod. Res. 2014, 52, 804–824. [Google Scholar] [CrossRef]
- Chiarini, A.; Kumar, M. Lean Six Sigma and Industry 4.0 integration for Operational Excellence: Evidence from Italian manufacturing companies. Prod. Plan. Control 2021, 32, 1084–1101. [Google Scholar] [CrossRef]
- Amjad, M.S.; Rafique, M.Z.; Khan, M.A. Leveraging Optimized and Cleaner Production through Industry 4.0. Sustain. Prod. Consum. 2021, 26, 859–871. [Google Scholar] [CrossRef]
- Byrne, B.; McDermott, O.; Noonan, J. Applying Lean Six Sigma Methodology to a Pharmaceutical Manufacturing Facility: A Case Study. Processes 2021, 9, 550. [Google Scholar] [CrossRef]
- Helleno, A.L.; Pimentel, C.A.; Ferro, R.; Santos, P.F.; de Oliveira, M.C.; Simon, A.T. Integrating value stream mapping and discrete events simulation as decision making tools in operation management. Int. J. Adv. Manuf. Technol. 2015, 80, 1059–1066. [Google Scholar] [CrossRef]
- Tripathi, V.; Sarswat, S. Lean Manufacturing for Shop Floor of Automotive Industries: A Study. J. Exp. Appl. Mech. 2018, 9, 58–65. [Google Scholar]
- Wang, S.; Lu, X.; Li, X.; Li, W. A systematic approach of process planning and scheduling optimization for sustainable machining. J. Clean. Prod. 2015, 87, 914–929. [Google Scholar] [CrossRef]
- Henríquez-Alvarado, F.; Luque-Ojeda, V.; Macassi-Jauregui, I.; Alvarez, J.M.; Raymundo-Ibañez, C. Process optimization using lean manufacturing to reduce downtime: Case study of a manufacturing SME in Peru. In Proceedings of the 2019 5th International Conference on Industrial and Business Engineering, Hong Kong, China, 27–29 September 2019; pp. 261–265. [Google Scholar]
- Detty, R.B.; Yingling, J.C. Quantifying benefits of conversion to lean manufacturing with discrete event simulation: A case study. Int. J. Prod. Res. 2000, 38, 429–445. [Google Scholar] [CrossRef]
- Mcdonald, T.; Van Aken, E.M. International Journal of Applications: A Leading Journal of Supply Chain Utilising Simulation to Enhance Value Stream Mapping: A Manufacturing Case Application. Int. J. Logist. Res. Appl. 2002, 5, 213–232. [Google Scholar] [CrossRef]
- Seth, D.; Gupta, V. Application of value stream mapping for lean operations and cycle time reduction: An Indian case study. Prod. Plan. Control 2005, 16, 44–59. [Google Scholar] [CrossRef]
- Singh, H.; Singh, A. Application of lean manufacturing using value stream mapping in an auto-parts manufacturing unit. J. Adv. Manag. Res. 2013, 10, 72–84. [Google Scholar] [CrossRef]
- Braglia, M.; Carmignani, G.; Zammori, F. A new value stream mapping approach for complex production systems. Int. J. Prod. Res. 2006, 44, 3929–3952. [Google Scholar] [CrossRef]
- Eswaramoorthi, M.; Kathiresan, G.R.; Prasad, P.S.S.; Mohanram, P.V. A survey on lean practices in Indian machine tool industries. Int. J. Adv. Manuf. Technol. 2011, 52, 1091–1101. [Google Scholar] [CrossRef]
- Schaeffer, J.A.; Cadavid, J.; Bäckström, T. Spatial design for continuous improvement: The case study of three manufacturing companies. Int. J. Comput. Integr. Manuf. 2010, 23, 791–805. [Google Scholar] [CrossRef]
- Coppini, N.L.; Bekesas, L.C.; Baptista, E.A.; Vieira, M.; Lucato, W.C. Value stream mapping simulation using ProModel® software. In Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management, Changchun, China, 3–5 September 2011; pp. 575–579. [Google Scholar]
- Gurumurthy, A.; Kodali, R. Design of lean manufacturing systems using value stream mapping with simulation. J. Manuf. Technol. Manag. 2011, 22, 444–473. [Google Scholar] [CrossRef]
- Salleh, N.A.M.; Kasolang, S.; Jaffar, A. Simulation of Integrated Total Quality Management (TQM) with Lean Manufacturing (LM) Practices in Forming Process Using Delmia Quest. Procedia Eng. 2012, 41, 1702–1707. [Google Scholar] [CrossRef]
- Jiménez, E.; Tejeda, A.; Pérez, M.; Blanco, J.; Martínez, E. Applicability of lean production with VSM to the Rioja wine sector. Int. J. Prod. Res. 2012, 50, 1890–1904. [Google Scholar] [CrossRef]
- Bertolini, M.R.G. Lean manufacturing in the valve pre-assembly area of a bottling lines production plant: An Italian case study. In Proceedings of the 2013 International Conference on Industrial Engineering and Systems Management (IESM), Rabat, Morocco, 28–30 October 2013; pp. 1–8. [Google Scholar]
- Rifqi, H.; Zamma, A.; Souda, S.B.; Hansali, M. Lean manufacturing implementation through DMAIC Approach: A case study in the automotive industry. Qual. Innov. Prosper. 2021, 25, 54–77. [Google Scholar] [CrossRef]
- Jasti, N.V.K.; Sharma, A. Lean manufacturing implementation using value stream mapping as a tool: A case study from auto components industry. Int. J. Lean Six Sigma 2011, 5, 89–116. [Google Scholar] [CrossRef]
- Kumar, M.K.; Rajan, A.J.; Navas, R.K.B.; Rubinson, S.S. Application of Lean Manufacturing in Mass Production System: A Case Study in Indian Manufacturing Unit. J. Ind. Eng. Manag. 2014, 702–706. [Google Scholar] [CrossRef]
- Choomlucksana, J.; Ongsaranakorn, M.; Suksabai, P. Improving the Productivity of Sheet Metal Stamping Subassembly Area Using the Application of Lean Manufacturing Principles. Procedia Manuf. 2015, 2, 102–107. [Google Scholar] [CrossRef]
- Mwanza, B.G.; Mbohwa, C. Design of a Total Productive Maintenance Model for Effective Implementation: Case Study of a Chemical Manufacturing Company. Procedia Manuf. 2015, 4, 461–470. [Google Scholar] [CrossRef]
- Rohani, J.M.; Zahraee, S.M. Production Line Analysis via Value Stream Mapping: A Lean Manufacturing Process of Color Industry. Procedia Manuf. 2015, 2, 6–10. [Google Scholar] [CrossRef]
