Biosorption of Hexavalent Chromium by Bacillus megaterium and Rhodotorula sp. Inactivated Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biosorbents Preparation
2.2. Biosorption Studies
2.3. Determination of Metal Concentration in Solution
2.4. Quantification of Biosorption Performances
- biosorption capacity (q, mg/g) which is defined as the amount of metal taken up by the biosorbent per unit mass (or volume) of biosorbent under established experimental conditions, being calculated with Equation (1).
- removal efficiency (R, %) is the fraction of metal removed expressed in percent and can be calculated using Equation (2):
2.5. Biosorption Kinetics
2.6. Adsorption Isotherms
2.7. Biosorbent Characterization Methods
3. Results and Discussion
3.1. Effect of Initial pH on Cr6+ Biosorption
3.2. Effect of Biomass Dosage on Cr6+ Biosorption
3.3. Effect of Contact Time on Cr6+ Biosorption
3.4. Effect of Initial Cr6+ Concentration on Biosorption
3.5. Effect of Temperature on Cr6+ Biosorption
3.6. Sorption Kinetics
3.7. Biosorption Isotherms
3.8. FTIR and SEM-EDS Analysis of the Biosorbent
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Environment Agency. The European Pollutant Release and Transfer Register (E-PRTR), Member States Reporting under Article 7 of Regulation (EC) No 166/2006—European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/data/member-states-reporting-art-7-under-the-european-pollutant-release-and-transfer-register-e-prtr-regulation-10 (accessed on 11 December 2020).
- Namieśnik, J.; Rabajczyk, A. The Speciation and Physico-Chemical Forms of Metals in Surface Waters and Sediments. Chem. Speciat. Bioavailab. 2010, 22, 1–24. [Google Scholar] [CrossRef]
- Ozturk, B.C. Mapping of Selected Trace Metals and Associated Risk in Coastal Sediments along the Northwest Anatolia Coasts of Turkey. Environ. Eng. Manag. J. 2021, 20, 1999–2012. [Google Scholar] [CrossRef]
- Abubeah, R.; Altaher, H.; Khalil, T. Removal of Hexavalent Chromium Using Two Innovative Adsorbents. Environ. Eng. Manag. J. 2018, 17, 1621–1634. [Google Scholar] [CrossRef]
- Diaconu, M.; Rosca, M.; Cozma, P.; Minut, M.; Smaranda, C.; Hlihor, R.-M.; Gavrilescu, M. Toxicity and Microbial Bioremediation of Chromium Contaminated Effluents. In Proceedings of the 2020 International Conference on E-Health and Bioengineering (EHB), Iasi, Romania, 29–30 October 2020; pp. 1–4. [Google Scholar]
- Langård, S.; Costa, M. Chromium. In Handbook on the Toxicology of Metals; Elsevier: Amsterdam, The Netherlands, 2015; pp. 717–742. ISBN 978-0-444-59453-2. [Google Scholar]
- WHO Chromium. Air Quality Guidelines; WHO Regional Office for Europe: Copenhagen, Denmark, 2000. [Google Scholar]
- Daulton, T.L.; Little, B.J. Determination of Chromium Valence over the Range Cr(0)–Cr(VI) by Electron Energy Loss Spectroscopy. Ultramicroscopy 2006, 106, 561–573. [Google Scholar] [CrossRef]
- Saha, R.; Nandi, R.; Saha, B. Sources and Toxicity of Hexavalent Chromium. J. Coord. Chem. 2011, 64, 1782–1806. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology; Experientia Supplementum; Luch, A., Ed.; Springer: Basel, Switzerland, 2012; pp. 133–164. ISBN 978-3-7643-8340-4. [Google Scholar]
