Miniaturized Solid Phase Extraction Techniques Applied to Natural Products
Abstract
:1. Introduction
2. Classification
2.1. Solid-Phase Microextraction
2.2. Microextraction by Packed Sorbent
2.3. Stir Bar Sorptive Extraction
2.4. Matrix Solid-Phase Dispersion
2.5. Micro-Solid Phase Extraction
2.6. Molecularly Imprinted Polymers
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kokosa, J.M.; Przyjazny, A. Green microextraction methodologies for sample preparations. Green Anal. Chem. 2022, 3, 100023. [Google Scholar] [CrossRef]
- Psillakis, E.; Pedersen-Bjergaard, S.; Ozkan, S. Separation Science: The State of the Art: Analytical Chemistry: There is No Green Like More Green. LCGC Eur. 2022, 35, 438–439. [Google Scholar] [CrossRef]
- Barroso, M.; Moreno, I.; Da Fonseca, B.; Queiroz, J.A.; Gallardo, E. Role of microextraction sampling procedures in forensic toxicology. Bioanalysis 2012, 4, 1805–1826. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Pawliszyn, J.; Pawliszyn, B.; Pawliszyn, M. Solid Phase Microextraction (SPME). Chem. Educ. 1997, 2, 1–7. [Google Scholar] [CrossRef]
- Reyes-Garcés, N.; Gionfriddo, E.; Gómez-Ríos, G.A.; Alam, M.N.; Boyacı, E.; Bojko, B.; Singh, V.; Grandy, J.; Pawliszyn, J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal. Chem. 2018, 90, 302–360. [Google Scholar] [CrossRef] [PubMed]
- Pawliszyn, J. Theory of Solid-Phase Microextraction. J. Chromatogr. Sci. 2000, 38, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Pawliszyn, J. Handbook of Solid Phase Microextraction; Pawliszyn, J., Ed.; Elsevier: Oxford, UK, 2012; ISBN 978-0-12-416017-0. [Google Scholar]
- Supelco. Selection Guide for Supelco SPME Fibers; Supelco: Bellefonte, PA, USA, 1996. [Google Scholar]
- Zhang, Z.; Yang, M.J.; Pawliszyn, J. Solid-Phase Microextraction. A Solvent-Free Alternative for Sample Preparation. Anal. Chem. 1994, 66, 844A–853A. [Google Scholar] [CrossRef]
- Lord, H.; Pawliszyn, J. Evolution of solid-phase microextraction technology. J. Chromatogr. A 2000, 885, 153–193. [Google Scholar] [CrossRef]
- Gonçalves, A.; Gallardo, E.; Barroso, M. Variations in headspace microextraction procedures and current applications in bioanalysis. Bioanalysis 2015, 7, 2235–2240. [Google Scholar] [CrossRef]
- Garcia-Esteban, M.; Ansorena, D.; Astiasarán, I.; Ruiz, J. Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME). Talanta 2004, 64, 458–466. [Google Scholar] [CrossRef]
- Gianelli, M.P.; Flores, M.; Toldrá, F. Optimisation of solid phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham. J. Sci. Food Agric. 2002, 82, 1703–1709. [Google Scholar] [CrossRef]
- Yu, A.N.; Sun, B.G.; Tian, D.T.; Qu, W.Y. Analysis of volatile compounds in traditional smoke-cured bacon(CSCB) with different fiber coatings using SPME. Food Chem. 2008, 110, 233–238. [Google Scholar] [CrossRef]
- Lorenzo, J.M. Influence of the type of fiber coating and extraction time on foal dry-cured loin volatile compounds extracted by solid-phase microextraction (SPME). Meat Sci. 2014, 96, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, M.A.; Granucci, N.; Greenwood, D.R.; Villas-Boas, S.G. Identification of New Natural Sources of Flavour and Aroma Metabolites from Solid-State Fermentation of Agro-Industrial By-Products. Metabolites 2022, 12, 157. [Google Scholar] [CrossRef]
- Yuan, X.; Jiang, W.; Zhang, D.; Al, E. Textural, Sensory and Volatile Compounds Analyses in Formulations of Sausages Analogue Elaborated with Edible. Foods 2022, 11, 52. [Google Scholar] [CrossRef]
