Enhancement Effects of Water Magnetization and/or Disinfection by Sodium Hypochlorite on Secondary Slaughterhouse Wastewater Effluent Quality and Disinfection By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.1.1. Wastewater Characterization
2.1.2. Magnetic Field
2.1.3. Sodium Hypochlorite
2.2. Methods
Study Design for SHWW Disinfection
2.3. Analytical Methods
2.4. Statistical Analyses
3. Result
3.1. Effect of MF and/or NaClO Disinfectant on Organic Degradation and Solids Removal of Secondary Effluent of Slaughterhouse Wastewater
3.1.1. Effect of NaClO Only as a Disinfectant
3.1.2. Effect of MF
3.1.3. Effect of Pre-Treatment with MF Followed by NaClO Addition
3.2. Effect of MF and/or NaClO Disinfectant on Nutrients Load (TP, TN) of Secondary Effluents of Slaughterhouse Wastewater
3.2.1. Effect of NaClO Only as a Disinfectant
3.2.2. Effect of MF
3.2.3. Effect of Pre-Treatment with MF Followed by NaClO Addition
3.3. Effect of MF and/or NaClO Disinfectant on Microbial Load of Secondary Effluents of Slaughterhouse Wastewater
3.3.1. Effect of NaClO Only as a Disinfectant
3.3.2. Effect of MF
3.3.3. Effect of Pre-Treatment with MF Followed by NaClO Addition
3.4. Effect of MF and/or NaClO Disinfectant on the Formation of the Key Disinfection by-Products THMs
3.4.1. Effect of NaClO Only as a Disinfectant
3.4.2. Effect of Pre-Treatment with MF Followed by NaClO Addition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
BOD | Biological oxygen demand |
COD | Chemical oxygen demand |
DBPs | Disinfection by-products |
EC | Electrical conductivity |
FC | Fecal coliform |
MF | Magnetic field |
MPPs | Meat Processing Plants |
NaClO | Sodium hypochlorite |
SHWW | Slaughterhouse wastewater |
TCC | Total coliform |
TDS | Total dissolved solids |
THMs | Trihalomethane |
TN | Total nitrogen |
TP | Total phosphorus |
TSS | Total suspended solids |
References
- Abdelaal, A. Using a natural coagulant for treating wastewater. In Proceedings of the Eighth International Water Technology Conference, IWTC8, Alexandria, Egypt, 15 March 2004; pp. 781–791. [Google Scholar]
- Sroka, E.; Kamiński, W.; Bohdziewicz, J. Biological treatment of meat industry wastewater. Desalination 2004, 162, 85–91. [Google Scholar] [CrossRef]
- Hernández-Ramírez, D.A.; Herrera-López, E.J.; Rivera, A.L.; Real-Olvera, J.D. Artificial neural network modeling of slaughterhouse wastewater removal of COD and TSS by electrocoagulation. In Advance Trends in Soft Computing; Springer: Berlin/Heidelberg, Germany, 2014; pp. 273–280. [Google Scholar]
- Sahu, O.; Mazumdar, B.; Chaudhari, P. Treatment of wastewater by electrocoagulation: A review. Environ. Sci. Pollut. Res. 2014, 21, 2397–2413. [Google Scholar] [CrossRef]
- Zarei, A.; Biglari, H.; Mobini, M.; Dargahi, A.; Ebrahimzadeh, G.; Narooie, M.R.; Mehrizi, E.A.; Yari, A.R.; Mohammadi, M.J.; Baneshi, M.M. Disinfecting poultry slaughterhouse wastewater using copper electrodes in the electrocoagulation process. Pol. J. Environ. Stud. 2018, 27, 1907–1912. [Google Scholar] [CrossRef]
- Stošić, M.; Čučak, D.; Kovačević, S.; Perović, M.; Radonić, J.; Sekulić, M.T.; Miloradov, M.V.; Radnović, D. Meat industry wastewater: Microbiological quality and antimicrobial susceptibility of E. coli and Salmonella sp. isolates, case study in Vojvodina, Serbia. Water Sci. Technol. 2016, 73, 2509–2517. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, J.; Li, Z.; Song, J.; Li, X.; Yang, X.; Wang, D. Enhancement effects of ultrasound on secondary wastewater effluent disinfection by sodium hypochlorite and disinfection by-products analysis. Ultrason. Sonochemistry 2016, 29, 60–66. [Google Scholar] [CrossRef]
