Anandamide Reuptake Inhibitor (VDM11) as a Possible Candidate for COVID-19 Associated Depression; a Combination of Network Pharmacology, Molecular Docking and In Vivo Experimental Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Network Pharmacology
2.1.1. Screening of Target Genes for VDM11 and Disease-Associated Genes
2.1.2. Protein–Protein Interaction Network Construction and Analysis
2.1.3. Target Protein Gene Ontology and KEGG Enrichment Analysis
2.2. Molecular Docking
2.3. Experimental Pharmacology
2.3.1. Experimental Animals
2.3.2. Chemicals
2.3.3. Study Design
2.3.4. Open-Field Test (OFT)
2.3.5. Elevated plus Maze (EPM) Test
2.3.6. Y Maze Test
2.3.7. Tail Suspension Test
2.3.8. Real-Time PCR Analysis
3. Results
3.1. Network Pharmacology Analysis
3.2. Molecular Docking
3.3. Experimental Pharmacology
3.3.1. Effect of VDM11 on LPS-Induced Depression in Mice Assessed through an Open Field Test (OFT)
3.3.2. Effect of VDM11on LPS-Induced Depression in Mice Assessed through Elevated plus Maze Test
3.3.3. Effect of VDM11on LPS-Induced Depression in Mice Assessed through Y Maze Test
3.3.4. Effect of VDM11 on LPS-Induced Depression in Mice Assessed through Tail Suspension Test
3.3.5. Appraisal of VDM 11 Effect on Glial Cell Marker (CD11b and GFAP) in Hippocampus
3.3.6. Assessment of VDM11 Effect on Proinflammatory Mediators (TNF-α, IL-1β, and IL-6) in Hippocampus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Singh, R.; Kaur, J.; Pandey, S.; Sharma, V.; Thakur, L.; Sati, S.; Mani, S.; Asthana, S.; Sharma, T.K.; et al. Wuhan to world: The COVID-19 pandemic. Front. Cell. Infect. Microbiol. 2021, 30, 242. [Google Scholar] [CrossRef] [PubMed]
- Mazza, M.G.; Palladini, M.; Poletti, S.; Benedetti, F. Post-COVID-19 Depressive Symptoms: Epidemiology, Pathophysiology, and Pharmacological Treatment. CNS Drugs 2022, 36, 681–702. [Google Scholar] [CrossRef] [PubMed]
- Vidrio, A.L.; Nicolini, H.; Zarate, C.T.; Castro, T.G.; Rojop, I.J.; Magaña, J.M.; López, N.M.; Mendoza, A.D.G. Association between SARS-CoV-2 Infection and Neuropsychiatric Manifestations. COVID 2022, 2, 1270–1286. [Google Scholar] [CrossRef]
- Almutairi, M.M.; Sivandzade, F.; Albekairi, T.H.; Alqahtani, F.; Cucullo, L. Neuroinflammation and Its Impact on the Pathogenesis of COVID-19. Front. Med. 2021, 8, 745789. [Google Scholar] [CrossRef] [PubMed]
- Zabetakis, I.; Lordan, R.; Norton, C.; Tsoupras, A. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. Nutrients 2020, 12, 1466. [Google Scholar] [CrossRef]
- Sivandzade, F.; Alqahtani, F.; Sifat, A.; Cucullo, L. The cerebrovascular and neurological impact of chronic smoking on post-traumatic brain injury out-come and recovery: An in vivo study. J. Neuroinflamm. 2020, 17, 133. [Google Scholar] [CrossRef]
- Matschke, J.; Lütgehetmann, M.; Hagel, C.; Sperhake, J.P.; Schröder, A.S.; Edler, C.; Mushumba, H.; Fitzek, A.; Allweiss, L.; Dandri, M.; et al. Neuropathology of patients with COVID-19 in Germany: A post-mortem case series. Lancet Neurol. 2020, 19, 919–929. [Google Scholar] [CrossRef]