- Tyagi, S.; Choudhary, A.; Cai, X.; Yang, K. Value stream mapping to reduce the lead-time of a product development process. Int. J. Prod. Econ. 2015, 160, 202–212. [Google Scholar] [CrossRef]
- Chlebus, E.; Helman, J.; Olejarczyk, M.; Rosienkiewicz, M. A new approach on implementing TPM in a mine—A case study. Arch. Civ. Mech. Eng. 2015, 15, 873–884. [Google Scholar] [CrossRef]
- Ali Naqvi, S.A.; Fahad, M.; Atir, M.; Zubair, M.; Shehzad, M.M. Productivity improvement of a manufacturing facility using systematic layout planning facility using systematic layout planning. Cogent Eng. 2016, 3, 177. [Google Scholar] [CrossRef]
- Prasad, S.; Khanduja, D.; Sharma, S.K. A study on implementation of lean manufacturing in Indian foundry industry by analysing lean waste issues. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 232, 371–378. [Google Scholar] [CrossRef]
- Omogbai, O.; Salonitis, K. Manufacturing System Lean Improvement Design Using Discrete Event Simulation. Procedia CIRP 2016, 57, 195–200. [Google Scholar] [CrossRef]
- Al Askari, O.; Ahmad, M.; Pinedo-Cuenca, R. Development of a methodology to assist manufacturing SMEs in the selection of appropriate lean tools. Int. J. Lean Six Sigma 2016, 7, 62–84. [Google Scholar] [CrossRef]
- Al-Refaie, A.; Chen, T.; Al-Athamneh, R.; Wu, H.C. Fuzzy neural network approach to optimizing process performance by using multiple responses. J. Ambient Intell. Humaniz. Comput. 2016, 7, 801–816. [Google Scholar] [CrossRef]
- Kumar, S.; Dhingra, A.K.; Singh, B. Process improvement through Lean-Kaizen using value stream map: A case study in India. Int. J. Adv. Manuf. Technol. 2018, 96, 2687–2698. [Google Scholar] [CrossRef]
- Roriz, C.; Nunes, E.; Sousa, S. Application of Lean Production Principles and Tools for Quality Improvement of Production Processes in a Carton Company. Procedia Manuf. 2017, 11, 1069–1076. [Google Scholar] [CrossRef]
- Méndez, J.D.M.; Rodriguez, R.S. Total productive maintenance (TPM) as a tool for improving productivity: A case study of application in the bottleneck of an auto-parts machining line. Int. J. Adv. Manuf. Technol. 2017, 92, 1013–1026. [Google Scholar] [CrossRef]
- Diaz, I.C.; Jin, Y.; Ares, E. Cycle time study of wing spar assembly on aircraft factory. Procedia Manuf. 2017, 13, 1019–1025. [Google Scholar] [CrossRef]
- Seth, D.; Seth, N.; Dhariwal, P. Application of value stream mapping for lean and cycle time reduction in complex production environments: A case study. Prod. Plan. Control 2017, 28, 398–419. [Google Scholar] [CrossRef]
- Kurilova-Palisaitiene, J.; Sundin, E.; Poksinska, B. Remanufacturing challenges and possible lean improvements. J. Clean. Prod. 2018, 172, 3225–3236. [Google Scholar] [CrossRef]
- Prasad, M.M.; Dhiyaneswari, J.; Jamaan, J.R.; Mythreyan, S.; Sutharsan, S. A framework for lean manufacturing implementation in Indian textile industry. Mater. Today 2020, 33, 2986–2995. [Google Scholar] [CrossRef]
- Kumar, S.; Dhingra, A.; Singh, B. Lean-Kaizen implementation: A roadmap for identifying continuous improvement opportunities in Indian small and medium sized enterprise. J. Eng. Technol. 2018, 16, 143–160. [Google Scholar] [CrossRef]
- Kumar, M.B.; Parameshwaran, R. Fuzzy integrated QFD, FMEA framework for the selection of lean tools in a manufacturing organisation. Prod. Plan. Control 2018, 29, 403–417. [Google Scholar] [CrossRef]
- Cannas, V.G.; Pero, M.; Pozzi, R.; Rossi, T. Complexity reduction and kaizen events to balance manual assembly lines: An application in the field. Int. J. Prod. Res. 2018, 56, 3914–3931. [Google Scholar] [CrossRef]
- Munteanu, V.; Ştefănigă, A. Lean Manufacturing in SMEs in Romania. Procedia Soc. Behav. Sci. 2018, 238, 492–500. [Google Scholar] [CrossRef]
- Garza-Reyes, J.A.; Kumar, V.; Chaikittisilp, S.; Tan, K.H. The effect of lean methods and tools on the environmental performance of manufacturing organisations. Int. J. Prod. Econ. 2018, 200, 170–180. [Google Scholar] [CrossRef]
- Dadashnejad, A.-A.; Valmohammadi, C. Investigating the effect of value stream mapping on overall equipment effectiveness: A case study. Total Qual. Manag. Bus. Excel. 2019, 30, 466–482. [Google Scholar] [CrossRef]
- Stadnicka, D.; Litwin, P. Value stream mapping and system dynamics integration for manufacturing line modelling and analysis. Int. J. Prod. Econ. 2018, 208, 400–411. [Google Scholar] [CrossRef]
- Choudhary, S.; Nayak, R.; Dora, M.; Mishra, N.; Ghadge, A. An integrated lean and green approach for improving sustainability performance: A case study of a packaging manufacturing SME. Prod. Plan. Control 2019, 30, 353–368. [Google Scholar] [CrossRef]
- Shou, W.; Wang, J.; Wu, P.; Wang, X. Value adding and non-value adding activities in turnaround maintenance process: Classification, validation and benefits. Prod. Plan. Control 2019, 31, 60–77. [Google Scholar] [CrossRef]
- Yadav, G.; Luthra, S.; Huisingh, D.; Mangla, S.K.; Narkhede, B.E.; Liu, Y. Development of a lean manufacturing framework to enhance its adoption within manufacturing companies in developing economies. J. Clean. Prod. 2020, 245, 118726. [Google Scholar] [CrossRef]
- Mahajan, M.; Chistopher, K.B.; Harshan; Shiva Prasad, H.C. Implementation of lean techniques for sustainable workflow process in Indian motor manufacturing unit. Procedia Manuf. 2019, 35, 1196–1204. [Google Scholar] [CrossRef]
- Ur Rehman, A.; Usmani, Y.S.; Umer, U.; Alkahtani, M. Lean Approach to Enhance Manufacturing Productivity: A Case Study of Saudi Arabian Factory. Arab. J. Sci. Eng. 2020, 45, 2263–2280. [Google Scholar] [CrossRef]