- Sorlini, S.; Collivignarelli, M.C.; Canato, M. Effectiveness in chlorite removal by two activated carbons under different working conditions: A laboratory study. J. Water Supply Res. Technol. 2015, 64, 450–461. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Wu, Q.-Y.; Hu, H.-Y.; Tian, J. Effect of ammonia on the formation of THMs and HAAs in secondary effluent chlorination. Chemosphere 2009, 76, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, X. Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: Halophenolic DBPs are generally more toxic than haloaliphatic ones. Water Res. 2014, 65, 64–72. [Google Scholar] [CrossRef]
- Doederer, K.; Gernjak, W.; Weinberg, H.S.; Farré, M.J. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water. Water Res. 2014, 48, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Fu, W.; Chen, W.; Zheng, S.; Gao, Q.; Wang, J.; Ge, X. Effects of an external magnetic field on microbial functional genes and metabolism of activated sludge based on metagenomic sequencing. Sci. Rep. 2020, 10, 8818. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Wang, Y.; Zhao, L. Preparation of nanocrystalline Fe3−xLaxO4 ferrite and their adsorption capability for Congo red. J. Hazard. Mater. 2011, 196, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Myśliwiec, D.; Szcześ, A.; Chibowski, S. Influence of static magnetic field on the kinetics of calcium carbonate formation. J. Ind. Eng. Chem. 2016, 35, 400–407. [Google Scholar] [CrossRef]
- Lipus, L.; Hamler, A.; Buchmeister, B.; Gorsek, A. Magnetic treatment for amelioration of wastewater biodegradation. DAAAM Int. Sci. Book 2018, 9, 97–106. [Google Scholar]
- Konopacki, M.; Rakoczy, R. The analysis of rotating magnetic field as a trigger of Gram-positive and Gram-negative bacteria growth. Biochem. Eng. J. 2019, 141, 259–267. [Google Scholar] [CrossRef]
- Johan, S.; Fadil, O.; Zularisham, A. Effect of magnetic fields on suspended particles in sewage. Malay. J. Sci 2004, 23, 141–148. [Google Scholar]
- Yadollahpour, A.; Rashidi, S.; Ghotbeddin, Z.; Jalilifar, M.; Rezaee, Z. Electromagnetic fields for the treatments of wastewater: A review of applications and future opportunities. J. Pure Appl. Microbiol. 2014, 8, 3711–3719. [Google Scholar]
- Abouelenien, F.; Trabik, Y.A.; Shukry, M.; El-Sharnouby, M.; Sayed, S.; Gaber, A.; Elsaidy, N.R. A Pilot Model for the Treatment of Slaughterhouse Wastewater Using Zeolite or Psidium-Leaf Powder as a Natural Coagulant, Followed by Filtration with Rice Straw, in Comparison with an Inorganic Coagulant. Processes 2022, 10, 887. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Alloisio, G.; Gozio, E.; Benigna, I. Disinfection in wastewater treatment plants: Evaluation of effectiveness and acute toxicity effects. Sustainability 2017, 9, 1704. [Google Scholar] [CrossRef]
- Pickup, J. Environmental safety of halogenated organic by-products from use of active chlorine. Eur. Chlor. Sci. Doss. 2010, 15, 1–42. [Google Scholar]
- Jain, A.; Khambete, A. Role of strong oxidants in reducing COD: Case study at common effluent treatment plant vapi, Guj., India. In Proceedings of the 13th International Conference on Environmental Science and Technology, Athens, Greece, 5–7 September 2013; pp. 5–7. [Google Scholar]
- Mulyani, H.; Sasongko, S.; Soetrisnanto, D. Pengaruh preklorinasi terhadap proses start up pengolahan limbah cair tapioka sistem anaerobic baffled reactor. J. Ilm. Momentum 2012, 8, 21–27. [Google Scholar]
- Vaezi, F.; Naddafi, K.; Karimi, F.; Alimohammadi, M. Application of chlorine dioxide for secondary effluent polishing. Int. J. Environ. Sci. Technol. 2004, 1, 97–101. [Google Scholar] [CrossRef]
- Zerva, I.; Remmas, N.; Kagalou, I.; Melidis, P.; Ariantsi, M.; Sylaios, G.; Ntougias, S. Effect of chlorination on microbiological quality of effluent of a full-scale wastewater treatment plant. Life 2021, 11, 68. [Google Scholar] [CrossRef]