- Du, X.; Routray, J.; Williams, C.; Weng, Y. Association of Refreshing Perception with Volatile Aroma Compounds, Organic Acids, and Soluble Solids in Freshly Consumed Cucumber Fruit. ACS Food Sci. Technol. 2022, 2, 1495–1506. [Google Scholar] [CrossRef]
- Pieracci, Y.; Pistelli, L.; Cecchi, M.; Pistelli, L.; De Leo, M. Phytochemical Characterization of Citrus-Based Products Supporting Their Antioxidant Effect and Sensory Quality. Foods 2022, 11, 1550. [Google Scholar] [CrossRef]
- Demets, R.; Van Broekhoven, S.; Gheysen, L.; Van Loey, A.; Foubert, I. The Potential of Phaeodactylum as a Natural Source of Antioxidants for Fish Oil Stabilization. Foods 2022, 11, 1461. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, K.; Zhuang, H.; Li, D.; Meng, X.; Shi, M.; Yao, L.; Song, S.; Sun, M.; Wang, H.; et al. Elucidation of aroma compounds in passion fruit (Passiflora alata Ait) using a molecular sensory approach. J. Food Biochem. 2022, 46, e14224. [Google Scholar] [CrossRef]
- Su, X.; Yu, M.; Wu, S.; Ma, M.; Su, H.; Guo, F.; Bian, Q.; Du, T. Sensory lexicon and aroma volatiles analysis of brewing malt. npj Sci. Food 2022, 6, 20. [Google Scholar] [CrossRef]
- Moran, L.; Bou, G.; Aldai, N.; Ciardi, M.; Morillas-España, A.; Sánchez-Zurano, A.; Barron, L.J.R.; Lafarga, T. Characterisation of the volatile profile of microalgae and cyanobacteria using solid-phase microextraction followed by gas chromatography coupled to mass spectrometry. Sci. Rep. 2022, 12, 3661. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.R.; Gonçalves, A.C.; Pinto, E.; Amaro, F.; Flores-Félix, J.D.; Almeida, A.; de Pinho, P.G.; Falcão, A.; Alves, G.; Silva, L.R. Mineral Content and Volatile Profiling of Prunus avium L. (Sweet Cherry) By-Products from Fundão Region (Portugal). Foods 2022, 11, 751. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.H.; Yeo, M.T.Y.; Ong, D.S.M.; Henry, C.J. Comparison of the molecular properties and volatile compounds of Maillard reaction products derived from animal- and cereal-based protein hydrolysates. Food Chem. 2022, 383, 132609. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Guo, Y.; Shi, H.; Liang, Y.; Guo, Z.; Li, D.; Wang, C.; Li, H.; Zhang, Q.; Sun, M. Volatiles mediated an eco-friendly aphid control strategy of Chrysanthemum genus. Ind. Crops Prod. 2022, 180, 114734. [Google Scholar] [CrossRef]
- Wahia, H.; Zhou, C.; Mustapha, A.T.; Amanor-Atiemoh, R.; Mo, L.; Fakayode, O.A.; Ma, H. Storage effects on the quality quartet of orange juice submitted to moderate thermosonication: Predictive modeling and odor fingerprinting approach. Ultrason. Sonochem. 2020, 64, 104982. [Google Scholar] [CrossRef]
- Choi, S.; Seo, H.S.; Lee, K.R.; Lee, S.; Lee, J.; Lee, J. Effect of milling and long-term storage on volatiles of black rice (Oryza sativa L.) determined by headspace solid-phase microextraction with gas chromatography–mass spectrometry. Food Chem. 2019, 276, 572–582. [Google Scholar] [CrossRef]
- Gaffke, A.M.; Alborn, H.T. Desorption Temperature, Solid-Phase Microextraction (SPME), and Natural Product Analyses, how Low Can we Go? J. Chem. Ecol. 2021, 47, 134–138. [Google Scholar] [CrossRef]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Dias-Audibert, F.L.; Delafiori, J.; de Souza, F.G.; Catharino, R.R.; do Sacramento, C.K.; Pastore, G.M. Chemical characterization of Eugenia stipitata: A native fruit from the Amazon rich in nutrients and source of bioactive compounds. Food Res. Int. 2021, 139, 109904. [Google Scholar] [CrossRef]