- Masuti, P.; Dabade, U. Lean manufacturing implementation using value stream mapping at excavator manufacturing company. Mater. Today 2019, 19, 606–610. [Google Scholar] [CrossRef]
- Balamurugan, R.; Kirubagharan, R.; Ramesh, C. Implementation of lean tools and techniques in a connecting rod manufacturing industry. Mater. Today 2020, 33, 3108–3113. [Google Scholar] [CrossRef]
- Aghdasinia, H.; Hosseini, S.S.; Hamedi, J. Improvement of a cement rotary kiln performance using artificial neural network. J. Ambient Intell. Humaniz. Comput. 2020, 12, 7765–7776. [Google Scholar] [CrossRef]
- Gopi, S.; Suresh, A.; Sathya, A.J. Value stream mapping & Manufacturing process design for elements in an auto-ancillary unit—A case study. Mater. Today 2019, 22, 2839–2848. [Google Scholar]
- Sutharsan, S.; Prasad, M.M.; Vijay, S. Productivity enhancement and waste management through lean philosophy in Indian manufacturing industry. Mater. Today 2020, 33, 2981–2985. [Google Scholar] [CrossRef]
- Amrani, A.; Ducq, Y. Lean practices implementation in aerospace based on sector characteristics: Methodology and case study. Prod. Plan. Control 2020, 31, 1313–1335. [Google Scholar] [CrossRef]
- Sivaraman, P.; Nithyanandhan, T.; Lakshminarasimhan, S.; Manikandan, S.; Saifudheen, M. Productivity enhancement in engine assembly using lean tools and techniques. Mater. Today 2020, 33, 201–207. [Google Scholar] [CrossRef]
- Khan, A.; Javaid, N. TACMA: Total annual cost minimization algorithm for optimal sizing of hybrid energy systems. J. Ambient Intell. Humaniz. Comput. 2020, 11, 5785–5805. [Google Scholar] [CrossRef]
- Jayanth, B.V.; Prathap, P.; Sivaraman, P.; Yogesh, S.; Madhu, S. Implementation of lean manufacturing in electronics industry. Mater. Today 2020, 33, 23–28. [Google Scholar] [CrossRef]
- Hodge, G.L.; Goforth Ross, K.; Joines, J.A.; Thoney, K. Adapting lean manufacturing principles to the textile industry. Prod. Plan. Control 2011, 22, 237–247. [Google Scholar] [CrossRef]
- Rahani, A.; Al-Ashraf, M. Production Flow Analysis through Value Stream Mapping: A Lean Manufacturing Process Case Study. Procedia Eng. 2012, 41, 1727–1734. [Google Scholar] [CrossRef]
- Boateng-Okrah, E.; Fening, F.A. TQM implementation: A case of a mining company in Ghana. Benchmarking Int. J. 2012, 19, 743–759. [Google Scholar] [CrossRef]
- Mandahawi, N.; Al-hadeethi, R.H.F.; Obeidat, S.M. An Application of Customized Lean Six Sigma to Enhance Productivity at a Paper Manufacturing Company. Jordan J. Mech. Ind. Eng. 2012, 6, 103–109. [Google Scholar]
- Rahman, N.A.A.; Sharif, S.M.; Esa, M.M. Lean Manufacturing Case Study with Kanban System Implementation. Procedia Econ. Financ. 2013, 7, 174–180. [Google Scholar] [CrossRef]
- Lingam, D.; Ganesh, S.; Ganesh, K. Cycle Time Reduction for T-Shirt Manufacturing in a Textile Industry using Lean Tools. In Proceedings of the IEEE Sponsored 2nd International Conference on Innovations in Information, Embedded and Communication Systems, Coimbatore, India, 17–18 March 2015; pp. 2–7. [Google Scholar]
- Schneider, U.; Friedli, T.; Basu, P.; Werani, J. Operational Excellence in Practice—The Application of a Takt-Time Analysis in Pharmaceutical Manufacturing. J. Pharm. Innov. 2015, 10, 99–108. [Google Scholar] [CrossRef]
- Marodin, G.A.; Saurin, T.A.; Tortorella, G.L.; Denicol, J. How context factors influence lean production practices in manufacturing cells. Int. J. Adv. Manuf. Technol. 2015, 79, 1389–1399. [Google Scholar] [CrossRef]
- Thomas, J.; Francis, M.; Fisher, R.; Byard, P. Implementing Lean Six Sigma to overcome the production challenges in an aerospace company. Prod. Plan. Control 2016, 27, 591–603. [Google Scholar] [CrossRef]
- Yadav, G.; Seth, D.; Desai, T.N. Application of hybrid framework to facilitate lean six sigma implementation: A manufacturing company case experience. Prod. Plan. Control 2018, 29, 185–201. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Ciarapica, F.E.; Paciarotti, C. Implementing lean information management: The case study of an automotive company. Prod. Plan. Control 2015, 26, 753–768. [Google Scholar] [CrossRef]
- Azyan, Z.; Hanizan, A.; Venkateswarlu, P.; Dirk, P. Success factors and barriers to implementing lean in the printing industry: A case study and theoretical framework. J. Manuf. Technol. Manag. 2017, 28, 458–484. [Google Scholar] [CrossRef]
- Suhardi, B.; Anisa, N.; Laksono, P.W. Minimizing waste using lean manufacturing and ECRS principle in Indonesian furniture industry. Cogent Eng. 2019, 6, 1567019. [Google Scholar] [CrossRef]
- Benkarim, A.; Imbeau, D. Exploring Lean HRM Practices in the Aerospace Industry. Sustainability 2022, 14, 5208. [Google Scholar] [CrossRef]
- Bhaskaran, E. Lean Manufacturing Auto Cluster at Chennai. J. Inst. Eng. Ser. C 2012, 93, 383–390. [Google Scholar] [CrossRef]
- Timans, W.; Antony, J.; Ahaus, K.; Van Solingen, R. Implementation of Lean Six Sigma in small- and medium-sized manufacturing enterprises in The Netherlands. J. Oper. Res. Soc. 2011, 63, 339–353. [Google Scholar] [CrossRef]
- Alhuraish, I.; Robledo, C.; Kobi, A. Assessment of lean manufacturing and six sigma operation with decision making based on the analytic hierarchy process. IFAC-PapersOnLine 2016, 49, 59–64. [Google Scholar] [CrossRef]
- Salonitis, K.; Tsinopoulos, C. Drivers and Barriers of Lean Implementation in the Greek Manufacturing Sector. Procedia CIRP 2016, 57, 189–194. [Google Scholar] [CrossRef]
- Raja Sreedharan, V.; Raju, R.; Rajkanth, R.; Nagaraj, M. An empirical assessment of Lean Six Sigma Awareness in manufacturing industries: Construct development and validation. Total Qual. Manag. Bus. Excell. 2018, 29, 686–703. [Google Scholar] [CrossRef]
