Thermodynamic and Economic Evaluation of a Novel Green Methanol Poly-Generation System
Abstract
:1. Introduction
2. Process Simulation
2.1. Parabolic Trough Collectors
2.2. Organic Rankine Cycle
2.3. CO2 Capture Unit
2.4. Alkaline Electrolysis Unit
2.5. Green Methanol Synthesis and Distillation
2.6. Absorption Refrigeration System
- High-pressure generator (HP generator): Heating of concentrated dilute lithium bromide solutions to produce high-temperature refrigerant vapor and concentrated lithium bromide solutions;
- Low-pressure generator (LP generator): Generating low-temperature refrigerant vapor into the condenser;
- Condenser: Condensing low-temperature refrigerant vapor into refrigerant water in the evaporator;
- Evaporator: Making the refrigerant water evaporate and absorb heat to supply low- temperature refrigerant water;
- Absorber: The concentrated solution of lithium bromide in the absorber absorbs the refrigerant vapor produced in the evaporator and transfers the absorbed heat to the external cooling water;
- High-temperature solution heat exchanger: The higher-temperature concentrated solution from the high-pressure generator exchanges heat with the lower-temperature dilute solution from the absorber;
- Low-temperature solution heat exchanger: The concentrated solution from the LP generator exchanges heat with the dilute solution.
3. Thermodynamic and Economic Analysis
3.1. Thermodynamic Analysis
3.2. Economic Analysis
4. Result and Discussion
4.1. Parametric Analysis
4.2. Thermodynamic Analysis Results
4.3. Economic Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakhtyari, A.; Mofarahi, M.; Lee, C.-H. CO2 adsorption by conventional and nanosized zeolites. In Advances in Carbon Capture; Woodhead Publishing: Sawston, UK, 2020; pp. 193–228. [Google Scholar]
- Chen, J.M. Carbon neutrality: Toward a sustainable future. Innovation 2021, 2, 100127. [Google Scholar] [CrossRef] [PubMed]
- IPCC Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. Available online: https://www.ipcc.ch/sr15/ (accessed on 10 July 2022).
- Kauw, M.; Benders, R.M.; Visser, C. Green methanol from hydrogen and carbon dioxide using geothermal energy and/or hydropower in Iceland or excess renewable electricity in Germany. Energy 2015, 90, 208–217. [Google Scholar] [CrossRef]
- Lacerda de Oliveira Campos, B.; John, K.; Beeskow, P.; Herrera Delgado, K.; Pitter, S.; Dahmen, N.; Sauer, J. A Detailed Process and Techno-Economic Analysis of Methanol Synthesis from H2 and CO2 with Intermediate Condensation Steps. Processes 2022, 10, 1535. [Google Scholar] [CrossRef]
- Van-Dal, S.; Bouallou, C. Design and simulation of a methanol production plant from CO2 hydrogenation. J. Clean. Prod. 2013, 57, 38–45. [Google Scholar] [CrossRef]
- Kumar, K.; Alam, M.; Verma, S.; Dutta, V. Effect of hysteresis band control strategy on energy efficiency and durability of solar-hydrogen storage based microgrid in partial cloudy condition. J. Energy Storage 2020, 32, 101936. [Google Scholar] [CrossRef]
- Khairat Dawood, M.M.; Nabil, T.; Kabeel, A.E.; Shehata, A.I.; Abdalla, A.M.; Elnaghi, B.E. Experimental study of produc-tivity progress for a solar still integrated with parabolic trough collectors with a phase change material in the receiver evacuated tubes and in the still. J. Energy Storage 2020, 32, 102007. [Google Scholar] [CrossRef]
- Atmane, I.; El Moussaoui, N.; Kassmi, K.; Deblecker, O.; Bachiri, N. Development of an Innovative Cooker (Hot Plate) with Photovoltaic Solar Energy. J. Energy Storage 2021, 36, 102399. [Google Scholar] [CrossRef]
- Senthil, R.; Cheralathan, M. Enhancement of the thermal energy storage capacity of a parabolic dish concentrated solar receiver using phase change materials. J. Energy Storage 2019, 25, 100841. [Google Scholar] [CrossRef]
- Huang, W.; Marefati, M. Energy, exergy, environmental and economic comparison of various solar thermal systems using water and Thermia Oil B base fluids, and CuO and Al2O3 nanofluids. Energy Rep. 2020, 6, 2919–2947. [Google Scholar] [CrossRef]