- Vasanthy, M.; Murugavel, S.; Geetha, A. Effective Treatment Methods of COD and TDS from Dyeing Industry Effluent. Nat. Environ. Pollut. Technol. 2008, 7, 509–512. [Google Scholar]
- Aniyikaiye, T.E.; Oluseyi, T.; Odiyo, J.O.; Edokpayi, J.N. Physico-chemical analysis of wastewater discharge from selected paint industries in Lagos, Nigeria. Int. J. Environ. Res. Public Health 2019, 16, 1235. [Google Scholar] [CrossRef]
- Basavaiah, N. Geomagnetism: Solid Earth and Upper Atmosphere Perspectives; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Wahid, Z.A.; Othman, F.; Sohaili, J. Electromagnetic technology on sewage treatment. Malays. J. Civ. Eng. 2001, 13, 11–21. [Google Scholar]
- Krzemieniewski, M.; Debowski, M.; Janczukowicz, W.; Pesta, J. The Influence of Different Intensity Electromagnetic Fields on Phosphorus and COD Removal from Domestic Wastewater in Steel Packing Systems. Pol. J. Environ. Stud. 2004, 13, 381–387. [Google Scholar]
- Yan, L.; Liu, Y.; Ren, Y.; Wang, X.; Liang, H.; Zhang, Y. The effect of pH on the efficiency of an SBR processing piggery wastewater. Biotechnol. Bioprocess Eng. 2013, 18, 1230–1237. [Google Scholar] [CrossRef]
- Tomska, A.; Wolny, L. Enhancement of biological wastewater treatment by magnetic field exposure. Desalination 2008, 222, 368–373. [Google Scholar] [CrossRef]
- Liu, S.; Yang, F.; Meng, F.; Chen, H.; Gong, Z. Enhanced anammox consortium activity for nitrogen removal: Impacts of static magnetic field. J. Biotechnol. 2008, 138, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-H.; Diao, M.-H.; Yang, Y.; Shi, Y.-J.; Gao, M.-M.; Wang, S.-G. Enhanced aerobic nitrifying granulation by static magnetic field. Bioresour. Technol. 2012, 110, 105–110. [Google Scholar] [CrossRef]
- Brooks, D.; Roll, R.; Naylor, W. Wastewater Technology Fact Sheet Granular Activated Carbon Adsorption and Regeneration; Environmental Protection Agency: Washington, DC, USA, 2000.
- Martínez-Hernández, S.; Vázquez-Rodríguez, G.A.; Beltrán-Hernández, R.I.; Prieto-García, F.; Miranda-López, J.M.; Franco-Abuín, C.M.; Álvarez-Hernández, A.; Iturbe, U.; Coronel-Olivares, C. Resistance and inactivation kinetics of bacterial strains isolated from the non-chlorinated and chlorinated effluents of a WWTP. Int. J. Environ. Res. Public Health 2013, 10, 3363–3383. [Google Scholar] [CrossRef]
- Johansson, E. Disinfection of Wastewater with Sodium Hypochlorite: And how it Might be Applied at Slottshagen Wastewater Treatment Plant. Ph.D. Thesis, Linköping University, Linköping, Sweden, 2021. [Google Scholar]
- Du, J.-R.; Li, K.-X.; Zhou, J.; Gan, Y.-P.; Huang, G.-Z. Sodium hypochlorite disinfection on effluent of MBR in municipal wastewater treatment process. Huan Jing Ke Xue 2011, 32, 2292–2297. [Google Scholar]
- Lineback, C.B.; Nkemngong, C.A.; Wu, S.T.; Li, X.; Teska, P.J.; Oliver, H.F. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrob. Resist. Infect. Control 2018, 7, 154. [Google Scholar] [CrossRef]
- Fojt, L.; Strašák, L.; Vetterl, V.r.; Šmarda, J. Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry 2004, 63, 337–341. [Google Scholar] [CrossRef]
- Filipič, J.; Kraigher, B.; Tepuš, B.; Kokol, V.; Mandic-Mulec, I. Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida. Bioresour. Technol. 2012, 120, 225–232. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, Y.; Sun, J.; Yan, T.; Li, J.; Zhao, T.; Yin, X.; Sun, C. Enhancement of biological treatment of wastewater by magnetic field. Bioresour. Technol. 2010, 101, 8535–8540. [Google Scholar] [CrossRef]
- Burgess, J.; Judd, S.; Parsons, S. Magnetically-enhanced disinfection of swimming pool waters. Process Saf. Environ. Prot. 2000, 78, 213–218. [Google Scholar] [CrossRef]