- Iranmanesh, M.; Zailani, S.; Hyun, S.S.; Ali, M.H.; Kim, K. Impact of Lean Manufacturing Practices on Firms’ Sustainable Performance: Lean Culture as a Moderator. Sustainability 2019, 11, 1112. [Google Scholar] [CrossRef]
- Gonzalez, M.E.; Quesada, G.; Mora-Monge, C.A.; Barton, M.E. An empirical study of the application of lean tools in U.S. industry. Qual. Manag. J. 2019, 26, 174–190. [Google Scholar] [CrossRef]
- Dotoli, M.; Fanti, M.P.; Iacobellis, G.; Rotunno, G. A lean manufacturing strategy using Value Stream Mapping, the Unified Modeling Language, and discrete event simulation. In Proceedings of the IEEE International Conference on Automation Science and Engineering, Seoul, Korea, 20–24 August 2012; pp. 668–673. [Google Scholar]
- Unver, H.O. An ISA-95-based manufacturing intelligence system in support of lean initiatives. Int. J. Adv. Manuf. Technol. 2013, 65, 853–866. [Google Scholar] [CrossRef]
- Barbosa, G.F.; Carvalho, J.; Filho, E.V.G. A proper framework for design of aircraft production system based on lean manufacturing principles focusing to automated processes. Int. J. Adv. Manuf. Technol. 2014, 72, 1257–1273. [Google Scholar] [CrossRef]
- Sana, S.S.; Ospina-Mateus, H.; Arrieta, F.G.; Chedid, J.A. Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry. J. Ambient Intell. Humaniz. Comput. 2019, 10, 2063–2090. [Google Scholar] [CrossRef]
- Belekoukias, I.; Garza-Reyes, J.A.; Kumar, V. The impact of lean methods and tools on the operational performance of manufacturing organisations. Int. J. Prod. Res. 2014, 52, 5346–5366. [Google Scholar] [CrossRef]
- Gijo, E.V.; Palod, R.; Antony, J. Lean Six Sigma approach in an Indian auto ancillary conglomerate: A case study. Prod. Plan. Control 2018, 29, 761–772. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Wang, X.; Cui, F.; Cheng, H. A simulation-based approach for plant layout design and production planning. J. Ambient Intell. Humaniz. Comput. 2019, 10, 1217–1230. [Google Scholar] [CrossRef]
- Widiasih, W.; Karningsih, P.D.; Ciptomulyono, U. Development of integrated model for managing risk in lean manufacturing implementation: A case study in an Indonesian manufacturing company. Procedia Manuf. 2015, 4, 282–290. [Google Scholar] [CrossRef]
- Ramani, P.V.; Lingan, L.K. Developing a lean model to reduce the design process cost of gas insulated switchgear foundation using value stream mapping—A case study. Int. J. Constr. Manag. 2019, 22, 669–6779. [Google Scholar] [CrossRef]
- Gleeson, F.; Coughlan, P.; Goodman, L.; Newell, A.; Hargaden, V. Improving manufacturing productivity by combining cognitive engineering and lean-six sigma methods. Procedia CIRP 2019, 81, 641–646. [Google Scholar] [CrossRef]
- Qu, W.; Cao, W.; Su, Y.-C. Design and implementation of smart manufacturing execution system in solar industry. J. Ambient Intell. Humaniz. Comput. 2020, 1–17. [Google Scholar] [CrossRef]
- Stump, B.; Badurdeen, F. Integrating lean and other strategies for mass customization manufacturing: A case study. J. Intell. Manuf. 2012, 23, 109–124. [Google Scholar] [CrossRef]
- Ismail, A.; Ghani, J.A.; Ab Rahman, M.N.; Md Deros, B.; Che Haron, C.H. Application of Lean Six Sigma Tools for Cycle Time Reduction in Manufacturing: Case Study in Biopharmaceutical Industry. Arab. J. Sci. Eng. 2014, 39, 1449–1463. [Google Scholar] [CrossRef]
- Indrawati, S.; Ridwansyah, M. Manufacturing Continuous Improvement Using Lean Six Sigma: An Iron Ores Industry Case Application. Procedia Manuf. 2015, 4, 528–534. [Google Scholar] [CrossRef]
- Hill, J.; Thomas, A.J.; Mason-Jones, R.K.; El-Kateb, S. The implementation of a Lean Six Sigma framework to enhance operational performance in an MRO facility. Prod. Manuf. Res. 2018, 6, 26–48. [Google Scholar] [CrossRef]
- Mundra, N.; Mishra, R.P. Impediments to Lean Six Sigma and Agile Implementation: An interpretive structural modeling. Mater. Today 2020, 28, 2156–2160. [Google Scholar] [CrossRef]
- Shinde, D.B.; Shende, P.N. Improvement of Plant Layout by using 5S technique—An industrial case study. Int. J. Mod. Eng. Res. 2014, 4, 141–146. [Google Scholar]
- Sutari, O.; Rao, S.U. Development of plant layout using systematic layout planning (SLP) to maximize production—A case study. Int. J. Mech. Prod. Eng. 2014, 2, 63–66. [Google Scholar]
- Garbie, I.H. Enhancing the performance of industrial firms through implementation of lean techniques. In IIE Annual Conference Proceedings; Institute of Industrial and Systems Engineers (IISE): Peachtree Corners, GA, USA, 2010; p. 1. [Google Scholar]
- Bevilacqua, M.; Ciarapica, F.E.; De Sanctis, I.; Mazzuto, G.; Paciarotti, C. A Changeover Time Reduction through an integration of lean practices: A case study from pharmaceutical sector. Assem. Autom. 2015, 35, 22–34. [Google Scholar] [CrossRef]
- De-La-Cruz-Arcela, F.K.; Martinez-Castillo, J.S.; Altamirano-Flores, E.; Alvarez-Merino, J.C. Application of Lean Manufacturing Tools to Reduce Downtime in a Small Metalworking Facility. In Proceedings of the 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Macao, China, 15–19 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 551–555. [Google Scholar]
- Karam, A.-A.; Liviu, M.; Cristina, V.; Radu, H. The contribution of lean manufacturing tools to changeover time decrease in the pharmaceutical industry. A SMED project. Procedia Manuf. 2018, 22, 886–892. [Google Scholar] [CrossRef]
- Kim Hua, T.; Denton, P.; Rae, R.; Chung, L. Managing lean capabilities through flexible workforce development: A process and framework. Prod. Plan. Control 2013, 24, 1066–1076. [Google Scholar]