- Oliver-Simancas, R.; Muñoz, R.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Alañón, M.E. Mango by-products as a natural source of valuable odor-active compounds. J. Sci. Food Agric. 2020, 100, 4688–4695. [Google Scholar] [CrossRef]
- Yin, W.; Ma, X.; Li, S.; Wang, X.; Liu, H.; Shi, R. Comparison of key aroma-active compounds between roasted and cold-pressed sesame oils. Food Res. Int. 2021, 150, 110794. [Google Scholar] [CrossRef]
- Ferraz, M.S.S.; Faroni, L.R.D.; Heleno, F.F.; de Sousa, A.H.; Prates, L.H.F.; Rodrigues, A.A.Z. Method Validation and Evaluation of Safrole Persistence in Cowpea Beans Using Headspace Solid-Phase Microextraction and Gas Chromatography. Molecules 2021, 26, 6914. [Google Scholar] [CrossRef]
- Kessler, J.C.; Vieira, V.; Martins, I.M.; Manrique, Y.A.; Ferreira, P.; Calhelha, R.C.; Afonso, A.; Barros, L.; Rodrigues, A.E.; Dias, M.M. Chemical and organoleptic properties of bread enriched with Rosmarinus officinalis L.: The potential of natural extracts obtained through green extraction methodologies as food ingredients. Food Chem. 2022, 384, 132514. [Google Scholar] [CrossRef] [PubMed]
- Cairone, F.; Garzoli, S.; Menghini, L.; Simonetti, G.; Casadei, M.A.; Di Muzio, L.; Cesa, S. Valorization of Kiwi Peels: Fractionation, Bioactives Analyses and Hypotheses on Complete Peels Recycle. Foods 2022, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Průchová, K.; Grégrová, A.; Helísková, H.; Kružík, V.; Čížková, H. Enantioselective HS-SPME-GC-MS for Authentication of Natural and Synthetic Strawberry Flavour in Syrups. Polish J. Food Nutr. Sci. 2022, 72, 305–317. [Google Scholar] [CrossRef]
- Huang, X.; Gao, W.; Yun, X.; Qing, Z.; Zeng, J. Effect of Natural Antioxidants from Marigolds (Tagetes erecta L.) on the Oxidative Stability of Soybean Oil. Molecules 2022, 27, 2865. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.O.; Golonka, A.M.; Emmanuel, K.A.; Ponnarasu, J.J.; Pryor, J.E. Determination of Linalool in Essential Oils by SPME-GC-MS: Using the Internal Standard Method. J. Chem. Educ. 2022, 99, 917–923. [Google Scholar] [CrossRef]
- Sooklim, C.; Samakkarn, W.; Thongmee, A.; Duangphakdee, O.; Soontorngun, N. Enhanced aroma and flavour profile of fermented Tetragonula pagdeni Schwarz honey by a novel yeast T. delbrueckii GT-ROSE1 with superior fermentability. Food Biosci. 2022, 50, 102001. [Google Scholar] [CrossRef]
- Liang, Z.; Yang, C.; He, Z.; Lin, X.; Chen, B.; Li, W. Changes in characteristic volatile aroma substances during fermentation and deodorization of Gracilaria lemaneiformis by lactic acid bacteria and yeast. Food Chem. 2023, 405, 134971. [Google Scholar] [CrossRef]
- Lindsay, M.A.; Granucci, N.; Greenwood, D.R.; Villas-Boas, S.G. Fermentative Production of Volatile Metabolites Using Brettanomyces bruxellensis from Fruit and Vegetable By-Products. Fermentation 2022, 8, 457. [Google Scholar] [CrossRef]
- Deng, W.; Wang, M.; Li, Z.; Liu, G.; Liu, Z.; Yu, H.; Liu, J. Effect of the changes of microbial community on flavor components of traditional soybean paste during storage period. Food Res. Int. 2022, 161, 111866. [Google Scholar] [CrossRef] [PubMed]
- Jagatić Korenika, A.M.; Preiner, D.; Tomaz, I.; Skendrović Babojelić, M.; Jeromel, A. Aroma Profile of Monovarietal Pét-Nat Ciders: The Role of Croatian Traditional Apple Varieties. Horticulturae 2022, 8, 689. [Google Scholar] [CrossRef]
- Hamdi, B.; Peron, G.; Miara, M.D.; Bouriah, N.; Flamini, G.; Maggi, F.; Sut, S.; Dall’Acqua, S. Phytochemical analysis of Clinopodium candidissimum (Munby) Kuntze growing in Algeria by an integrated HS-SPME-GC-MS, NMR and HPLC-DAD-MSn approach: Valorization of an endemic natural source of bioactive compounds. Nat. Prod. Res. 2022, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rehim, M. Microextraction by packed sorbent (MEPS): A tutorial. Anal. Chim. Acta 2011, 701, 119–128. [Google Scholar] [CrossRef]