- Liu, L.-R.; Liu, J.-C.; Bao, J.-S.; Bai, Q.-Q.; Wang, G. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front. Immunol. 2020, 11, 1024. [Google Scholar] [CrossRef]
- Zou, S.; Kumar, U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci. 2018, 19, 833. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.-C.; Mackie, K. Review of the endocannabinoid system. Biol. Psychiatry Cogn. Neurosci. Neuroim-Aging 2021, 6, 607–615. [Google Scholar] [CrossRef]
- Reggio, P.H. Endocannabinoid Binding to the Cannabinoid Receptors: What Is Known and What Remains Unknown. Curr. Med. Chem. 2010, 17, 1468–1486. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Hillard, C.J. Role of endocannabinoid signaling in anxiety and depression. In Behavioral Neurobiology of the Endocannabinoid System; Springer: Berlin/Heidelberg, Germany, 2009; pp. 347–371. [Google Scholar]
- Gamaleddin, I.; Guranda, M.; Goldberg, S.R.; Le Foll, B. The selective anandamide transport inhibitor VDM11 attenuates reinstatement of nicotine seeking behaviour, but does not affect nicotine intake. Br. J. Pharmacol. 2011, 164, 1652–1660. [Google Scholar] [CrossRef] [Green Version]
- Alzarea, S.I.; Qasim, S.; Uttra, A.M.; Khan, Y.H.; Aljoufi, F.A.; Ahmed, S.R.; Alanazi, M.; Malhi, T.H. Network Pharmacology and Molecular Docking Based Prediction of Mechanism of Pharmacological Attributes of Glutinol. Processes 2022, 10, 1492. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Zhang, L.; Han, L.; Di, S.; Wei, X.; Wu, H.; Zhang, H.; Zhao, L.; Tong, X. Network Pharmacology-Based Prediction of Mechanism of Shenzhuo Formula for Application to DKD. Evid. Based Complement. Altern. Med. 2021, 2021, 6623010. [Google Scholar] [CrossRef]
- Wang, W.; Liu, T.; Yang, L.; Ma, Y.; Dou, F.; Shi, L.; Wen, A.; Ding, Y. Study on the multi-targets mechanism of triphala on cardio-cerebral vascular diseases based on network pharmacology. Biomed. Pharmacother. 2019, 116, 108994. [Google Scholar] [CrossRef]
- Nguyen, L.T.H.; Nguyen, N.P.K.; Tran, K.N.; Shin, H.-M.; Yang, I.-J. Network Pharmacology and Experimental Validation to Investigate the Antidepressant Potential of Atractylodes lancea (Thunb.) DC. Life 2022, 12, 1925. [Google Scholar] [CrossRef]
- Cozza, G.; Moro, S. Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery. Curr. Top. Med. Chem. 2008, 8, 1555–1572. [Google Scholar] [CrossRef]
- Noor, F.; Rehman, A.; Ashfaq, U.A.; Saleem, M.H.; Okla, M.K.; Al-Hashimi, A.; AbdElgawad, H.; Aslam, S. Integrating Network Pharmacology and Molecular Docking Approaches to Decipher the Multi-Target Pharmacological Mechanism of Abrus precatorius L. Acting on Diabetes. Pharmaceuticals 2022, 15, 414. [Google Scholar] [CrossRef]
- Landman, E.; Miclea, R.L.; van Blitterswijk, C.A.; Karperien, M. Small molecule inhibitors of WNT/β-catenin signaling block IL-1β-and TNFα-induced cartilage degra-dation. Arthritis Res. Ther. 2013, 15, R93. [Google Scholar] [CrossRef] [Green Version]