- Rymaszewska, A. Lean implementation and a process approach—An exploratory study. Benchmarking Int. J. 2017, 24, 1122–1137. [Google Scholar] [CrossRef]
- Gaspar, F.; Leal, F. A methodology for applying the shop floor management method for sustaining lean manufacturing tools and philosophies: A study of an automotive company in Brazil. Int. J. Lean Six Sigma 2020, 11, 1219–1238. [Google Scholar] [CrossRef]
- Östlin, J.; Ekholm, H. Lean production principles in remanufacturing—A case study at a toner cartridge remanufacturer. In Proceedings of the 2007 IEEE International Symposium on Electronics and the Environment, Orlando, FL, USA, 7–10 May 2007; pp. 216–221. [Google Scholar]
- Sahoo, A.K.; Singh, N.K.; Shankar, R.; Tiwari, M.K. Lean philosophy: Implementation in a forging company. Int. J. Adv. Manuf. Technol. 2008, 36, 451–462. [Google Scholar] [CrossRef]
- Das, B.; Venkatadri, U.; Pandey, P. Applying lean manufacturing system to improving productivity of airconditioning coil manufacturing. Int. J. Adv. Manuf. Technol. 2014, 71, 307–323. [Google Scholar] [CrossRef]
- Esa, M.M.; Rahman, N.A.A.; Jamaludin, M. Reducing High Setup Time in Assembly Line: A Case Study of Automotive Manufacturing Company in Malaysia. Procedia Soc. Behav. Sci. 2015, 211, 215–220. [Google Scholar] [CrossRef]
- Ramadan, M.; Salah, B.; Othman, M.; Ayubali, A.A. Industry 4.0-Based Real-Time Scheduling and Dispatching in Lean Manufacturing Systems. Sustainability 2020, 12, 2272. [Google Scholar] [CrossRef]
- Vinodh, S.; Kumar, S.V.; Vimal, K. Implementing lean sigma in an Indian rotary switches manufacturing organisation. Prod. Plan. Control 2014, 25, 288–302. [Google Scholar] [CrossRef]
- Gati-Wechsler, A.M.; Torres, A.S. The influence of lean concepts on the product innovation process of a Brazilian shoe manufacturer. In Proceedings of the PICMET’08—2008 Portland International Conference on Management of Engineering & Technology, Cape Town, South Africa, 27–31 July 2008; pp. 1137–1144. [Google Scholar]
- Garre, P.; Nikhil Bharadwaj, V.V.S.; Shiva Shashank, P.; Harish, M.; Sai Dheeraj, M. Applying lean in aerospace manufacturing. Mater. Today 2017, 4, 8439–8446. [Google Scholar] [CrossRef]
- Chen, J.C.; Cheng, C.-H.; Huang, P.B.; Wang, K.-J.; Huang, C.-J.; Ting, T.-C. Warehouse management with lean and RFID application: A case study. Int. J. Adv. Manuf. Technol. 2013, 69, 531–542. [Google Scholar] [CrossRef]
- Chien, C.-F.; Chen, C.-C. Data-Driven Framework for Tool Health Monitoring and Maintenance Strategy for Smart Manufacturing. IEEE Trans. Semicond. Manuf. 2020, 33, 644–652. [Google Scholar] [CrossRef]
- Gibbons, P.M. Improving overall equipment efficiency using a Lean Six Sigma approach. Int. J. Six Sigma Compet. Advant. 2006, 2, 207–232. [Google Scholar] [CrossRef]
- Sabaghi, M.; Rostamzadeh, R.; Mascle, C. Kanban and value stream mapping analysis in lean manufacturing philosophy via simulation: A plastic fabrication (case study). Int. J. Serv. Oper. Manag. 2015, 20, 118–140. [Google Scholar] [CrossRef]
- Fore, S.; Zuze, L. Improvement of overall Equipment Effectiveness through TPM. World Acad. Sci. Eng. Technol. 2010, 61, 402–410. [Google Scholar]
- Nallusamy, S.; Kumar, V.; Yadav, V.; Prasad, U.K.; Suman, S.K. Implementation of total productive maintenance to enhance the overall equipment effectiveness in medium scale industries. Int. J. Mech. Prod. Eng. Res. Dev. 2018, 8, 1027–1038. [Google Scholar] [CrossRef]
- Edwin, C.; Daud, W.M.N.S. Improving Production System Performance Using Overall Equipment Effectiveness. Int. J. Ind. Manag. 2021, 9, 74–90. [Google Scholar] [CrossRef]
- Afefy, I.H. Implementation of Total Productive Maintenance and Overall Equipment Effectiveness Evaluation. Int. J. Mech. Mechatron. Eng. 2013, 13, 69–75. [Google Scholar]
- Nurprihatin, F.; Angely, M.; Tannady, H. Total productive maintenance policy to increase effectiveness and maintenance performance using overall equipment effectiveness. J. Appl. Res. Ind. Eng. 2019, 6, 184–199. [Google Scholar] [CrossRef]
- Ragatz, G.L.; Mabert, V.A. An Evaluation of Order Release. Decis. Sci. 1988, 19, 167–189. [Google Scholar] [CrossRef]
- Brito, M.F.; Ramos, A.L.; Carneiro, P.; Gonçalves, M.A. A continuous improvement assessment tool, considering lean, safety and ergonomics. Int. J. Lean Six Sigma 2020, 11, 893–916. [Google Scholar] [CrossRef]
- Tortorella, G.; Vergara, L.G.L.; Ferreira, E.P. Lean manufacturing implementation: An assessment method with regards to socio-technical and ergonomics practices adoption. Int. J. Adv. Manuf. Technol. 2017, 89, 3407–3418. [Google Scholar] [CrossRef]
- Botti, L.; Mora, C.; Regattieri, A. Integrating ergonomics and lean manufacturing principles in a hybrid assembly line. Comput. Ind. Eng. 2017, 111, 481–491. [Google Scholar] [CrossRef]
- Maia, L.C.; Alves, A.C.; Leão, C.P. Design of a Lean Methodology for an Ergonomic and Sustainable. In Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition IMECE 2012, Houston, TX, USA, 9–15 November 2012; pp. 1–10. [Google Scholar]
- Kurdve, M.; Bellgran, M. Green lean operationalisation of the circular economy concept on production shop floor level. J. Clean. Prod. 2021, 278, 123223. [Google Scholar] [CrossRef]
- Ben Ruben, R.; Vinodh, S.; Asokan, P. Implementation of Lean Six Sigma framework with environmental considerations in an Indian automotive component manufacturing firm: A case study. Prod. Plan. Control 2017, 28, 1193–1211. [Google Scholar] [CrossRef]
