On Macroscopic Quantum Coherence with Synchronized Atoms and Molecules: Superradiance
Abstract
:1. Introduction
2. Superradiance and Synch Phenomenon
3. Macroscopic Quantum Coherence with Synched Atoms
4. Macroscopic Quantum Coherence with Synched Molecules
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
QAVI | Quantum Analog of Vibration Isolation |
SR | Superradiance |
MQC | Macroscopic Quantum Coherence |
Synch | Synchronization |
QS | Quantum Synchronization |
References
- Averin, D.V.; Ruggiero, B.; Silvestrini, P. Macroscopic Quantum Coherence and Quantum Computing, 2001st ed.; Springer: Berlin, Germany, 2001. [Google Scholar]
- Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. Photons and Atoms, 1st ed.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1997. [Google Scholar]
- Kurizki, G.; Bertet, P.; Kubo, Y.; Mølmer, K.; Petrosyan, D.; Rabl, P.; Schmiedmayer, J. Quantum technologies with hybrid systems. Proc. Nat. Acad. Sci. USA 2015, 112, 3866. [Google Scholar] [CrossRef]
- Findik, G.; Biliroglu, M.; Seyiitliiyev, D.; Mendes, J.; Barrette, A.; Ardekani, H.; Lei, L.; Dong, Q.; So, F.; Gundogdu, K. High-temperature superfluorescence in methyl ammonium lead iodide. Nat. Photonics 2021, 15, 676. [Google Scholar] [CrossRef]
- Biliroglu, M.; Findik, G.; Mendes, J.; Seyiitliiyev, D.; Lei, L.; Dong, Q.; Mehta, Y.; Temnov, V.V.; So, F.; Gundogdu, K. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat. Photonics 2022, 16, 324. [Google Scholar] [CrossRef]
- Gundogdu, K.; So, F.; Brongersma, M.L.; Biliroglu, M.; Findik, G. Quantum Analog of Vibration Isolation: From Room-Temperature Superfluorescence to High-Temperature Superconductivity. arXiv 2022, arXiv:2204.09807. [Google Scholar]
- Strogatz, S.H. Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life, 1st ed.; Hachette: London, UK, 2012. [Google Scholar]
- Domokos, P.; Ritsch, H. Collective Cooling and Self-Organization of Atoms in a Cavity. Phys. Rev. Lett. 2002, 89, 253003. [Google Scholar] [CrossRef]
- Black, A.T.; Chan, H.W.; Vuletic, V. Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering. Phys. Rev. Lett. 2003, 91, 203001. [Google Scholar] [CrossRef]
- Asboth, J.; Domokos, P.; Ritsch, H.; Vukics, A. Self-organization of atoms in a cavity field: Threshold, bistability, and scaling laws. Phys. Rev. A 2005, 72, 053417. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Benedict, M.G.; Ermolaev, A.M.; Malyshev, V.A.; Sokolov, I.V.; Trifonov, E.D. Super-Radiance Multiatomic Coherent Emission; Institute of Physics Publishing: Bristol, UK; Philadelphia, PA, USA, 1996. [Google Scholar]
- Dicke, R.H. Coherence in Spontaneous Radiation Processes. Phys. Rev. 1954, 93, 99. [Google Scholar] [CrossRef]
- Gross, M.; Haroche, S. Superradiance: An essay on the theory of collective spontaneous emission. Phys. Rep. 1982, 93, 301. [Google Scholar] [CrossRef]
- Kocharovsky, V.V.; Zheleznyakov, V.V.; Kocharovskaya, E.K.; Kocharovsky, V.V. Superradiance: The principles of generation and implementation in lasers, Reviews of Topical Problems. Phys. Uspekhi 2017, 60, 345. [Google Scholar] [CrossRef]
- Cong, K.; Zhang, Q.; Wang, Y.; Noe, G.T., II; Belyanin, A.; Kono, J. Dicke superradiance in solids (Invited Review). J. Opt. Soc. Am. B 2016, 33, C80. [Google Scholar] [CrossRef]
- Wang, T.; Yelin, S.F.; Côté, R.; Eyler, E.E.; Farooqi, S.M.; Gould, P.L.; Koštrun, M.; Tong, D.; Vrinceanu, D. Superradiance in ultracold Rydberg gases. Phys. Rev. A 2007, 75, 033802. [Google Scholar] [CrossRef]