- Daniel, R.; Anjaneyulu, Y.; Krupadam, R.J. Cr (VI) Removal from Electroplating Industrial Effluents: A Greener and Cheaper Method. Zaštita Mater. 2009, 50, 13–18. [Google Scholar]
- Sibi, G. Biosorption of Chromium from Electroplating and Galvanizing Industrial Effluents under Extreme Conditions Using Chlorella Vulgaris. Green Energy Environ. 2016, 1, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.K.; Khandegar, V.; Saroha, A.K. Removal of Chromium from Electroplating Industry Effluent Using Electrocoagulation. J. Hazard. Toxic Radioact. Waste 2013, 17, 146–152. [Google Scholar] [CrossRef]
- Sharma, D.; Chaudhari, P.K.; Prajapati, A.K. Removal of Chromium (VI) and Lead from Electroplating Effluent Using Electrocoagulation. Sep. Sci. Technol. 2020, 55, 321–331. [Google Scholar] [CrossRef]
- Abdulla, H.M.; Kamal, E.M.; Mohamed, A.H.; El-Bassuony, A.D. Chromium Removal from Tannery Wastewater Using Chemical and Biological Techniques Aiming Zero Discharge of Pollution. In Proceeding of Fifth Scientific Environmental Conference, Houston, TX, USA, 12–16 July 2010; pp. 171–183. [Google Scholar]
- Liu, C.-C.; Wang, M.-K.; Chiou, C.-S.; Li, Y.-S.; Lin, Y.-A.; Huang, S.-S. Chromium Removal and Sorption Mechanism from Aqueous Solutions by Wine Processing Waste Sludge. Ind. Eng. Chem. Res. 2006, 45, 8891–8899. [Google Scholar] [CrossRef]
- Rosca, M.; Hlihor, R.-M.; Gavrilescu, M. Bioremediation of Persistent Toxic Substances: From Conventional to New Approaches in Using Microorganisms and Plants. In Microbial Technology for the Welfare of Society; Microorganisms for Sustainability; Arora, P.K., Ed.; Springer: Singapore, 2019; Volume 17, pp. 289–312. ISBN 9789811388439. [Google Scholar]
- Gavrilescu, M. Removal of Heavy Metals from the Environment by Biosorption. Eng. Life Sci. 2004, 4, 219–232. [Google Scholar] [CrossRef]
- Hammoudani, Y.E.; Dimane, F.; Ouarghi, H.E. Removal Efficiency of Heavy Metals by a Biological Wastewater Treatment Plant and Their Potential Risks to Human Health. Environ. Eng. Manag. J. 2021, 8, 995–1002. [Google Scholar] [CrossRef]
- Bulgariu, L.; Gavrilescu, M. Bioremediation of Heavy Metals by Microalgae. In Handbook of Marine Microalgae; Elsevier: Amsterdam, The Netherlands, 2015; pp. 457–469. ISBN 978-0-12-800776-1. [Google Scholar]
- Hlihor, R.; Petronela, C.; Gavrilescu, M. Removal of Heavy Metals from the Environment by Phytoremediation and Microbial Remediation. In Sustainable Solutions for Environmental Pollution; El-Gendy, N.S., Ed.; Wiley: Hoboken, NJ, USA, 2022; pp. 95–146. ISBN 978-1-119-82751-1. [Google Scholar]
- Filote, C.; Roșca, M.; Hlihor, R.M.; Cozma, P.; Simion, I.M.; Apostol, M.; Gavrilescu, M. Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice. Processes 2021, 9, 39. [Google Scholar] [CrossRef]
- Chwastowski, J.; Staroń, P. Influence of Saccharomyces Cerevisiae Yeast Cells Immobilized on Cocos Nucifera Fibers for the Adsorption of Pb(II) Ions. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127735. [Google Scholar] [CrossRef]
