Device Testing: High-Efficiency and High-Uniformity Microwave Water Treatment System Based on Horn Antennas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometry Model
2.2. Simulation Settings and Governing Equations
2.3. Horn Antenna
2.4. Quarter-Wavelength Matching Layers
2.5. Boundary Conditions
2.6. Experimental System
3. Results
3.1. Experimental Validation
3.2. Sensitivity Analysis
3.2.1. Effect of Fluid Velocity and Height on Heating Uniformity
3.2.2. Effects of Saline Water on Heating Uniformity and Electric Field Distribution
3.2.3. Effects of Load’s Dielectric Properties on Heating Performance
3.2.4. Effect of Sawtooth Structure on the Heating Uniformity
3.2.5. Compared to Conventional Multimode Cavity
3.2.6. Scale-Up
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campañone, L.A.; Zaritzky, N.E. Mathematical analysis of microwave heating process. J. Food Eng. 2005, 69, 359–368. [Google Scholar] [CrossRef]
- Ye, H.; Dai, W.; Chen, X.; Zhang, H.; Bie, S.; Jiang, J. High-Selectivity Frequency-Selective Rasorber Based on Low-Profile Bandpass Filter. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 150–154. [Google Scholar] [CrossRef]
- Zhu, H.; Shu, W.; Xu, C.; Yang, Y.; Huang, K.; Ye, J. Novel electromagnetic-black-hole-based high-efficiency single-mode microwave liquid-phase food heating system. Innov. Food Sci. Emerg. Technol. 2022, 78, 103012. [Google Scholar] [CrossRef]
- Kosai, S.; Kurogi, D.; Kozaki, K.; Yamasue, E. Distributed recycling system with microwave-based heating for obsolete alkaline batteries. Resour. Environ. Sustain. 2022, 9, 100071. [Google Scholar] [CrossRef]
- Šeremet, D.; Jokić, S.; Aladić, K.; Vojvodić Cebin, A.; Božac, N.; Mandura, A.; Komes, D. Optimization of heat-, microwave-assisted and subcritical water extraction of phenolic compounds from ground ivy (Glechoma hederacea L.) using response surface methodology. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100346. [Google Scholar] [CrossRef]
- Lin, L.; Yuan, S.; Chen, J.; Wang, L.; Wan, J.; Lu, X. Treatment of chloramphenicol-contaminated soil by microwave radiation. Chemosphere 2010, 78, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Rao, B.; Su, J.; Xu, S.; Pang, H.; Xu, P.; Zhang, Y.; Zhu, J.; Tu, H. Thermal and non-thermal mechanism of microwave irradiation on moisture content reduction of municipal sludge. Water Res. 2022, 226, 119231. [Google Scholar] [CrossRef]
- Liu, J.; Wei, Y.; Li, K.; Tong, J.; Wang, Y.; Jia, R. Microwave-acid pretreatment: A potential process for enhancing sludge dewaterability. Water Res. 2016, 90, 225–234. [Google Scholar] [CrossRef]
- Sun, J.; Liu, L.; Yang, F. Electro-enhanced chlorine-mediated ammonium nitrogen removal triggered by an optimized catalytic anode for sustainable saline wastewater treatment. Sci. Total Environ. 2021, 776, 146035. [Google Scholar] [CrossRef]
- Bhatia, D.; Sharma, N.R.; Singh, J.; Kanwar, R.S. Biological methods for textile dye removal from wastewater: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1836–1876. [Google Scholar] [CrossRef]
- Kanagaraj, J.; Senthilvelan, T.; Panda, R.C. Degradation of azo dyes by laccase: Biological method to reduce pollution load in dye wastewater. Clean Technol. Environ. Policy 2015, 17, 1443–1456. [Google Scholar] [CrossRef]
- Qi, Y.; Mei, Y.; Li, J.; Yao, T.; Yang, Y.; Jia, W.; Tong, X.; Wu, J.; Xin, B. Highly efficient microwave-assisted Fenton degradation of metacycline using pine-needle-like CuCo2O4 nanocatalyst. Chem. Eng. J. 2019, 373, 1158–1167. [Google Scholar] [CrossRef]
- Eskicioglu, C.; Kennedy, K.J.; Droste, R.L. Enhanced disinfection and methane production from sewage sludge by microwave irradiation. Desalination 2009, 248, 279–285. [Google Scholar] [CrossRef]
- Gifford, M.; Liu, J.; Rittmann, B.E.; Vannela, R.; Westerhoff, P. Phosphorus recovery from microbial biofuel residual using microwave peroxide digestion and anion exchange. Water Res. 2015, 70, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, X.; Wang, P.; Jiang, H.; Xu, H.; Shi, S.; Huang, J. Treatment of phenol wastewater by microwave-induced ClO2-CuOx/Al2O3 catalytic oxidation process. J. Environ. Sci. 2007, 19, 1510–1515. [Google Scholar] [CrossRef]