- Das, D.; Lemberger, B.; Yavuz, D.D. Subradiance and superradiance-to-subradiance transition in dilute atomic clouds. Phys. Rev. A 2020, 102, 043708. [Google Scholar] [CrossRef]
- Gold, D.C.; Huft, P.; Young, C.; Safari, A.; Walker, T.G.; Saffman, M.; Yavuz, D.D. Spatial Coherence of Light in Collective Spontaneous Emission. PXR Quantum 2022, 3, 010338. [Google Scholar] [CrossRef]
- Braggio, C.; Chiossi, F.; Carugno, G.; Ortolan, A.; Ruoso, G. Spontaneous formation of a macroscopically extended coherent state. Phys. Rev. Res. 2020, 2, 033059. [Google Scholar] [CrossRef]
- Chiossi, F.; Braggio, C.; Khanbekyan, A.; Carugno, G.; Ortolan, A.; Ruoso, G.; Calabrese, R.; Di Lieto, A.; Tomassetti, L.; Tonelli, M. Cascade superfluorescence in Er:YLF. Phys. Rev. Res. 2021, 3, 013138. [Google Scholar] [CrossRef]
- Meiser, D.; Ye, J.; Carlson, D.R.; Holl, M.J. Prospects for a Millihertz-Linewidth Laser. Phys. Rev. Lett. 2009, 102, 163601. [Google Scholar] [CrossRef]
- Meiser, D.; Holland, M.J. Steady-state superradiance with alkaline-earth-metal atoms. Phys. Rev. A 2010, 81, 033847. [Google Scholar] [CrossRef]
- Norcia, M.A.; Winchester, M.N.; Cline, J.R.; Thompson, J.K. Superradiance on the millihertz linewidth strontium clock transition. Sci. Adv. 2016, 2, e1601231. [Google Scholar] [CrossRef]
- Toth, G.; Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A Math. Theor. 2014, 47, 424006. [Google Scholar] [CrossRef]
- Yavuz, D.D. Superradiance as a source of collective decoherence in quantum computers. JOSA B 2014, 31, 2665. [Google Scholar] [CrossRef] [Green Version]
- Vrehen, Q.H.F.; Der Weduwe, J.J. Quantum fluctuations in superfluorescence delay times. Phys. Rev. A 1981, 24, 2857. [Google Scholar] [CrossRef]
- Vrehen, Q.H.; Schuurmans, M.F.; Polder, D. Superfluorescence: Macroscopic quantum fluctuations in the time domain. Nature 1980, 70, 285. [Google Scholar] [CrossRef]
- Ariunbold, G.O.; Sautenkov, V.A.; Scully, M.O. Quantum fluctuations of superfluorescence delay observed with ultrashort optical excitations. Phys. Lett. A 2012, 376, 335. [Google Scholar] [CrossRef]
- Ariunbold, G.O.; Sautenkov, V.A.; Scully, M.O. Temporal coherent control of superfluorescent pulses. Opt. Lett. 2012, 37, 2400. [Google Scholar] [CrossRef]
- Thompson, J.; Ballmann, C.W.; Cai, H.; Yi, Z.; Rostovtsev, V.; Sokolov, A.V.; Hemmer, P.; Zheltikov, A.M.; Ariunbold, G.O.; Scully, M.O. Pulsed cooperative backward emissions from non-degenerate atomic transitions in sodium. New J. Phys. 2014, 16, 103017. [Google Scholar] [CrossRef]
- Nasu, M.; Kawamura, K.; Yoshida, T.; Ishihara, J.; Miyajima, K. Influences of quantum fluctuation on superfluorescent spectra observed by single-shot measurement for semiconductor quantum dots. Appl. Phys. Express 2020, 13, 062005. [Google Scholar] [CrossRef]
- Khitrova, G.; Gibbs, H. Collective radiance. Nat. Phys. 2007, 3, 84. [Google Scholar] [CrossRef]
- Scully, M.O.; Svidzinsky, A.A. The Super of Superradiance. Science 2009, 325, 1510. [Google Scholar] [CrossRef]
- Rehler, N.E.; Eberly, J.H. Superradiance. Phys. Rev. A 1971, 3, 1735. [Google Scholar] [CrossRef]
- Ariunbold, G.O.; Yang, W.; Sokolov, A.; Sautenkov, V.A.; Scully, M.O. Superradiance in a Three-Photon Resonant Medium. Phys. Rev. A 2012, 85, 023424. [Google Scholar] [CrossRef] [Green Version]
- Skribanowitz, N.; Herman, I.P.; MacGillivray, J.C.; Feld, M.S. Observation of Dicke Superradiance in Optically Pumped HF Gas. Phys. Rev. Lett. 1973, 30, 309. [Google Scholar] [CrossRef]