- Behar, O.; Khellaf, A.; Mohammedi, K. A novel parabolic trough solar collector model—Validation with experimental data and comparison to Engineering Equation Solver (EES). Energy Convers. Manag. 2015, 106, 268–281. [Google Scholar] [CrossRef]
- Shahin, M.S.; Orhan, M.F.; Uygul, F. Thermodynamic analysis of parabolic trough and heliostat field solar collectors integrated with a Rankine cycle for cogeneration of electricity and heat. Sol. Energy 2016, 136, 183–196. [Google Scholar] [CrossRef]
- Petrollese, M.; Cocco, D. Robust optimization for the preliminary design of solar organic Rankine cycle (ORC) systems. Energy Convers. Manag. 2019, 184, 338–349. [Google Scholar] [CrossRef]
- Martín, M. Methodology for solar and wind energy chemical storage facilities design under uncertainty: Methanol production from CO2 and hydrogen. Comput. Chem. Eng. 2016, 92, 43–54. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Dincer, I. Investigation and assessment of a novel solar-driven integrated energy system. Energy Convers. Manag. 2018, 158, 246–255. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Ghorbani, B.; Hosseini, S.S. Thermodynamic and economic evaluation of a novel concentrated solar power system integrated with absorption refrigeration and desalination cycles. Energy Convers. Manag. 2018, 175, 337–356. [Google Scholar] [CrossRef]
- Liu, X.; Yang, X.; Yu, M.; Zhang, W.; Wang, Y.; Cui, P.; Zhu, Z.; Ma, Y.; Gao, J. Energy, exergy, economic and environmental (4E) analysis of an integrated process combining CO2 capture and storage, an organic Rankine cycle and an absorption refrigeration cycle. Energy Convers. Manag. 2020, 210, 112738. [Google Scholar] [CrossRef]
- Liu, X.; Liang, J.; Xiang, D.; Yang, S.; Qian, Y. A proposed coal-to-methanol process with CO2 capture combined Organic Rankine Cycle (ORC) for waste heat recovery. J. Clean. Prod. 2016, 129, 53–64. [Google Scholar] [CrossRef]
- Chein, R.-Y.; Chen, W.-H.; Ong, H.C.; Show, P.L.; Singh, Y. Analysis of methanol synthesis using CO2 hydrogenation and syngas produced from biogas-based reforming processes. Chem. Eng. J. 2021, 426, 130835. [Google Scholar] [CrossRef]
- Battaglia, P.; Buffo, G.; Ferrero, D.; Santarelli, M.; Lanzini, A. Methanol synthesis through CO2 capture and hydrogenation: Thermal integration, energy performance and techno-economic assessment. J. CO2 Util. 2020, 44, 101407. [Google Scholar] [CrossRef]
- Vo, T.T.; Wall, D.M.; Ring, D.; Rajendran, K.; Murphy, J.D. Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation. Appl. Energy 2018, 212, 1191–1202. [Google Scholar] [CrossRef]
- Sun, K.; Zhao, T.; Wu, S.; Yang, S. Comprehensive evaluation of concentrated solar collector and Organic Rankine cycle hybrid energy process with considering the effects of different heat transfer fluids. Energy Rep. 2021, 7, 362–384. [Google Scholar] [CrossRef]
- White, C.W. ASPEN Plus Simulation of CO2 Recovery Process; DOE/NETL-2002/1182; NETL: Pittsburgh, PA, USA, 2002. [Google Scholar]
- Akinola, T.E.; Oko, E.; Wang, M. Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation. Fuel 2018, 236, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Zacchello, B.; Oko, E.; Wang, M.; Fethi, A. Process simulation and analysis of carbon capture with an aqueous mixture of ionic liquid and monoethanolamine solvent. Int. J. Coal Sci. Technol. 2016, 4, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, J.N.; Jensen, J.N.; Vilhelmsen, P.-J.; Biede, O. Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. Energy Procedia 2009, 1, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Zhao, M.; Yang, Y. Integration and optimization study on the coal-fired power plant with CO 2 capture using MEA. Energy 2012, 45, 107–116. [Google Scholar] [CrossRef]
- Ursua, A.; Gandia, L.M.; Sanchis, P. Hydrogen Production from Water Electrolysis: Current Status and Future Trends. Proc. IEEE 2012, 100, 410–426. [Google Scholar] [CrossRef]
- Van-Dal, É.S.; Bouallou, C. CO2 Abatement Through a Methanol Production Process. Chem. Eng. Trans. 2012, 29, 463–468. [Google Scholar]
- Xin, A.; Yizan, Z.; Qiang, Z.; Jinfu, W.A. Methanol Synthesis from CO2 Hydrogenation with a Cu/Zn/Al/Zr Fibrous Catalyst. Chin. J. Chem. Eng. 2009, 17, 88–94. [Google Scholar]