- Moein, M.M.; Said, R.; Abdel-Rehim, M. Microextraction by packed sorbent. Bioanalysis 2015, 7, 2155–2161. [Google Scholar] [CrossRef]
- Pereira, J.A.M.; Gonçalves, J.; Porto-Figueira, P.; Figueira, J.A.; Alves, V.; Perestrelo, R.; Medina, S.; Câmara, J.S. Current trends on microextraction by packed sorbent-fundamentals, application fields, innovative improvements and future applications. Analyst 2019, 144, 5048–5074. [Google Scholar] [CrossRef]
- Moein, M.M.; Abdel-Rehim, A.; Abdel-Rehim, M. Microextraction by packed sorbent (MEPS). TrAC—Trends Anal. Chem. 2015, 67, 34–44. [Google Scholar] [CrossRef]
- Rosado, T.; Gallardo, E.; Vieira, D.N.; Barroso, M. Microextraction by Packed Sorbent. In Microextraction Techniques in Analytical Toxicology; Jain, R., Singh, R., Eds.; CRC Press: Boca Raton, FL, USA, 2021; ISBN 9781003128298. [Google Scholar]
- Mercolini, L.; Protti, M.; Saracino, M.A.; Mandrone, M.; Antognoni, F.; Poli, F. Analytical Profiling of Bioactive Phenolic Compounds in Argan (Argania spinosa) Leaves by Combined Microextraction by Packed Sorbent (MEPS) and LC-DAD-MS/M S. Phytochem. Anal. 2016, 27, 41–49. [Google Scholar] [CrossRef]
- Protti, M.; Mandrioli, R.; Mandrone, M.; Cappadone, C.; Farruggia, G.; Chiocchio, I.; Malucelli, E.; Isani, G.; Poli, F.; Mercolini, L. Analysis of Artemisia annua extracts and related products by high performance liquid chromatography-tandem mass spectrometry coupled to sample treatment miniaturization. J. Pharm. Biomed. Anal. 2019, 174, 81–88. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, C.L.; Câmara, J.S. Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography. J. Chromatogr. A 2015, 1381, 54–63. [Google Scholar] [CrossRef]
- Rahimi, A.; Hashemi, P.; Badiei, A.; Safdarian, M.; Rashidipour, M. Microextraction of rosmarinic acid using CMK-3 nanoporous carbon in a packed syringe. Chromatographia 2013, 76, 857–860. [Google Scholar] [CrossRef]
- Gonçalves, J.; Silva, C.L.; Castilho, P.C.; Câmara, J.S. An attractive, sensitive and high-throughput strategy based on microextraction by packed sorbent followed by UHPLC-PDA analysis for quantification of hydroxybenzoic and hydroxycinnamic acids in wines. Microchem. J. 2013, 106, 129–138. [Google Scholar] [CrossRef]
- Gonçalves, J.L.; Alves, V.L.; Rodrigues, F.P.; Figueira, J.A.; Câmara, J.S. A semi-automatic microextraction in packed sorbent, using a digitally controlled syringe, combined with ultra-high pressure liquid chromatography as a new and ultra-fast approach for the determination of prenylflavonoids in beers. J. Chromatogr. A 2013, 1304, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.; Câmara, J.S. New method for determination of (E)-resveratrol in wine based on microextraction using packed sorbent and ultra-performance liquid chromatography. J. Sep. Sci. 2011, 34, 2376–2384. [Google Scholar] [CrossRef] [Green Version]
- Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep. 1999, 11, 737–747. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Zhang, Q.; Zang, L.; Chen, B.; Hu, B. Stir bar sorptive extraction and its application. J. Chromatogr. A 2021, 1637, 461810. [Google Scholar] [CrossRef] [PubMed]
- Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Miniaturized solid-phase extraction techniques. TrAC Trends Anal. Chem. 2015, 73, 19–38. [Google Scholar] [CrossRef]