- Brábek, J.; Jakubek, M.; Vellieux, F.; Novotný, J.; Kolář, M.; Lacina, L.; Szabo, P.; Strnadová, K.; Rösel, D.; Dvořánková, B.; et al. Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. Int. J. Mol. Sci. 2020, 21, 7937. [Google Scholar] [CrossRef]
- Jarrar, M.H.; Baranova, A. PPARγ activation by thiazolidinediones (TZDs) may modulate breast carcinoma outcome: The importance of interplay with TGFβ signalling. J. Cell. Mol. Med. 2007, 11, 71–87. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.C.; A Lawson, M.; André, C.; Moreau, M.; Lestage, J.; Castanon, N.; Kelley, K.W.; Dantzer, R. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol. Psychiatry 2009, 14, 511–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seibenhener, M.L.; Wooten, M.C. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J. Vis. Exp. 2015, 96, e52434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, L.B.; McCabe, J.T. Behavior of Male and Female C57BL/6J Mice Is More Consistent with Repeated Trials in the Elevated Zero Maze than in the Elevated Plus Maze. Front. Behav. Neurosci. 2017, 11, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieur, E.; Jadavji, N. Assessing Spatial Working Memory Using the Spontaneous Alternation Y-maze Test in Aged Male Mice. Bio-Protocol 2019, 9, e3162. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, A.; Zokaei, E.; Kahani, S.M.; Alavinejad, E.; Dehghani, M.; Meftahi, G.H.; Afarinesh, M.R. The potential impact of COVID-19 on CNS and psychiatric sequels. Asian J. Psychiatry 2022, 72, 103097. [Google Scholar] [CrossRef]
- Walter, L.; Stella, N. Cannabinoids and neuroinflammation. Br. J. Pharmacol. 2004, 141, 775–785. [Google Scholar] [CrossRef] [Green Version]
- Malek, N.; Popiolek-Barczyk, K.; Mika, J.; Przewlocka, B.; Starowicz, K. Anandamide, Acting via CB2 Receptors, Alleviates LPS-Induced Neuroinflammation in Rat Primary Microglial Cultures. Neural Plast. 2015, 2015, 130639. [Google Scholar] [CrossRef] [Green Version]
- e Silva, N.M.L.; Barros-Aragão, F.G.; De Felice, F.G.; Ferreira, S.T. Inflammation at the crossroads of COVID-19, cognitive deficits and depression. Neuropharmacology 2022, 209, 109023. [Google Scholar] [CrossRef]
- Ting, E.Y.-C.; Yang, A.C.; Tsai, S.-J. Role of Interleukin-6 in Depressive Disorder. Int. J. Mol. Sci. 2020, 21, 2194. [Google Scholar] [CrossRef]
- Fan, X.-X.; Sun, W.-Y.; Li, Y.; Tang, Q.; Li, L.-N.; Yu, X.; Wang, S.-Y.; Fan, A.-R.; Xu, X.-Q.; Chang, H.-S. Honokiol improves depression-like behaviors in rats by HIF-1α- VEGF signaling pathway activation. Front. Pharmacol. 2022, 13, 968124. [Google Scholar] [CrossRef]
- Kang, I.; Kondo, D.; Kim, J.; Lyoo, I.K.; Yurgelun-Todd, D.; Hwang, J.; Renshaw, P.F. Elevating the level of hypoxia inducible factor may be a new potential target for the treatment of depression. Med. Hypotheses 2020, 146, 110398. [Google Scholar] [CrossRef]
- Köhler, S.; Cierpinsky, K.; Kronenberg, G.; Adli, M. The serotonergic system in the neurobiology of depression: Relevance for novel antidepressants. J. Psychopharmacol. 2016, 30, 13–22. [Google Scholar] [CrossRef]