- Hua, G.; Reckhow, D.A. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Water Res. 2007, 41, 1667–1678. [Google Scholar] [CrossRef]
- Hung, Y.-C.; Waters, B.W.; Yemmireddy, V.K.; Huang, C.-H. pH effect on the formation of THM and HAA disinfection byproducts and potential control strategies for food processing. J. Integr. Agric. 2017, 16, 2914–2923. [Google Scholar] [CrossRef]
- Iriarte-Velasco, U.; Alvarez-Uriarte, J.I.; Gonzalez-Velasco, J.R. Kinetics of chloroform formation from humic and fulvic acid chlorination. J. Environ. Sci. Health Part A 2006, 41, 1495–1508. [Google Scholar] [CrossRef]
- Rule, K.L.; Ebbett, V.R.; Vikesland, P.J. Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan. Environ. Sci. Technol. 2005, 39, 3176–3185. [Google Scholar] [CrossRef]
- Larson, R.A.; Rockwell, A.L. Chloroform and chlorophenol production by decarboxylation of natural acids during aqueous chlorination. Environ. Sci. Technol. 1979, 13, 325–329. [Google Scholar] [CrossRef]
- Özbelge, T.A. A study for chloroform formation in chlorination of resorcinol. Turk. J. Eng. Environ. Sci. 2001, 25, 289–298. [Google Scholar]
- Deborde, M.; Von Gunten, U. Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review. Water Res. 2008, 42, 13–51. [Google Scholar] [CrossRef]
- Sun, P.; Tyree, C.; Huang, C.-H. Inactivation of Escherichia coli, bacteriophage MS2, and Bacillus spores under UV/H2O2 and UV/peroxydisulfate advanced disinfection conditions. Environ. Sci. Technol. 2016, 50, 4448–4458. [Google Scholar] [CrossRef]
Parameters | Treated SHWW (Mean Values) |
---|---|
pH | 7.59 |
BOD (mg/L) | 480 |
COD (mg/L) | 1600 |
TSS (mg/L) | 661 |
TP (mg/L) | 10.6 |
TN (mg/L) | 441 |
EC (ds/m) | 2.72 |
TDS (mg/L) | 1350 |
TCC (cfu/100 mL) | 16875 |
FCC (cfu /100 mL) | 8675 |
E coli (cfu /100 mL) | 4850 |
Salmonella (cfu/100 mL) | 10,500 |
Parameter | Method |
---|---|
pH | Standard method 4500-H+ pH value |
COD | Standard method 5220 |
BOD | Standard method 5210 |
TSS | Standard Method 2540D |
TP | Standard method 4500-P |
TN | Standard method 4500-N |
EC | Standard method 2510 |
TDS | Standard method 2540A |
TCC | Standard method 9222 A |
FC | Standard method 9222 A |
E coli | Standard method 9222A |
Salmonella | Standard method 9260 |
DBPs (Chloroform, CHCl3) | Standard method 5710 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsaidy, N.R.; Elleboudy, N.S.; Alkhedaide, A.; Abouelenien, F.A.; Abdelrahman, M.H.; Soliman, M.M.; Shukry, M. Enhancement Effects of Water Magnetization and/or Disinfection by Sodium Hypochlorite on Secondary Slaughterhouse Wastewater Effluent Quality and Disinfection By-Products. Processes 2022, 10, 1589. https://doi.org/10.3390/pr10081589
Elsaidy NR, Elleboudy NS, Alkhedaide A, Abouelenien FA, Abdelrahman MH, Soliman MM, Shukry M. Enhancement Effects of Water Magnetization and/or Disinfection by Sodium Hypochlorite on Secondary Slaughterhouse Wastewater Effluent Quality and Disinfection By-Products. Processes. 2022; 10(8):1589. https://doi.org/10.3390/pr10081589
Chicago/Turabian StyleElsaidy, Nagham R., Nooran S. Elleboudy, Adel Alkhedaide, Fatma A. Abouelenien, Mona H. Abdelrahman, Mohamed Mohamed Soliman, and Mustafa Shukry. 2022. "Enhancement Effects of Water Magnetization and/or Disinfection by Sodium Hypochlorite on Secondary Slaughterhouse Wastewater Effluent Quality and Disinfection By-Products" Processes 10, no. 8: 1589. https://doi.org/10.3390/pr10081589
APA StyleElsaidy, N. R., Elleboudy, N. S., Alkhedaide, A., Abouelenien, F. A., Abdelrahman, M. H., Soliman, M. M., & Shukry, M. (2022). Enhancement Effects of Water Magnetization and/or Disinfection by Sodium Hypochlorite on Secondary Slaughterhouse Wastewater Effluent Quality and Disinfection By-Products. Processes, 10(8), 1589. https://doi.org/10.3390/pr10081589