- Prashar, A. Adopting Six Sigma DMAIC for environmental considerations in process industry environment. TQM J. 2020, 32, 1241–1261. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, S. Value stream mapping as a versatile tool for lean implementation: An Indian case study of a manufacturing firm. Meas. Bus. Excel. 2009, 13, 58–68. [Google Scholar] [CrossRef]
- Belhadi, A.; Kamble, S.S.; Zkik, K.; Cherrafi, A.; Touriki, F.E. The integrated effect of Big Data Analytics, Lean Six Sigma and Green Manufacturing on the environmental performance of manufacturing companies: The case of North Africa. J. Clean. Prod. 2020, 252, 119903. [Google Scholar] [CrossRef]
- Zahraee, S.M.; Hashemi, A.; Abdi, A.A.; Shahpanah, A.; Rohani, J.M. Lean manufacturing implementation through value stream mapping: A case study. J. Teknol. 2014, 68. [Google Scholar] [CrossRef]
- Jeyaraj, K.L.; Muralidharan, C.; Mahalingam, R.; Deshmukh, S.G. Applying Value Stream Mapping Technique for Production Improvement in a Manufacturing Company: A Case Study. J. Inst. Eng. Ser. C 2013, 94, 43–52. [Google Scholar] [CrossRef]
- Singh, K.; Ahuja, I.S. An evaluation of transfusion of TQM-TPM implementation initiative in an Indian manufacturing industry. J. Qual. Maint. Eng. 2015, 21, 134–153. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Bhadauria, A.; Sharma, S.; Li, C.; Pimenov, D.Y.; Giasin, K.; Singh, S.; Gautam, G.D. An Agile System to Enhance Productivity through a Modified Value Stream Mapping Approach in Industry 4.0: A Novel Approach. Sustainability 2021, 13, 11997. [Google Scholar] [CrossRef]
- Ahuja, I.; Khamba, J. An evaluation of TPM initiatives in Indian industry for enhanced manufacturing performance. Int. J. Qual. Reliab. Manag. 2008, 25, 147–172. [Google Scholar] [CrossRef]
- Subramaniam, S.; Husin, S.H.; Singh, R.S.S.; Hamidon, A. Production monitoring system for monitoring the industrial shop floor performance. Int. J. Syst. Appl. Eng. Dev. 2009, 3, 28–35. [Google Scholar]
- Sharma, V.; Dixit, A.R.; Qadri, M.A. Impact of lean practices on performance measures in context to Indian machine tool industry. J. Manuf. Technol. Manag. 2015, 26, 1218–1242. [Google Scholar] [CrossRef]
- Lu, J.-C.; Yang, T. Implementing lean standard work to solve a low work-in-process buffer problem in a highly automated manufacturing environment. Int. J. Prod. Res. 2015, 53, 2285–2305. [Google Scholar] [CrossRef]
- Andrade, P.F.; Pereira, V.G.; Del Conte, E.G. Value stream mapping and lean simulation: A case study in automotive company. Int. J. Adv. Manuf. Technol. 2016, 85, 547–555. [Google Scholar] [CrossRef]
- Saqlain, M.; Piao, M.; Shim, Y.; Lee, J.Y. Framework of an IoT-based Industrial Data Management for Smart Manufacturing. J. Sens. Actuator Netw. 2019, 8, 25. [Google Scholar] [CrossRef]
- Priya, S.K.; Jayakumar, V.; Kumar, S.S. Defect analysis and lean six sigma implementation experience in an automotive assembly line. Mater. Today 2020, 22, 948–958. [Google Scholar]
- Longhan, Z.; Hong, L.; Shiwei, X. Production process improvement based on Value Stream Mapping for CY company. In Proceedings of the 6th International Conference on Information Management, Innovation Management and Industrial Engineering, Xi’an, China, 23–24 November 2013; Volume 3, pp. 226–229. [Google Scholar]
- Asif, A.A.; Singh, R. Further Cost Reduction of Battery Manufacturing. Batteries 2017, 3, 17. [Google Scholar] [CrossRef]
- Liao, W.; Wang, T. A Novel Collaborative Optimization Model for Job Shop Production–Delivery Considering Time Window and Carbon Emission. Sustainability 2019, 11, 2781. [Google Scholar] [CrossRef]
- Abubakr, M.; Abbas, A.T.; Tomaz, I.; Soliman, M.S.; Luqman, M.; Hegab, H. Sustainable and Smart Manufacturing: An Integrated Approach. Sustainability 2020, 12, 2280. [Google Scholar] [CrossRef]
- Cherrafi, A.; ElFezazi, S.; Govindan, K.; Garza-Reyes, J.A.; Benhida, K.; Mokhlis, A. A framework for the integration of Green and Lean Six Sigma for superior sustainability performance. Int. J. Prod. Res. 2017, 55, 4481–4515. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.K.; Saraswat, S.; Sharma, S.; Li, C.; Rajkumar, S. Development of a Data-Driven Decision-Making System Using Lean and Smart Manufacturing Concept in Industry 4.0: A Case Study. Math. Probl. Eng. 2022, 2022, 3012215. [Google Scholar] [CrossRef]
- Uriarte, A.G.; Ng, A.H.C.; Urenda Moris, M. Supporting the lean journey with simulation and optimization in the context of Industry 4.0. Procedia Manuf. 2018, 25, 586–593. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.K.; Sharma, S.; Li, C.; Singh, S.; Hussan, W.U.; Salah, B.; Saleem, W.; Mohamed, A. A Sustainable Productive Method for Enhancing Operational Excellence in Shop Floor Management for Industry 4.0 Using Hybrid Integration of Lean and Smart Manufacturing: An Ingenious Case Study. Sustainability 2022, 14, 7452. [Google Scholar] [CrossRef]
- Alzubi, E.; Atieh, A.M.; Abu Shgair, K.; Damiani, J.; Sunna, S.; Madi, A. Hybrid Integrations of Value Stream Mapping, Theory of Constraints and Simulation: Application to Wooden Furniture Industry. Processes 2019, 7, 816. [Google Scholar] [CrossRef]
- Tripathi, V.; Saraswat, S. Lean management implementation in mining equipment manufacturing shop floor. In Proceedings of the National Conference on Mining Equipment: New Technologies, Challenges & Applications, Dhanbad, India, 9–10 February 2018; pp. 7–10. [Google Scholar]
- Huang, C.-Y.; Lee, D.; Chen, S.-C.; Tang, W. A Lean Manufacturing Progress Model and Implementation for SMEs in the Metal Products Industry. Processes 2022, 10, 835. [Google Scholar] [CrossRef]