- Uysal, O.G.; Demir, A.; Gören, N. Investigation of Cobalt(II) Adsorption from Aqueous. Environ. Eng. Manag. J. 2022, 21, 637–650. [Google Scholar] [CrossRef]
- Abdi, O.; Kazemi, M. A Review Study of Biosorption of Heavy Metals and Comparison between Different Biosorbents. J. Mater. Environ. Sci. 2015, 6, 1386–1399. [Google Scholar]
- Bulgariu, L.; Bulgariu, D.; Rusu, C. Marine Algae Biomass for Removal of Heavy Metal Ions. In Hb25_Springer Handbook of Marine Biotechnology; Kim, S.-K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 611–648. ISBN 978-3-642-53970-1. [Google Scholar]
- Shamim, S. Biosorption of Heavy Metals. In Biosorption; Derco, J., Vrana, B., Eds.; InTech: London, UK, 2018; ISBN 978-1-78923-472-5. [Google Scholar]
- Filote, C.; Roșca, M.; Simion, I.M.; Hlihor, R.M. Continuous Systems Bioremediation of Wastewaters Loaded with Heavy Metals Using Microorganisms. Processes 2022, 10, 1758. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Diaconu, M.; Fertu, D.; Chelaru, C.; Sandu, I.; Tavares, T. Bioremediation of Cr(VI) Polluted Wastewaters by Sorption on Heat Inactivated Saccharomyces Cerevisiae Biomass. Int. J. Environ. Res. 2013, 7, 581–594. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Diaconu, M.; Leon, F.; Curteanu, S.; Tavares, T.; Gavrilescu, M. Experimental Analysis and Mathematical Prediction of Cd(II) Removal by Biosorption Using Support Vector Machines and Genetic Algorithms. New Biotechnol. 2015, 32, 358–368. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, A.; Guha, A.K.; Ray, L. Adsorption Behaviour of Cadmium by Bacillus Cereus M 116: Some Physical and Biochemical Studies. Chem. Speciat. Bioavailab. 2011, 23, 175–182. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, H. Responses of Rhodotorula sp. Y11 to Cadmium. Biometals 2008, 21, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, N.; Vishwakarma, K.; Singh, J.; Mishra, M.; Kumar, V.; Rani, R.; Mishra, R.K.; Chauhan, D.K.; Tripathi, D.K.; Sharma, S. Tolerance and Reduction of Chromium(VI) by Bacillus sp. MNU16 Isolated from Contaminated Coal Mining Soil. Front. Plant Sci. 2017, 8, 778. [Google Scholar] [CrossRef] [PubMed]
- Roşca, M.; Hlihor, R.-M.; Cozma, P.; Drăgoi, E.N.; Diaconu, M.; Silva, B.; Tavares, T.; Gavrilescu, M. Comparison of Rhodotorula sp. and Bacillus megaterium in the Removal of Cadmium Ions from Liquid Effluents. Green Process. Synth. 2018, 7, 74–88. [Google Scholar] [CrossRef] [Green Version]
- US EPA. SW-846 Test Method 7196A: Chromium, Hexavalent (Colorimetric). Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-7196a-chromium-hexavalent-colorimetric (accessed on 15 August 2022).
- Kajjumba, G.W.; Emik, S.; Öngen, A.; Kurtulus Özcan, H.; Aydın, S. Modelling of Adsorption Kinetic Processes—Errors, Theory and Application. In Advanced Sorption Process Applications; Edebali, S., Ed.; IntechOpen: London, UK, 2019; ISBN 978-1-78984-818-2. [Google Scholar]
- Netzahuatl-Muñoz, A.R.; del Carmen Cristiani-Urbina, M.; Cristiani-Urbina, E. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies. PLoS ONE 2015, 10, e0137086. [Google Scholar] [CrossRef] [Green Version]