- Telgheder, U.; Bader, N.; Alshelmani, N. Stir bar sorptive extraction as a sample preparation technique for chromatographic analysis: An overview. Asian J. Nanosci. Mater. 2018, 1, 56–62. [Google Scholar]
- Hasan, C.K.; Ghiasvand, A.; Lewis, T.W.; Nesterenko, P.N.; Paull, B. Recent advances in stir-bar sorptive extraction: Coatings, technical improvements, and applications. Anal. Chim. Acta 2020, 1139, 222–240. [Google Scholar] [CrossRef]
- Camino-Sánchez, F.J.; Rodríguez-Gómez, R.; Zafra-Gómez, A.; Santos-Fandila, A.; Vílchez, J.L. Stir bar sorptive extraction: Recent applications, limitations and future trends. Talanta 2014, 130, 388–399. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.; Li, D. Microextraction techniques for the determination of volatile and semivolatilesemivolatile organic compounds from plants: A review. Anal. Chim. Acta 2013, 799, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Casado, N.; Gañán, J.; Morante-Zarcero, S.; Sierra, I. New Advanced Materials and Sorbent-Based Microextraction Techniques as Strategies in Sample Preparation to Improve the Determination of Natural Toxins in Food Samples. Molecules 2020, 25, 702. [Google Scholar] [CrossRef] [Green Version]
- Leite Neta, M.T.S.; de Jesus, M.S.; da Silva, J.L.A.; Araujo, H.C.S.; Sandes, R.D.D.; Shanmugam, S.; Narain, N. Effect of spray drying on bioactive and volatile compounds in soursop (Annona muricata) fruit pulp. Food Res. Int. 2019, 124, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Qiao, L.; Gan, N.; Lin, S.; Cao, Y.; Hu, F.; Wang, J.; Chen, Y. Electro-deposited poly-luminol molecularly imprinted polymer coating on carboxyl graphene for stir bar sorptive extraction of estrogens in milk. J. Chromatogr. B 2016, 1027, 50–56. [Google Scholar] [CrossRef]
- Cheng, J.; Zhong, R.; Lin, J.; Zhu, J.; Wan, W.; Chen, X. Linear Graphene Nanocomposite Synthesis and an Analytical Application for the Amino Acid Detection of Camellia nitidissima Chi Seeds. Materials 2017, 10, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghani, M. In-situ growth of zinc-aluminum-layered double hydroxide on nanoporous anodized aluminum bar for stir-bar sorptive extraction of phenolic acids. Microchem. J. 2019, 147, 1173–1179. [Google Scholar] [CrossRef]
- Ghani, M.; Ghoreishi, S.M.; Azamati, M. In-situ growth of zeolitic imidazole framework-67 on nanoporous anodized aluminum bar as stir-bar sorptive extraction sorbent for determining caffeine. J. Chromatogr. A 2018, 1577, 15–23. [Google Scholar] [CrossRef]
- You, L.; He, M.; Chen, B.; Hu, B. One-pot synthesis of zeolitic imidazolate framework-8/poly (methyl methacrylate-ethyleneglycol dimethacrylate) monolith coating for stir bar sorptive extraction of phytohormones from fruit samples followed by high performance liquid chromatography-ultraviolet detection. J. Chromatogr. A 2017, 1524, 57–65. [Google Scholar] [PubMed]
- Fan, W.; He, M.; You, L.; Chen, B.; Hu, B. Spiral stir bar sorptive extraction with polyaniline-polydimethylsiloxane sol-gel packings for the analysis of trace estrogens in environmental water and animal-derived food samples. J. Sep. Sci. 2020, 43, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Ochiai, N.; Yamazaki, Y.; Sasamoto, K. Solvent-assisted stir bar sorptive extraction and gas chromatography–mass spectrometry with simultaneous olfactometry for the characterization of aroma compounds in Japanese Yamahai-brewed sake. Food Chem. 2023, 405, 134640. [Google Scholar] [CrossRef]