- Marek, J. Observation of superradiance in Rb vapour. J. Phys. B 1979, 12, L229. [Google Scholar] [CrossRef]
- Ariunbold, G.O.; Sautenkov, V.A.; Scully, M.O. Ultrafast laser control of backward superfluorescence towards standoff sensing. Appl. Phys. Lett. 2014, 104, 021114. [Google Scholar] [CrossRef]
- Ariunbold, G.O. A Cascade Superradiance Model. arXiv 2022, arXiv:2207.11841. [Google Scholar] [CrossRef]
- Okada, J.; Ikeda, K.; Matsuoka, M. Cooperative cascade emission. Opt. Commun. 1978, 26, 189. [Google Scholar] [CrossRef]
- Ikeda, K.; Okada, J.; Matsuoka, M. Theory of Cooperative Cascade Emission. II. J. Phys. Soc. Jpn. 1980, 48, 1646. [Google Scholar] [CrossRef]
- Brownell, J.H.; Lu, X.; Hartmann, S.R. Yoked Superfluorescence. Phys. Rev. Lett. 1995, 75, 3265. [Google Scholar] [CrossRef]
- Ariunbold, G.O.; Kash, M.M.; Sautenkov, V.A.; Li, H.; Rostovtsev, Y.V.; Welch, G.R.; Scully, M.O. Observation of Picosecond Superfluorescent Pulses in Rubidium Vapor Pumped by 100-Femtosecond Laser Pulses. Phys. Rev. A 2010, 82, 043421. [Google Scholar] [CrossRef]
- Ariunbold, G.O.; Sautenkov, V.A.; Li, H.; Murawski, R.K.; Wang, X.; Zhi, M.; Begzjav, T.; Sokolov, A.V.; Scully, M.O.; Rostovtsev, Y.V. Observations of Ultrafast Superfluorescent Beatings in a Cesium Vapor Excited by Femtosecond Laser Pulses. Phys. Lett. A 2022, 428, 127945. [Google Scholar] [CrossRef]
- Acebrón, J.A.; Bonilla, L.L.; Vicente, C.J.P.; Ritort, F.; Spigler, R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 2005, 77, 137. [Google Scholar] [CrossRef] [Green Version]
- Kuramoto, Y. International Symposium on Mathematical Problems in Theoretical Physics; Lecture Notes in Physics; Araki, H., Ed.; Springer: New York, NY, USA, 1975; Volume 39, p. 420. [Google Scholar]
- Akkermans, E.; Gero, A.; Kaiser, A. Photon Localization and Dicke Superradiance in Atomic Gases. Phys. Rev. Lett. 2008, 101, 103602. [Google Scholar] [CrossRef] [PubMed]
- Quiroz-Juarez, M.A.; Chavez-Carlos, J.; Aragon, J.L.; Hirsch, J.G.; Leon-Montiel, R.J. Experimental realization of the classical Dicke model. Phys. Rev. Res. 2020, 2, 033169. [Google Scholar] [CrossRef]
- Wang, H.; Chudnovskiy, A.L.; Gorsky, A.; Kamenev, A. Sachdev-Ye-Kitaev superconductivity: Quantum Kuramoto and generalized Richardson models. Phys. Rev. Res. 2020, 2, 033025. [Google Scholar] [CrossRef]
- Witthaut, D.; Timme, M. Kuramoto dynamics in Hamiltonian systems. Phys. Rev. Res. 2014, 90, 032917. [Google Scholar] [CrossRef]
- Eshaqi-Sani, N.; Manzano, G.; Zambrini, R.; Fazio, R. Synchronization along quantum trajectories. Phys. Rev. Res. 2020, 2, 023101. [Google Scholar] [CrossRef]
- Bergmann, M.; Guehne, O. Entanglement criteria for Dicke states. J. Phys. A Math. Theor. 2013, 46, 385304. [Google Scholar] [CrossRef]
- Tralle, I.; Zieba, P. Induced N2-cooperative phenomenon in an ensemble of the nonlinear coupled oscillators. Phys. Lett. A 2014, 378, 1364. [Google Scholar]
- Alcalde, M.A.; Kullock, R.; Svaiterc, N.F. Virtual processes and super-radiance in spin-boson models. J. Math. Phys. 2009, 50, 013511. [Google Scholar] [CrossRef]
- Morrison, S.; Parkins, A.S. Collective spin systems in dispersive optical cavity QED: Quantum phase transitions and entanglement. Phys. Rev. A 2008, 77, 043810. [Google Scholar] [CrossRef]
- Kirton, P.; Roses, M.M.; Keeling, J.; Dalla Torre, E.G. Introduction to the Dicke Model: From Equilibrium to Nonequilibrium, and Vice Versa. Adv. Quantum Technol. 2019, 2, 1800043. [Google Scholar] [CrossRef]