- An, B. Cu(II) and As(V) Adsorption Kinetic Characteristic of the Multifunctional Amino Groups in Chitosan. Processes 2020, 8, 1194. [Google Scholar] [CrossRef]
- Rangabhashiyam, S.; Anu, N.; Giri Nandagopal, M.S.; Selvaraju, N. Relevance of Isotherm Models in Biosorption of Pollutants by Agricultural Byproducts. J. Environ. Chem. Eng. 2014, 2, 398–414. [Google Scholar] [CrossRef]
- Saadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N.E. Monolayer and Multilayer Adsorption Isotherm Models for Sorption from Aqueous Media. Korean J. Chem. Eng. 2015, 32, 787–799. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef] [Green Version]
- Torkia, Y.B.; Bouaziz, N.; Al-Muhtaseb, S.A.; Lamine, A.B. Adsorption Energy and Pore-Size Distributions of Activated Carbons Calculated Using Hill’s Model. Adsorpt. Sci. Technol. 2014, 32, 571–590. [Google Scholar] [CrossRef] [Green Version]
- Misra, D.N. Jovanovich Adsorption Isotherm for Heterogeneous Surfaces. J. Colloid Interface Sci. 1973, 43, 85–88. [Google Scholar] [CrossRef]
- Vieth, W.R.; Sladek, K.J. A Model for Diffusion in a Glassy Polymer. J. Colloid Sci. 1965, 20, 1014–1033. [Google Scholar] [CrossRef]
- Gonen, Y.; Rytwo, G. Using the Dual-Mode Model to Describe Adsorption of Organic Pollutants onto an Organoclay. J. Colloid Interface Sci. 2006, 299, 95–101. [Google Scholar] [CrossRef]
- Aranda-García, E.; Cristiani-Urbina, E. Hexavalent Chromium Removal and Total Chromium Biosorption from Aqueous Solution by Quercus Crassipes Acorn Shell in a Continuous Up-Flow Fixed-Bed Column: Influencing Parameters, Kinetics, and Mechanism. PLoS ONE 2020, 15, e0227953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jobby, R.; Jha, P.; Gupta, A.; Gupte, A.; Desai, N. Biotransformation of Chromium by Root Nodule Bacteria Sinorhizobium sp. SAR1. PLoS ONE 2019, 14, e0219387. [Google Scholar] [CrossRef] [Green Version]
- Hlihor, R.M.; Figueiredo, H.; Tavares, T.; Gavrilescu, M. Biosorption Potential of Dead and Living Arthrobacter Viscosus Biomass in the Removal of Cr(VI): Batch and Column Studies. Process Saf. Environ. Prot. 2017, 108, 44–56. [Google Scholar] [CrossRef] [Green Version]
- da Rocha Ferreira, G.L.; Vendruscolo, F.; Antoniosi Filho, N.R. Biosorption of Hexavalent Chromium by Pleurotus Ostreatus. Heliyon 2019, 5, e01450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-López, J.A.; Angosto, J.M.; Avilés, M.D. Biosorption of Hexavalent Chromium from Aqueous Medium with Opuntia Biomass. Sci. World J. 2014, 2014, 670249. [Google Scholar] [CrossRef] [Green Version]
- Ojiagu, D.K.; Odibo, C.F.J.; Ojiagu, C.; Agu, K.C.; Okafor, A.C. Biosorption of Hexavalent Chromium by Pseudomonas Aeruginosa Strain ANSC: Equilibria Isothermic, Kinetic and Thermodynamic Studies. Bioeng. Biosci. 2018, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Srinath, T.; Verma, T.; Ramteke, P.W.; Garg, S.K. Chromium (VI) Biosorption and Bioaccumulation by Chromate Resistant Bacteria. Chemosphere 2002, 48, 427–435. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Absi, R.S. Mechanistic Understanding of the Adsorption and Thermodynamic Aspects of Cationic Methylene Blue Dye onto Cellulosic Olive Stones Biomass from Wastewater. Sci. Rep. 2020, 10, 15928. [Google Scholar] [CrossRef]