- Lin, S.; Gan, N.; Zhang, J.; Qiao, L.; Chen, Y.; Cao, Y. Aptamer-functionalized stir bar sorptive extraction coupled with gas chromatography–mass spectrometry for selective enrichment and determination of polychlorinated biphenyls in fish samples. Talanta 2016, 149, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Ran, C.; Li, M.; Gao, J.; Wang, X.; Zhang, L.; Bian, J.; Li, J.; Jiang, Y. Graphene oxide-coated stir bar sorptive extraction of trace aflatoxins from soy milk followed by high performance liquid chromatography-laser-induced fluorescence detection. Food Addit. Contam.-Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Lucht, F.; Rinken, M.; Haberlandt, S. Differentiation of volatile aroma components in organically and conventionally produced apples by stir bar sorptive extraction combined with gas chromatography and EI/CI TOF mass spectrometry. Int. J. Food Sci. Technol. 2021, 56, 909–918. [Google Scholar] [CrossRef]
- Wang, M.Q.; Ma, W.J.; Shi, J.; Zhu, Y.; Lin, Z.; Lv, H.P. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC–MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination. Food Res. Int. 2020, 130, 108908. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhu, Y.; Shi, J.; Wang, J.; Wang, M.; Shao, C.; Yan, H.; Lin, Z.; Lv, H. Insight into the volatile profiles of four types of dark teas obtained from the same dark raw tea material. Food Chem. 2021, 346, 128906. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, H.; Zhang, Z.F.; Zeng, J.M.; Zhang, Y.; Wang, J.T.; Ma, W.J.; Wang, M.Q.; Peng, Q.H.; Lv, H.P.; et al. Assessment of the contribution of chiral odorants to aroma property of baked green teas using an efficient sequential stir bar sorptive extraction approach. Food Chem. 2021, 365, 130615. [Google Scholar] [CrossRef]
- Ruvalcaba, J.E.; Durán-Guerrero, E.; Barroso, C.G.; Castro, R. Development of a stir bar sorptive extraction method to study different beer styles volatile profiles. Food Res. Int. 2019, 126, 108680. [Google Scholar] [CrossRef]
- Barker, S.A.; Long, A.R.; Short, C.R. Isolation of drug residues from tissues by solid phase dispersion. J. Chromatogr. A 1989, 475, 353–361. [Google Scholar] [CrossRef]
- Tu, X.; Chen, W. A Review on the Recent Progress in Matrix Solid Phase Dispersion. Molecules 2018, 23, 2767. [Google Scholar] [CrossRef] [Green Version]
- Capriotti, A.L.; Cavaliere, C.; Foglia, P.; Samperi, R.; Stampachiacchiere, S.; Ventura, S.; Laganà, A. Recent advances and developments in matrix solid-phase dispersion. TrAC Trends Anal. Chem. 2015, 71, 186–193. [Google Scholar] [CrossRef]
- Capriotti, A.L.; Cavaliere, C.; Giansanti, P.; Gubbiotti, R.; Samperi, R.; Laganà, A. Recent developments in matrix solid-phase dispersion extraction. J. Chromatogr. A 2010, 1217, 2521–2532. [Google Scholar] [CrossRef] [PubMed]
- Barfi, B.; Asghari, A.; Rajabi, M.; Barfi, A.; Saeidi, I. Simplified miniaturized ultrasound-assisted matrix solid phase dispersion extraction and high performance liquid chromatographic determination of seven flavonoids in citrus fruit juice and human fluid samples: Hesperetin and naringenin as biomarkers. J. Chromatogr. A 2013, 1311, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Wu, D.; Duan, C.; Yan, X.; Du, Y.; Zou, J.; Guan, Y. Spatial Profiling of Gibberellins in a Single Leaf Based on Microscale Matrix Solid-Phase Dispersion and Precolumn Derivatization Coupled with Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chem. 2017, 89, 9537–9543. [Google Scholar] [CrossRef]