- Zhao, C.; Xue, L.; Shi, H.; Chen, W.; Zhong, Y.; Zhang, Y.; Zhou, Y.; Huang, K. Simultaneous degradation of p-nitrophenol and reduction of Cr(VI) in one step using microwave atmospheric pressure plasma. Water Res. 2022, 212, 118124. [Google Scholar] [CrossRef]
- Liu, S.-T.; Huang, J.; Ye, Y.; Zhang, A.-B.; Pan, L.; Chen, X.-G. Microwave enhanced Fenton process for the removal of methylene blue from aqueous solution. Chem. Eng. J. 2013, 215–216, 586–590. [Google Scholar] [CrossRef]
- Li, S.; Zhang, G.; Wang, P.; Zheng, H.; Zheng, Y. Microwave-enhanced Mn-Fenton process for the removal of BPA in water. Chem. Eng. J. 2016, 294, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Falciglia, P.P.; Maddalena, R.; Mancuso, G.; Messina, V.; Vagliasindi, F.G.A. Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy. J. Environ. Manag. 2016, 167, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Vadivambal, R.; Jayas, D.S. Non-uniform Temperature Distribution During Microwave Heating of Food Materials—A Review. Food Bioprocess Technol. 2010, 3, 161–171. [Google Scholar] [CrossRef]
- Ye, J.; Zhu, H.; Yang, Y.; Huang, K.; Vijaya Raghavan, G.S. Dynamic analysis of a continuous-flow microwave-assisted screw propeller system for biodiesel production. Chem. Eng. Sci. 2019, 202, 146–156. [Google Scholar] [CrossRef]
- Shen, X.; Li, H.; Zhao, Z.; Li, X.; Liu, K.; Gao, X. Imaging of liquid temperature distribution during microwave heating via thermochromic metal organic frameworks. Int. J. Heat Mass Transf. 2022, 189, 122667. [Google Scholar] [CrossRef]
- Zhao, P.; Gan, W.; Feng, C.; Qu, Z.; Liu, J.; Wu, Z.; Gong, Y.; Zeng, B. Multiphysics analysis for unusual heat convection in microwave heating liquid. AIP Adv. 2020, 10, 085201. [Google Scholar] [CrossRef]
- Rakesh, V.; Datta, A.K.; Walton, J.H.; McCarthy, K.L.; McCarthy, M.J. Microwave combination heating: Coupled electromagnetics- multiphase porous media modeling and MRI experimentation. AIChE J. 2012, 58, 1262–1278. [Google Scholar] [CrossRef]
- Zhao, H.; Li, H.; Li, X.; Gao, X. Process intensification for improving the uniformity and efficiency of microwave heating reactor by bubbles-enhanced flow method. Appl. Therm. Eng. 2021, 197, 117346. [Google Scholar] [CrossRef]
- Cuccurullo, G.; Giordano, L.; Viccione, G. Numerical and experimental modeling for thermal developing pipe flow with microwave heating. Int. J. Mech. 2016, 10, 68–74. [Google Scholar]
- Zhang, Y.; Yang, H.; Yan, B.; Zhu, H.; Gao, W.; Zhao, J.; Zhang, H.; Chen, W.; Fan, D. Continuous flow microwave system with helical tubes for liquid food heating. J. Food Eng. 2021, 294, 110409. [Google Scholar] [CrossRef]
- Martins, C.P.C.; Cavalcanti, R.N.; Couto, S.M.; Moraes, J.; Esmerino, E.A.; Silva, M.C.; Raices, R.S.L.; Gut, J.A.W.; Ramaswamy, H.S.; Tadini, C.C.; et al. Microwave Processing: Current Background and Effects on the Physicochemical and Microbiological Aspects of Dairy Products. Compr. Rev. Food Sci. Food Saf. 2019, 18, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Liu, S.; Han, Z.; Ma, R.; Cui, C.; Sun, S. Scaled-up microwave pyrolysis of sludge for hydrogen-rich biogas and life cycle assessment: Parameters synergistic optimization, carbon footprint analysis and technology upgrade. Chem. Eng. J. 2023, 452, 139551. [Google Scholar] [CrossRef]
- Shi, W.-D.; Wang, C.; Yan, W.-C. Model-based design and operation of coaxial probe-type microwave reactor toward large-scale production of nanoparticles. Chem. Eng. Sci. 2022, 264, 118162. [Google Scholar] [CrossRef]
- Lai, S.; Qiao, J.; Rasool, N.; Li, K.; Zhu, H.; Yang, Y. A dynamic impedance matching algorithm of three-stub tuners based on equivalent circuit analysis. J. Microw. Power Electromagn. Energy 2020, 54, 330–347. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Zhou, Y.; Zhong, Y.; Zhong, N.; Jia, S.; Huang, K. Investigation of microwave enhanced catalytic degradation of VOCs with a novel double ridge field compressed cavity. Chem. Eng. J. 2022, 442, 136181. [Google Scholar] [CrossRef]
- Yang, P.-A.; Huang, Y.; Li, R.; Huang, X.; Ruan, H.; Shou, M.; Li, W.; Zhang, Y.; Li, N.; Dong, L. Optimization of Fe@Ag core–shell nanowires with improved impedance matching and microwave absorption properties. Chem. Eng. J. 2022, 430, 132878. [Google Scholar] [CrossRef]