- Volesky, B. Biosorption Process Simulation Tools. Hydrometallurgy 2003, 71, 179–190. [Google Scholar] [CrossRef]
- Tang, X.; Huang, Y.; Li, Y.; Wang, L.; Pei, X.; Zhou, D.; He, P.; Hughes, S.S. Study on Detoxification and Removal Mechanisms of Hexavalent Chromium by Microorganisms. Ecotoxicol. Environ. Saf. 2021, 208, 111699. [Google Scholar] [CrossRef]
- Pagnanelli, F. Equilibrium, Kinetic and Dynamic Modelling of Biosorption Processes. In Microbial Biosorption of Metals; Kotrba, P., Mackova, M., Macek, T., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 59–120. ISBN 978-94-007-0442-8. [Google Scholar]
- Rosca, M.; Hlihor, R.M.; Cozma, P.; Simion, I.M.; Filote, C.; Grecu, C.; Stoleru, V.; Gavrilescu, M. Scaling-Up Strategies of Heavy Metals Microbial Bioremediation. In Proceedings of the 2021 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 18–19 November 2021; pp. 1–4. [Google Scholar]
- Temel, F.A.; Avci, E.; Turan, N.G. Investigation of Copper(II), Zinc(II) and Lead(II) Removal onto Expanded Perlite by Adsorption from the Wastes of Metal Casting Industry: Statistical Modeling and Optimization. Environ. Eng. Manag. J. 2022, 21, 757–767. [Google Scholar] [CrossRef]
- Shahmohammadi-Kalalagh, S.; Babazadeh, H.; Nazemi, A. Comparison of Linear and Nonlinear Forms of Isotherm Models for Zn(II) and Cu(II) Sorption on a Kaolinite. Arab J Geosci 2015, 8, 397–402. [Google Scholar] [CrossRef]
- Tsai, S.-C.; Juang, K.-W. Comparison of Linear and Nonlinear Forms of Isotherm Models for Strontium Sorption on a Sodium Bentonite. J. Radioanal. Nucl. Chem. 2000, 243, 741–746. [Google Scholar] [CrossRef]
- Yaneva, Z.L.; Koumanova, B.K.; Georgieva, N.V. Linear and Nonlinear Regression Methods for Equilibrium Modelling of p -Nitrophenol Biosorption by Rhizopus Oryzae: Comparison of Error Analysis Criteria. J. Chem. 2013, 2013, 517631. [Google Scholar] [CrossRef] [Green Version]
- Rosca, M.; Diaconu, M.; Hlihor, R.-M.; Cozma, P.; Gavrilescu, M. Prediction of Equillibrium Sorption Isotherm for Cadmium Biosorption by Microorganisms: Comparison of Linear and Nonlinear Methods. In Proceedings of the 2020 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 29–30 October 2020; pp. 1–4. [Google Scholar]
- Ayele, A.; Godeto, Y.G. Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups. J. Chem. 2021, 2021, 7694157. [Google Scholar] [CrossRef]
- Rahman, Z.; Thomas, L. Chemical-Assisted Microbially Mediated Chromium (Cr) (VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr(VI) Removal. Front. Microbiol. 2021, 11, 619766. [Google Scholar] [CrossRef] [PubMed]
- Hossan, S.; Hossain, S.; Islam, M.R.; Kabir, M.H.; Ali, S.; Islam, M.S.; Imran, K.M.; Moniruzzaman, M.; Mou, T.J.; Parvez, A.K.; et al. Bioremediation of Hexavalent Chromium by Chromium Resistant Bacteria Reduces Phytotoxicity. Int. J. Environ. Res. Public Health 2020, 17, 6013. [Google Scholar] [CrossRef]
- Petrović, M.; Šoštarić, T.; Stojanović, M.; Petrović, J.; Mihajlović, M.; Ćosović, A.; Stanković, S. Mechanism of Adsorption of Cu2+ and Zn2+ on the Corn Silk (Zea mays L.). Ecol. Eng. 2017, 99, 83–90. [Google Scholar] [CrossRef]