- Wang, Y.K.; Hioe, F.T. Phase Transition in the Dicke Model of Superradiance. Phys. Rev. A 1973, 7, 831. [Google Scholar] [CrossRef]
- Rzazewski, R.; Wodkiewicz, K.; Zakowicz, W. Phase Transitions, Two-Level Atoms, and the A2 Term. Phys. Rev. Lett. 1975, 35, 432. [Google Scholar] [CrossRef]
- Nataf, P.; Ciuti, C. No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED. Nat. Commun. 2010, 1, 72. [Google Scholar] [CrossRef]
- Agarwal, G.S. Quantum Optics: Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches; Volume 70 of Springer Tracts in Modern Physics; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Ariunbold, G.O.; Rostovtsev, Y.V.; Sautenkov, V.A.; Scully, M.O. Intensity correlation and anti-correlations in coherently driven atomic vapor. J. Mod. Opt. 2010, 57, 1417. [Google Scholar] [CrossRef]
- Malcuit, M.S.; Maki, J.J.; Simkin, D.J.; Boyd, R.W. Transition from Superfluorescence to Amplified Spontaneous Emission. Phys. Rev. Lett. 1987, 59, 1189. [Google Scholar] [CrossRef]
- Lvovsky, A.I.; Hartmann, S.R.; Moshary, F. Superfluorescence-Stimulated Photon Echoes. Phys. Rev. Lett. 2002, 89, 263602. [Google Scholar] [CrossRef]
- Dogariu, A.; Michael, J.B.; Scully, M.O.; Miles, R.B. High-gain backward lasing in air. Science 2011, 331, 442. [Google Scholar] [CrossRef]
- Traverso, A.J.; Sanchez-Gonzalez, R.; Yuan, L.; Wang, K.; Voronine, D.V.; Zheltikov, A.M.; Rostovtsev, Y.; Sautenkov, V.A.; Sokolov, A.V.; North, S.W.; et al. Coherence brightened laser source for atmospheric remote sensing. Proc. Natl. Acad. Sci. USA 2012, 109, 15185. [Google Scholar] [CrossRef]
- Zhang, R.; Klinger, E.; Bustos, F.P.; Akulshin, A.; Guo, H.; Wickenbrock, A.; Budker, D. Stand-Off Magnetometry with Directional Emission from Sodium Vapors. Phys. Rev. Lett. 2021, 127, 173605. [Google Scholar] [CrossRef]
- Akulshin, A.; Budker, D.; Mclean, R.J. Parametric wave mixing enhanced by velocity-insensitive two-photon excitation in Rb vapor. J. Opt. Soc. Am. B 2017, 34, 1016. [Google Scholar] [CrossRef]
- Akulshin, A.; Rahaman, N.; Suslov, S.A.; Budker, D.; Mclean, R.J. Spiking dynamics of frequency upconverted field generated in continuous-wave excited rubidium vapors. J. Opt. Soc. Am. B 2020, 37, 2430. [Google Scholar] [CrossRef]
- Kitano, K.; Tomida, H.; Takei, D.; Maeda, H. Polarization correlation in the superfluorescent decay process. Opt. Lett. 2021, 46, 5055. [Google Scholar] [CrossRef]
- Yi, Z.; Begzjav, T.; Ariunbold, G.O.; Zheltikov, A.M.; Sokolov, A.V.; Scully, M.O. Multiple Pathway Quantum Beats Spectroscopy. Front. Phys. Sect. Quantum Eng. Technol. 2022; in press. [Google Scholar] [CrossRef]
- Ariunbold, G.; Perina, J.; Gantsog, T. Nonclassical states in cavity with injected atoms. J. Opt. B Quantum Semiclass. Opt. 1999, 1, 219. [Google Scholar] [CrossRef]
- Gombojav, A. Ultrafast Cooperative Phenomena in Coherently Prepared Media: From Superfluorescence to Coherent Raman Scattering and Applications. Ph.D. Thesis, Texas A & M University, College Station, TX, USA, 2011. [Google Scholar]
- Ariunbold, G.O.; Sautenkov, V.A.; Scully, M.O. Switching from a sequential transition to quantum beating in atomic rubidium pumped by a femtosecond laser. J. Opt. Soc. Am. B 2011, 28, 462. [Google Scholar] [CrossRef]
- Zewail, A.H. Femtochemistry: Ultrafast Dynamics of the Chemical Bond, 1st ed.; World Scientific: Singapore, 1994; Volume 1. [Google Scholar]