- Wang, D.; Li, J.; Meng, W.; Wang, J.; Wang, K.; Zhou, H.; Yang, Y.; Fan, Z.; Fan, X. Integrated Process for Producing Glycolic Acid from Carbon Dioxide Capture Coupling Green Hydrogen. Processes 2022, 10, 1610. [Google Scholar] [CrossRef]
- Lim, H.-W.; Park, M.-J.; Kang, S.-H.; Chae, H.-J.; Bae, J.W.; Jun, A.-W. Modeling of the Kinetics for Methanol Synthesis using Cu/ZnO/Al2O3/ZrO2 Catalyst: Influence of Carbon Dioxide during Hydrogenation. Ind. Eng. Chem. Res. 2009, 48, 10448–10455. [Google Scholar] [CrossRef]
- Kiss, A.A.; Pragt, J.J.; Vos, H.J.; Bargeman, G.; de Groot, M.T. Novel efficient process for methanol synthesis by CO2 hy-drogenation. Chem. Eng. J. 2016, 284, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Milani, D.; Khalilpour, R.; Zahedi, G.; Abbas, A. A model-based analysis of CO2 utilization in methanol synthesis plant. J. CO2 Util. 2015, 10, 12–22. [Google Scholar] [CrossRef]
- Mussati, S.F.; Cignitti, S.; Mansouri, S.S.; Gernaey, K.V.; Morosuk, T.; Mussati, M.C. Configuration optimization of series flow double-effect water-lithium bromide absorption refrigeration systems by cost minimization. Energy Convers. Manag. 2018, 158, 359–372. [Google Scholar] [CrossRef]
- Zhou, C.; Lv, F.; Wan, Z.; Wang, Y.; Luo, C. A double-effect/two-stage absorption refrigeration and thermal energy storage hybrid cycle using dual working fluids. Appl. Therm. Eng. 2022, 214, 118858. [Google Scholar] [CrossRef]
- Li, G.; Liu, Z.; Liu, F.; Yang, B.; Ma, S.; Weng, Y.; Zhang, Y.; Fang, Y. Advanced exergy analysis of ash agglomerating fluidized bed gasification. Energy Convers. Manag. 2019, 199, 111952. [Google Scholar] [CrossRef]
- Niasar, M.S.; Amidpour, M. Conceptual design and exergy analysis of an integrated structure of natural gas liquefaction and production of liquid fuels from natural gas using Fischer-Tropsch synthesis. Cryogenics 2018, 89, 29–41. [Google Scholar] [CrossRef]
- Zhao, X.; You, F. Waste respirator processing system for public health protection and climate change mitigation under COVID-19 pandemic: Novel process design and energy, environmental, and techno-economic perspectives. Appl. Energy 2020, 283, 116129. [Google Scholar] [CrossRef]
- Dongliang, W.; Wenliang, M.; Huairong, Z.; Guixian, L.; Yong, Y.; Hongwei, L. Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission. Energy 2021, 231, 120970. [Google Scholar] [CrossRef]
- Irena And Methanol Institute. Innovation Outlook: Renewable Methanol, International Renewable Energy Agency; Irena And Methanol Institute: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
Operating Parameter | NETL [24] | Developed Model |
---|---|---|
CRR | 71.3 | 80.0 |
qreb (kJ/g CO2) | 6.05 | 6.18 |
L/G ratio | 4.80 | 5.40 |
Reaction | Enthalpy Variation |
---|---|
Parameters | Unit | This Work | Reference [37] |
---|---|---|---|
Pressure in HP generator | kPa | 7.777 | 7.777 |
Pressure in LP generator | kPa | 93 | 92.6 |
Weak solution concentration in the absorber | Mass% | 57.52 | 57.67 |
Strong solution concentration in HP generator | Mass% | 60.19 | 60.37 |
Strong solution concentration in LP generator | Mass% | 63.82 | 62.92 |
Refrigerant temperature in evaporator | °C | 5 | 5 |
COP | - | 1.45 | 1.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Q.; Bao, Y.; Pan, H.; Liu, Y.; Yuan, P. Thermodynamic and Economic Evaluation of a Novel Green Methanol Poly-Generation System. Processes 2023, 11, 206. https://doi.org/10.3390/pr11010206
Ye Q, Bao Y, Pan H, Liu Y, Yuan P. Thermodynamic and Economic Evaluation of a Novel Green Methanol Poly-Generation System. Processes. 2023; 11(1):206. https://doi.org/10.3390/pr11010206
Chicago/Turabian StyleYe, Qiliang, Yipeng Bao, Hui Pan, Yulan Liu, and Peiqing Yuan. 2023. "Thermodynamic and Economic Evaluation of a Novel Green Methanol Poly-Generation System" Processes 11, no. 1: 206. https://doi.org/10.3390/pr11010206
APA StyleYe, Q., Bao, Y., Pan, H., Liu, Y., & Yuan, P. (2023). Thermodynamic and Economic Evaluation of a Novel Green Methanol Poly-Generation System. Processes, 11(1), 206. https://doi.org/10.3390/pr11010206