Source of Research Work | Publisher | WoS/Scopus | Number of Research Work |
---|---|---|---|
International Journal of Advanced Manufacturing & Technology | Springer | WoS | 15 |
Journal of Pharmaceutical Innovation | Springer | WoS | 2 |
Arabian Journal of Science and Engineering | Springer | WoS | 2 |
Journal of Ambient Intelligence and Humanized Computing | Springer | WoS | 5 |
Journal of The Institution of Engineers (India): Series C | Springer | Scopus | 2 |
International Journal of Production Research | Taylor & Francis | WoS | 9 |
Production Planning and Control | Taylor & Francis | WoS | 16 |
International Journal of Logistics Research and Applications | Taylor & Francis | WoS | 1 |
International Journal of Computer Integrated Manufacturing | Taylor & Francis | WoS | 1 |
Journal of the Operational Research Society | Taylor & Francis | WoS | 2 |
Cogent Engineering | Taylor & Francis | Scopus | 2 |
Quality Management Journal | Taylor & Francis | Scopus | 1 |
International Journal of Construction Management | Taylor & Francis | Scopus | 1 |
Production and Manufacturing Research | Taylor & Francis | Scopus | 1 |
Total quality Management & Business Excellence | Taylor & Francis | WoS | 2 |
Sustainability | MDPI | WoS | 8 |
Processes | MDPI | WoS | 4 |
Journal of Sensors and Actuator Networks | MDPI | WoS | 1 |
Applied Science | MDPI | WoS | 2 |
Sensors | MDPI | WoS | 1 |
Batteries | MDPI | Scopus | 1 |
Resources | MDPI | Scopus | 1 |
Mathematics | MDPI | WoS | 1 |
Processes | MDPI | WoS | 1 |
Journal of Open Innovation: Technology, Market, and Complexity | MDPI | Scopus | 1 |
International Journal of Production Economics | Elsevier | WoS | 5 |
Computer and Industrial Engineering | Elsevier | WoS | 1 |
Journal of Cleaner Production | Elsevier | WoS | 5 |
Sustainable Production and Consumption | Elsevier | WoS | 1 |
Omega | Elsevier | WoS | 1 |
Procedia CIRP | Elsevier | Scopus | 3 |
Material Today: Proceeding | Elsevier | Scopus | 2 |
Procedia Social Behavioral Science | Elsevier | Scopus | 2 |
Procedia Engineering | Elsevier | Scopus | 3 |
Procedia Manufacturing | Elsevier | Scopus | 7 |
Procedia Economics and Finance | Elsevier | Scopus | 1 |
Journal of Manufacturing Technology & Management | Emerald insight | WoS | 2 |
International Journal of Lean Six Sigma | Emerald insight | WoS | 5 |
Benchmarking: An International Journal | Emerald insight | WoS | 1 |
International Journal of Productivity and Performance Management | Emerald insight | Scopus | 3 |
Journal of Quality and Maintenance Engineering | Emerald insight | Scopus | 1 |
International journal of productivity and performance management | Emerald insight | Scopus | 2 |
Industrial Management and Data Systems | Emerald insight | WoS | 1 |
The TQM Magazine | Emerald insight | Scopus | 1 |
Measuring Business Excellence | Emerald insight | Scopus | 2 |
The TQM Jounal | Emerald insight | Scopus | 1 |
International Journal of Quality & Reliability Management | Emerald insight | WoS | 1 |
Mathematical Problem in Engineering | Hindawi | WoS | 2 |
Decision Sciences | Wiley | WoS | 1 |
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science | SAGE | WoS | 1 |
International Journal of Services and Operations Management | Inderscience | Scopus | 1 |
International of Six Sigma and Competitive Advantage | Inderscience | Scopus | 1 |
Jordan Journal of Mechanical and Industrial Engineering | Hashemite University | WoS | 1 |
Journal of Applied research and Applied Engineering | AIHE, Iran | Scopus | 1 |
International Journal of Mechanical and Mechatronics Engineering | IJENS | Scopus | 1 |
Proceeding | ASME | WoS | 1 |
International conference | IEEE | Scopus | 10 |
International conference | ACM Digital library | International conference | 1 |
International Conference | Springer | Scopus | 4 |
International Journal of Industrial Engineering and Management | University of Novi Sad | Scopus | 1 |
World Academy of Science, Engineering and Technology | WASET | Scopus | 1 |
International Journal of Mechanical and Production Engineering Research and Development | TJPRC | Scopus | 1 |
Other | - | - | 29 |
Total—191 |
Strategy | Author |
---|---|
S1 | Detty et al. [44]; Mcdonald et al. [45]; Seth et al. [46]; Singh et al. [47]; Bragila et al. [48] Eswarmoorthi et al. [49]; Schaeffer et al. [50]; Coppini et al. [51]; Gurumurthy et al. [52]; Salleh et al. [53]; Jiménez et al. [54]; Bertolini et al. [55]; Rifqi et al. [56]; Jasti et al. [57]; Kumar et al. [58]; Choomlucksana et al. [59]; Mwanza et al. [60]; Rohani et al. [61]; Tyagi et al. [62]; Chlebus et al. [63]; Ali Naqvi et al. [64]; Prasad et al. [65]; Omogbai et al. [66]; Al Askari et al. [67]; Al-Refaie et al. [68]; Kumar et al. [69]; Roriz et al. [70]; Méndez et al. [71]; Diaz et al. [72]; Seth et al. [73]; Kurilova-Palisaitiene et al. [74]; Prasad et al. [75]; Kumar et al. [76]; Kumar et al. [77]; Cannas et al. [78]; Munteanu et al. [79]; Garza-Reyes et al. [80]; Dadashnejad et al. [81]; Stadnicka et al. [82]; Choudhary et al. [83]; Shou et al. [84]; Yadav et al. [85]; Mahajan et al. [86]; Ur Rehman et al. [87]; Masuti et al. [88]; Balamurugan et al. [89]; Aghdasinia et al. [90]; Gopi et al. [91]; Sutharsan et al. [92]; Amrani et al. [93]; Sivaraman et al. [94]; Khan et al. [95]; Jayanth et al. [96] |
S2 | Hodge et al. [97]; Rahani et al. [98]; Boateng-Okrah et al. [99]; Mandahawi et al. [100]; Bertolini et al. [55]; Rahman et al. [101]; Jasti et al. [57]; Choomlucksana et al. [59]; Mwanza et al. [60]; Lingam et al. [102]; Schneider et al. [103]; Marodin et al. [104]; Tyagi et al. [62]; Thomas et al. [105]; Seth et al. [73]; Kurilova-Palisaitiene et al. [74]; Yadav et al. [106]; Bevilacqua et al. [107]; Dadashnejad et al. [81]; Azyan et al. [108]; Suhardi et al. [109]; Benkarim et al. [110]; Shou et al. [84] |