- Maker, P.D.; Terhune, R.W. Study of optical effects due to an induced polarization of third order in the electric field strength. Phys. Rev. 1965, 137, A801. [Google Scholar] [CrossRef]
- Cheng, J.X.; Xie, X.S. Coherent Raman Scattering Microscopy, 1st ed.; CRC Press: New York, NY, USA, 2013. [Google Scholar]
- Pestov, D.; Murawski, R.K.; Ariunbold, G.O.; Wang, X.; Zhi, M.; Sokolov, A.V.; Sautenkov, V.A.; Rostovtsev, Y.V.; Dogariu, A.; Huang, Y.; et al. Optimizing the Laser-Pulse Configuration for Coherent Raman Spectroscopy. Science 2007, 316, 265. [Google Scholar] [CrossRef]
- Pestov, D.; Wang, X.; Ariunbold, G.O.; Murawski, R.K.; Sautenkov, V.A.; Dogariu, A.; Sokolov, A.V.; Scully, M.O. Single-shot Detection of Bacterial Endospores via Coherent Raman Spectroscopy. Proc. Natl. Acad. Sci. USA 2007, 105, 422. [Google Scholar] [CrossRef]
- Pestov, D.; Ariunbold, G.O.; Wang, X.; Murawski, R.K.; Sautenkov, V.A.; Sokolov, A.V.; Scully, M.O. Coherent versus incoherent Raman scattering: Molecular coherence excitation and measurement. Opt. Lett. 2007, 32, 1725. [Google Scholar] [CrossRef]
- Pestov, P.; Sokolov, A.V.; Scully, M.O.; Murawski, R.; Gombojav, A.; Wang, X.; Sautenkov, V. Hybrid Technique for Coherent Anti-Stokes/Stokes Raman Spectroscopy. U.S. Patent 20100027000, 4 February 2010. [Google Scholar]
- Ariunbold, G.O.; Altangerel, N. Coherent anti-Stokes Raman spectroscopy: Understanding the essentials. Review article. Coherent Opt. Phenom. 2016, 3, 6. [Google Scholar]
- Ariunbold, G.O.; Altangerel, N. Quantitative interpretation of time-resolved coherent anti-Stokes Raman spectroscopy with all Gaussian pulses. J. Raman Spectrosc. 2017, 48, 104. [Google Scholar] [CrossRef]
- Ariunbold, G.O. Asymmetric spectral noise correlations in coherent Stokes and anti-Stokes Raman scatterings. OSA Contin. 2018, 1, 832. [Google Scholar] [CrossRef]
- Ariunbold, G.O.; Semon, B.; Nagpal, S.; Adhikari, P. Coherent Anti-Stokes—Stokes Raman Cross-Correlation Spectroscopy: Asymmetric Frequency Shifts in Hydrogen-Bonded Pyridine-Water Complexes. Appl. Spectrosc. 2019, 73, 1099. [Google Scholar] [CrossRef] [PubMed]
- Ariunbold, G.O.; Nagpal, S.; Semon, B. Quantitative time-resolved buildup in three-color coherent anti-Stokes Raman scattering. Spectrosc. Lett. 2020, 53, 383. [Google Scholar] [CrossRef]
- Ariunbold, G.O.; Semon, B.; Nagpal, S.; Rostovtsev, Y. Ultrafast dephasing in hydrogen-bonded pyridine–water mixtures. Open Phys. 2021, 19, 234. [Google Scholar] [CrossRef]
- Nagpal, S.; Semon, B.; Ariunbold, G.O. Distinguishing Resonant from Non-Resonant Nonlinear Optical Processes Using Intensity—Intensity Correlation Analyses. Appl. Spectrosc. 2021, 75, 1382. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariunbold, G.O. On Macroscopic Quantum Coherence with Synchronized Atoms and Molecules: Superradiance. Processes 2022, 10, 1885. https://doi.org/10.3390/pr10091885
Ariunbold GO. On Macroscopic Quantum Coherence with Synchronized Atoms and Molecules: Superradiance. Processes. 2022; 10(9):1885. https://doi.org/10.3390/pr10091885
Chicago/Turabian StyleAriunbold, Gombojav O. 2022. "On Macroscopic Quantum Coherence with Synchronized Atoms and Molecules: Superradiance" Processes 10, no. 9: 1885. https://doi.org/10.3390/pr10091885
APA StyleAriunbold, G. O. (2022). On Macroscopic Quantum Coherence with Synchronized Atoms and Molecules: Superradiance. Processes, 10(9), 1885. https://doi.org/10.3390/pr10091885