- Simić, M.; Petrović, J.; Šoštarić, T.; Ercegović, M.; Milojković, J.; Lopičić, Z.; Kojić, M. A Mechanism Assessment and Differences of Cadmium Adsorption on Raw and Alkali-Modified Agricultural Waste. Processes 2022, 10, 1957. [Google Scholar] [CrossRef]
- Petrović, M.; Šoštarić, T.; Stojanović, M.; Milojković, J.; Mihajlović, M.; Stanojević, M.; Stanković, S. Removal of Pb2+ Ions by Raw Corn Silk (Zea mays L.) as a Novel Biosorbent. J. Taiwan Inst. Chem. Eng. 2016, 58, 407–416. [Google Scholar] [CrossRef]
- Pradhan, D.; Sukla, L.B.; Mishra, B.B.; Devi, N. Biosorption for Removal of Hexavalent Chromium Using Microalgae Scenedesmus sp. J. Clean. Prod. 2019, 209, 617–629. [Google Scholar] [CrossRef]
- Talari, A.C.S.; Martinez, M.A.G.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Advances in Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2017, 52, 456–506. [Google Scholar] [CrossRef]
- Duygu, D.Y.; Udoh, A.U.; Ozer, T.B.; Akbulut, A.; Erkaya, I.A.; Yildiz, K.; Guler, D. Fourier Transform Infrared (FTIR) Spectroscopy for Identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Afr. J. Biotechnol. 2012, 11, 3817–3824. [Google Scholar] [CrossRef]
- Shan, B.; Hao, R.; Xu, H.; Zhang, J.; Li, J.; Li, Y.; Ye, Y. Hexavalent Chromium Reduction and Bioremediation Potential of Fusarium Proliferatum S4 Isolated from Chromium-Contaminated Soil. Environ. Sci. Pollut. Res. 2022, 29, 78292–78302. [Google Scholar] [CrossRef]
Experiments | Factors Values | ||||
---|---|---|---|---|---|
pH | Biosorbent Dose (g/L) | Contact Time (Minutes) | Initial Concentration (mg/L) | Temperature (°C) | |
1—Effect of initial pH | 1–5 | 5 | 2880 | 51.03 | 25 |
2—Effect of biosorbent dose | 1 | 1–10 | 2880 | 51.03 | 25 |
3—Effect of contact time | 1 | 8 | 10–4320 | 96.29 | 25 |
4—Effect of initial concentration | 1 | 8 | 2880 | 25.29–402.52 | 25 |
5—Effect of temperature | 1 | 8 | 2880 | 201.87 | 25–40 |
Parameter | Value |
---|---|
Optimum pH | 2 |
Color Reagent | Diphenyl carbazide in acetone, 5 g/L |
Buffer | H2SO4, 10% |
Wavelength (λmax, nm) | 540 |
Reference sample | Blank |
Linear range, (mg/L) | 0.1–1 |
Equation | y = 0.7588x + 0.0127 |
Regression coefficient | 0.9997 |
Kinetic Model | Parameters | B. megaterium | Rhodotorula sp. | ||
---|---|---|---|---|---|
Parameter Value | SE | Parameter Value | SE | ||
Pseudo I order | k1 | 0.031 | 0.012 | 0.024 | 0.008 |
qe (mg/g) | 9.496 | 0.611 | 10.001 | 0.635 | |
R2 | 0.7169 | - | 0.7821 | - | |
Pseudo II order | k2 | 0.003 | 0.001 | 0.003 | 0.001 |
qe (mg/g) | 10.427 | 0.584 | 11.029 | 0.587 | |
R2 | 0.8451 | - | 0.8947 | - | |
Elovich | α (mg/g·min) | 4.091 | 1.324 | 2.684 | 0.740 |
β (mg/g·min) | 0.786 | 0.042 | 0.685 | 0.036 | |
R2 | 0.9868 | 0.9887 | - | ||
Intraparticle diffusion | kdiff (mg/g) | 0.157 | 0.027 | 0.189 | 0.036 |
Ce (mg/L) | 4.684 | 0.725 | 4.614 | 0.855 | |
R2 | 0.7559 | - | 0.7282 | - | |
q experimental | 11.888 | 0.004 | 12.031 | 0.016 |
Isotherm Model | Isotherm Parameters | B. megaterium | Rhodotorula sp. | ||
---|---|---|---|---|---|
Parameter Value | SE | Parameter Value | SE | ||