S3 | Bhaskaran et al. [111]; Jiménez et al. [54]; Timans et al. [112]; Alhuraish et al. [113]; Salonitis et al. [114]; Prasad et al. [65]; Al Askari et al. [67]; Raja Sreedharan et al. [115]; Iranmanesh et al. [116]; Gonzalez et al. [117] |
S4 | Dotoli et al. [118]; Unver et al. [119]; Barbosa et al. [120]; Sana et al. [121]; Tyagi et al. [62]; Thomas et al. [105]; Al-Refaie et al. [68]; Yadav et al. [106]; Kumar et al. [76]; Belekoukias et al. [122]; Gijo et al. [123]; Zhang et al. [124]; Widiasih et al. [125]; Choudhary et al. [83]; Shou et al. [84]; Ramani et al. [126]; Yadav et al. [85]; Gleeson et al. [127]; Qu et al. [128]; Amrani et al. [93]; Khan et al. [95]; Shou et al. [84] |
S5 | Stump et al. [129]; Mandahawi et al. [100]; Timans et al. [112]; Ismail et al. [130]; Indrawati et al. [131]; Thomas et al. [105]; Al-Refaie et al. [68]; Raja Sreedharan et al. [115]; Yadav et al. [106]; Hill et al. [132]; Gijo et al. [123]; Widiasih et al. [125]; Choudhary et al. [83]; Gleeson et al. [127]; Suhardi et al. [109]; Mundra et al. [133] |
Key Factors | Problems | Author |
---|---|---|
Operational excellence | P1, P3, P5 | Östlin et al. [143]; Sahoo et al. [144]; Das et al. [145] Esa et al. [146]; Amrani et al. [93]; Ramdan et al. [147]; Tyagi et al. [62]; Seth et al. [73]; Schneider et al. [103]; Henríquez-Alvarado [43]; |
P1, P3, P5 | Bevilacqua et al. [107]; Stadnicka et al. [82]; Rahman et al. [101]; Vinodh et al. [148]; Sahoo. et al. [144]; Gati-Wechsler et al. [149]; Lingam et al. [102]; Hill et al. [132]; Garre et al. [150] | |
P1, P3, P5, P6 | Garee et al. [150]; Suhardi et al. [109]; Chen et al. [151]; Tripathi et al. [3] | |
P3 | Mwanza et al. [60]; Prasad et al. [65]; Chien et al. [152]; Vinodh et al. [148]; Gibbons [153]; Sabaghi [154] | |
P3, P5 | Fore et al. [155]; Nallusamy et al. [156]; Edwin et al. [157]; Afefy [158]; Nurprihatin et al. [159]; Méndez et al. [71] | |
Manpower efficiency | P1, P2, P5 | Ragatz et al. [160]; Das et al. [145]; Tripathi et al. [13] |
P4 | Brito et al. [161]; Tortorella et al. [162]; Botti et al. [163]; Maia et al. [164]; Tripathi et al. [2]; Sana et al. [121] | |
P1, P6 | Kurdve et al. [165]; Ben Ruben et al. [166]; Prashar et al. [167]; Iranmanesh et al. [116] | |
Operations management | P1, P2, P4, P5, P6 | Sahoo et al. [143]; Singh et al. [168]; Chen et al. [151]; Kumar et al. [77]; Belhadi et al. [169]; Ismail et al. [130]; Balamurugan et al. [89]; Jasti et al. [57]; Lingam et al. [102]; Zahraee et al. [170] |
P5, P6 | Esa et al. [146]; Jeyraj et al. [171]; Singh et al. [172]; Gati-Wechsler et al. [149]; Tripathi et al. [9] | |
P1, P2 | Rohani et al. [61]; Tripathi et al. [173] | |
P1, P5, P6 | Jayanth et al. [96]; Ahuja et al. [174]; Subramaniam et al. [175]; Sharma et al. [176] | |
Financial profitability | P1, P2, P3, P6 | Jayanth et al. [96]; Barbosa et al. [120]; Kumar et al. [77]; Lu et al. [177]; Andrade et al. [178]; Saqlain et al. [179]; Chien et al. [152] |
P1, P5, P6 | Priya et al. [180]; Iranmanesh et al. [116]; Diaz et al. [72]; Dadashnejad et al. [81]; Tyagi et al. [62] | |
P1, P2, P3, P4, P5 | Rahman et al. [101]; Longhan et al. [181]; Bertolini et al. [55]; Choomlucksana et al. [59]; Thomas et al. [105]; Asif et al. [182]; Zahraee et al. [170]; Ramani et al. [126]; Liao et al. [183]; Abubakr et al. [184]; Cherrafi et al. [185] |
Problem Type | Production Parameter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Product Quality | Production | Production Efficiency | Delivery Time | Worker Utilization | Productivity | Production Cost | Non-Value-Added Time | Break Time | Production Time | |
P1 | x | x | x | x | x | x | x | x | ||
P2 | x | x | x | x | ||||||
P3 | x | x | x | x | x | x | x | x | x | |
P4 | x | x | x | x | x | |||||
P5 | x | x | x | x | x | x | x | x | x | |
P6 | x | x | x | x | x | x | x | x |
Challenges | Strategies | ||||
---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | |
P1 | x | x | x | ||
P2 | x | x | x | ||
P3 | x | x | x | x | x |
P4 | x | x | x | x | |
P5 | x | x | x | x | x |
P6 | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.K.; Sharma, S.; Li, C.; Singh, S.; Saleem, W.; Salah, B.; Mohamed, A. Recent Progression Developments on Process Optimization Approach for Inherent Issues in Production Shop Floor Management for Industry 4.0. Processes 2022, 10, 1587. https://doi.org/10.3390/pr10081587
Tripathi V, Chattopadhyaya S, Mukhopadhyay AK, Sharma S, Li C, Singh S, Saleem W, Salah B, Mohamed A. Recent Progression Developments on Process Optimization Approach for Inherent Issues in Production Shop Floor Management for Industry 4.0. Processes. 2022; 10(8):1587. https://doi.org/10.3390/pr10081587
Chicago/Turabian StyleTripathi, Varun, Somnath Chattopadhyaya, Alok Kumar Mukhopadhyay, Shubham Sharma, Changhe Li, Sunpreet Singh, Waqas Saleem, Bashir Salah, and Abdullah Mohamed. 2022. "Recent Progression Developments on Process Optimization Approach for Inherent Issues in Production Shop Floor Management for Industry 4.0" Processes 10, no. 8: 1587. https://doi.org/10.3390/pr10081587
APA StyleTripathi, V., Chattopadhyaya, S., Mukhopadhyay, A. K., Sharma, S., Li, C., Singh, S., Saleem, W., Salah, B., & Mohamed, A. (2022). Recent Progression Developments on Process Optimization Approach for Inherent Issues in Production Shop Floor Management for Industry 4.0. Processes, 10(8), 1587. https://doi.org/10.3390/pr10081587