- Cordeiro, R.C.; Chaves Filho, A.J.M.; Gomes, N.S.; Tomaz, V.D.S.; Medeiros, C.D.; Queiroz, A.I.D.G.; Maes, M.; Macedo, D.S.; Carvalho, A.F. Leptin prevents lipopolysaccharide-induced depressive-like behaviors in mice: Involvement of dopa-mine receptors. Front. Psychiatry 2019, 10, 125. [Google Scholar] [CrossRef] [Green Version]
- Norden, D.M.; Muccigrosso, M.M.; Godbout, J.P. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology 2015, 96, 29–41. [Google Scholar] [CrossRef]
Ligand–Receptor Complex | Docking Score (S) (kcal/mol) | Interaction | |||
---|---|---|---|---|---|
H-Bonding | Arene-π | ||||
Residue | Distance (ºA) | Score (%) | |||
VDM11-MAPK3 | −10.6867 | Lys168 Asp 166 | 2.36 3.16 | 98 70 | |
VDM11-TNF | −10.5469 | SerB147 | 2.21 | 28 | |
VDM11-IL1B | −10.5514 | SerA21 LysA27 | 2.69 2.71 | 58 44 | |
VDM11-IL6 | −9.7890 | Ser176 Arg179 | 2.86 2.85 | 20 61 | |
VDM11-PPARG | −9.9316 | Arg288 | 2.71 | 11 | Arg288 |
Control Drug | Target Protein | Docking Score (kcal/mol) | Interaction | |||
---|---|---|---|---|---|---|
H-Bonding | Arene-π | |||||
Residue | Distance (ºA) | Score (%) | ||||
Minocycline | MAPK3 | −12.6871 | Lys53 Glu71 Asp 168 Asp168 | 2.91 1.34 2.59 1.99 | 17 31 44 20 | |
Thalidomide | TNF | −7.4292 | AsnB34 | 2.63 | 23 | ArgB32 |
PKF115-584 | IL1B | −10.2315 | SerA125 | 2.66 | 85 | |
Bazedoxifene | IL6 | −11.5440 | Arg30 Ser176 | 2.73 2.43 | 63 97 | Arg179 |
Thiazolidinedione | PPARG | −10.5648 | Ser342 | 2.46 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzarea, S.I.; Qasim, S.; Afzal, M.; Alsaidan, O.A.; Alhassan, H.H.; Alharbi, M.; Alqinyah, M.; Alenazi, F.S. Anandamide Reuptake Inhibitor (VDM11) as a Possible Candidate for COVID-19 Associated Depression; a Combination of Network Pharmacology, Molecular Docking and In Vivo Experimental Analysis. Processes 2023, 11, 143. https://doi.org/10.3390/pr11010143
Alzarea SI, Qasim S, Afzal M, Alsaidan OA, Alhassan HH, Alharbi M, Alqinyah M, Alenazi FS. Anandamide Reuptake Inhibitor (VDM11) as a Possible Candidate for COVID-19 Associated Depression; a Combination of Network Pharmacology, Molecular Docking and In Vivo Experimental Analysis. Processes. 2023; 11(1):143. https://doi.org/10.3390/pr11010143
Chicago/Turabian StyleAlzarea, Sami I., Sumera Qasim, Muhammad Afzal, Omar Awad Alsaidan, Hassan H. Alhassan, Metab Alharbi, Mohammed Alqinyah, and Fahaad S. Alenazi. 2023. "Anandamide Reuptake Inhibitor (VDM11) as a Possible Candidate for COVID-19 Associated Depression; a Combination of Network Pharmacology, Molecular Docking and In Vivo Experimental Analysis" Processes 11, no. 1: 143. https://doi.org/10.3390/pr11010143
APA StyleAlzarea, S. I., Qasim, S., Afzal, M., Alsaidan, O. A., Alhassan, H. H., Alharbi, M., Alqinyah, M., & Alenazi, F. S. (2023). Anandamide Reuptake Inhibitor (VDM11) as a Possible Candidate for COVID-19 Associated Depression; a Combination of Network Pharmacology, Molecular Docking and In Vivo Experimental Analysis. Processes, 11(1), 143. https://doi.org/10.3390/pr11010143