- Lee, G.L.; Law, M.C.; Lee, V.C.-C. Modelling of liquid heating subject to simultaneous microwave and ultrasound irradiation. Appl. Therm. Eng. 2019, 150, 1126–1140. [Google Scholar] [CrossRef]
- Gentry, T.S.; Roberts, J.S. Design and evaluation of a continuous flow microwave pasteurization system for apple cider. LWT Food Sci. Technol. 2005, 38, 227–238. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, H.; Yang, Y.; Huang, K. High-Efficiency Continuous-Flow Microwave Heating System Based on Asymmetric Propagation Waveguide. IEEE Trans. Microw. Theory Tech. 2022, 70, 1920–1931. [Google Scholar] [CrossRef]
- Pan, F.; Chen, X.D.; Mercadé-Prieto, R.; Xiao, J. Numerical simulation of milk fouling: Taking fouling layer domain and localized surface reaction kinetics into account. Chem. Eng. Sci. 2019, 197, 306–316. [Google Scholar] [CrossRef]
- Stogryn, A. Equations for Calculating the Dielectric Constant of Saline Water (Correspondence). IEEE Trans. Microw. Theory Tech. 1971, 19, 733–736. [Google Scholar] [CrossRef]
- Ye, J.; Tao, H.; Wu, Y.; Li, W.; Liao, Y.; Zhu, H.; Yang, Y.; Huang, K. Model Stirrer Based on a Multi-Material Turntable for Microwave Processing Materials. Materials 2017, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; He, J.; Hong, T.; Yang, Q.; Wu, Y.; Yang, Y.; Huang, K. A rotary radiation structure for microwave heating uniformity improvement. Appl. Therm. Eng. 2018, 141, 648–658. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Zeinolabedini, M. Prognostication of waste water treatment plant performance using efficient soft computing models: An environmental evaluation. Measurement 2019, 138, 690–701. [Google Scholar] [CrossRef]
- Rajakumar, R.; Meenambal, T.; Banu, J.R.; Yeom, I.T. Treatment of poultry slaughterhouse wastewater in upflow anaerobic filter under low upflow velocity. Int. J. Environ. Sci. Technol. 2011, 8, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Kim, B.; Nayar, K.G.; Yoon, J.; Al-Hammadi, S.; Lienhard, V.J.H.; Han, J.; Al-Anzi, B. Techno-economic analysis of ion concentration polarization desalination for high salinity desalination applications. Water Res. 2019, 155, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Periasamy, S.; Ravi, K.P. A novel approach to quantify soil salinity by simulating the dielectric loss of SAR in three-dimensional density space. Remote Sens. Environ. 2020, 251, 112059. [Google Scholar] [CrossRef]
Property | Applied Domains | Value | Source |
---|---|---|---|
Relative permittivity | Air | 1 | [38,39] |
Water | 78 | ||
1% saline | 75 | ||
2% saline | 72 | ||
3% saline | 68 | ||
Matching layer | 9 | ||
Dielectric loss factor | Water | 12 | [38,39] |
1% saline | 21 | ||
2% saline | 31 | ||
3% saline | 42 | ||
Relative permeability | Air | 1 | [39] |
Water | 1 | ||
Matching layer | 1 | ||
Conductivity (S/m) | Air | 0 | [39] |
Water | 0 | ||
Matching layer | 0 | ||
Thermal conductivity (W/(m3·K)) | Water | 0.5944 | [21] |
Density (kg/m3) | Water | 996.6 | [21] |
Heat capacity at constant pressure (J/(kg·K)) | Water | 4190 | [21] |
Air | 1005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, R.; Wu, Y.; Yang, F.; Yang, Y.; Lan, J.; Zhu, H. Device Testing: High-Efficiency and High-Uniformity Microwave Water Treatment System Based on Horn Antennas. Processes 2023, 11, 826. https://doi.org/10.3390/pr11030826
Tan R, Wu Y, Yang F, Yang Y, Lan J, Zhu H. Device Testing: High-Efficiency and High-Uniformity Microwave Water Treatment System Based on Horn Antennas. Processes. 2023; 11(3):826. https://doi.org/10.3390/pr11030826
Chicago/Turabian StyleTan, Renxuan, Yuanyuan Wu, Fengming Yang, Yang Yang, Junqing Lan, and Huacheng Zhu. 2023. "Device Testing: High-Efficiency and High-Uniformity Microwave Water Treatment System Based on Horn Antennas" Processes 11, no. 3: 826. https://doi.org/10.3390/pr11030826
APA StyleTan, R., Wu, Y., Yang, F., Yang, Y., Lan, J., & Zhu, H. (2023). Device Testing: High-Efficiency and High-Uniformity Microwave Water Treatment System Based on Horn Antennas. Processes, 11(3), 826. https://doi.org/10.3390/pr11030826