Langmuir | qm (mg/g) | 32.072 | 5.292 | 39.597 | 3.392 |
b (L/mg) | 0.101 | 0.078 | 3.426 | 1.158 | |
RL | 0.281–0.024 | - | 0.011–0.0007 | - | |
R2 | 0.7788 | - | 0.8829 | - | |
Freundlich | k (mg/g) | 11.382 | 1.436 | 21.516 | 1.851 |
n | 4.817 | 0.739 | 3.734 | 0.511 | |
R2 | 0.9432 | - | 0.9382 | - | |
Redlich-Peterson | AR (L/g) | 9.383 × 107 | 4.282 × 106 | 260.71 | 200.22 |
BR (mg/mL) | 8.223 × 106 | 3.772 × 105 | 9.47 | 8.988 | |
mR | 0.793 | 0.041 | 0.831 | 0.083 | |
R2 | 0.9351 | - | 0.9167 | - | |
Jovanovic | qm (mg/g) | 29.671 | 4.129 | 36.993 | 3.363 |
KJ (L/mg) | 0. 054 | 0.028 | 2.942 | 0.929 | |
R2 | 0.7357 | - | 0.8522 | - | |
Hill | qm (mg/g) | 3.169 × 106 | 3.02 × 105 | 79.681 | 71.36 |
KD | 278,679.31 | 2.66 × 104 | 2.451 | 3.445 | |
nH | 0.207 | 0.111 | 0.402 | 0.194 | |
R2 | 0.9351 | - | 0.9015 | - | |
Dual Mode | qm (mg/g) | 12.815 | 1.591 | 29.899 | 3.970 |
Kd (L/g) | 0.193 | 0.026 | 0.880 | 0.306 | |
b (L/mg) | 284.31 | 215.75 | 5.713 | 2.035 | |
R2 | 0.9386 | - | 0.9077 | - | |
qmax experimental (mg/g) | 34.808 | 0.019 | 47.70 | 0.115 |
Peak | Types of Vibration | Ref. | |
---|---|---|---|
Native Biomass | Cr6+ Loaded Biomass | ||
Bacillus megaterium | |||
- | 836.67 | S=O stretching | [65,67,69,70,71,72] |
1064.01 | 1060.15 | P=O symmetric stretching of phosphate groups, –OH group of polysaccharides; C–O stretching of alcoholic groups, of ethers | |
1233.54 | 1229.69 | P=O asymmetric stretching of phosphate groups, carbonyl stretch C=O of carboxylic acid | |
1545.65 | 1541.79 | C–N stretching in amide II group and N–H bending | |
1649.68 | 1653.53 | C=O and C–N stretching in amide I group | |
3476.05 | 3402.84 | Stretching vibrations of hydroxyl groups | |
Rhodotorula sp. | |||
1033.18 | 1029.33 | P=O symmetric stretching of phosphate groups, –OH group of polysaccharides; C–O stretching of alcoholic groups, of ethers | [65,67,69,70,71,72] |
1152.63 | 1156.48 | P=O asymmetric stretching of phosphate groups, carbonyl stretch C=O of carboxylic acid | |
1403.08 | 1399.23 | –COO− symmetric stretching of carboxyl groups | |
1457.02 | 1460.87 | –CH2 bending, symmetric C=O | |
3391.28 | 3410.55 | Stretching vibrations of hydroxyl groups |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roșca, M.; Silva, B.; Tavares, T.; Gavrilescu, M. Biosorption of Hexavalent Chromium by Bacillus megaterium and Rhodotorula sp. Inactivated Biomass. Processes 2023, 11, 179. https://doi.org/10.3390/pr11010179
Roșca M, Silva B, Tavares T, Gavrilescu M. Biosorption of Hexavalent Chromium by Bacillus megaterium and Rhodotorula sp. Inactivated Biomass. Processes. 2023; 11(1):179. https://doi.org/10.3390/pr11010179
Chicago/Turabian StyleRoșca, Mihaela, Bruna Silva, Teresa Tavares, and Maria Gavrilescu. 2023. "Biosorption of Hexavalent Chromium by Bacillus megaterium and Rhodotorula sp. Inactivated Biomass" Processes 11, no. 1: 179. https://doi.org/10.3390/pr11010179
APA StyleRoșca, M., Silva, B., Tavares, T., & Gavrilescu, M. (2023). Biosorption of Hexavalent Chromium by Bacillus megaterium and Rhodotorula sp. Inactivated Biomass. Processes, 11(1), 179. https://doi.org/10.3390/pr11010179