- Gómez-Mejía, E.; Mikkelsen, L.H.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. A combined approach based on matrix solid-phase dispersion extraction assisted by titanium dioxide nanoparticles and liquid chromatography to determine polyphenols from grape residues. J. Chromatogr. A 2021, 1644, 462128. [Google Scholar] [CrossRef]
- Wei, M.; Chu, C.; Wang, S.; Yan, J. Quantitative analysis of sesquiterpenes and comparison of three Curcuma wenyujin herbal medicines by micro matrix solid phase dispersion coupled with MEEKC. Electrophoresis 2018, 39, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Li, J.; Bai, Y.; An, M.; Gao, X.M.; Chang, Y.X. A green ionic liquid-based vortex-forced MSPD method for the simultaneous determination of 5-HMF and iridoid glycosides from Fructus corni by ultra-high performance liquid chromatography. Food Chem. 2018, 244, 190–196. [Google Scholar] [CrossRef]
- Du, K.; Li, J.; Tian, F.; Chang, Y.X. Non-ionic detergent Triton X-114 Based vortex- synchronized matrix solid-phase dispersion method for the simultaneous determination of six compounds with various polarities from Forsythiae Fructus by ultra high-performance liquid chromatography. J. Pharm. Biomed. Anal. 2018, 150, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Du, L.J.; Huang, J.P.; Wang, B.; Wang, C.H.; Wang, Q.Y.; Hu, Y.H.; Yi, L.; Cao, J.; Peng, L.Q.; Chen, Y.B.; et al. Carbon molecular sieve based micro-matrix-solid-phase dispersion for the extraction of polyphenols in pomegranate peel by UHPLC-Q-TOF/MS. Electrophoresis 2018, 39, 2218–2227. [Google Scholar] [CrossRef]
- Chen, H.; Ji, T.; Chen, J.; Li, X. Matrix Solid-Phase Dispersion Combined with HPLC-DAD for Simultaneous Determination of Nine Lignans in Saururus chinensis. J. Chromatogr. Sci. 2019, 57, 186–193. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, J.; Zhang, H.; Liu, C.; Tang, Y.; Chu, C. New vortex-synchronized matrix solid-phase dispersion method for simultaneous determination of four anthraquinones in Cassiae semen. Molecules 2019, 24, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, J.; Gao, X.M.; Chang, Y.X. Ionic liquid vortex-simplified matrix solid-phase dispersion for the simultaneous determination of terpenoids, crocins, quinic acid derivatives and flavonoids in Gardeniae fructus by UHPLC. J. Sep. Sci. 2019, 42, 1886–1895. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, S.; Taghvimi, A.; Mazouchi, N. Micro Solid Phase Extraction Using Novel Adsorbents. Crit. Rev. Anal. Chem. 2019, 51, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Naing, N.N.; Tan, S.C.; Lee, H.K. Micro-solid-phase extraction. In Solid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2020; pp. 443–471. ISBN 9780128169063. [Google Scholar]
- Khayoon, W.S.; Saad, B.; Salleh, B.; Manaf, N.H.A.; Latiff, A.A. Micro-solid phase extraction with liquid chromatography–tandem mass spectrometry for the determination of aflatoxins in coffee and malt beverage. Food Chem. 2014, 147, 287–294. [Google Scholar] [CrossRef]
- Klejdus, B.; Plaza, M.; Šnóblová, M.; Lojková, L. Development of new efficient method for isolation of phenolics from sea algae prior to their rapid resolution liquid chromatographic–tandem mass spectrometric determination. J. Pharm. Biomed. Anal. 2017, 135, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.P.; Saad, B.; Khayoon, W.S.; Salleh, B. Molecularly imprinted polymer as sorbent in micro-solid phase extraction of ochratoxin A in coffee, grape juice and urine. Talanta 2012, 88, 129–135. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Asfaram, A.; Ghaedi, M.; Javadian, H.; Goudarzi, A. Cu- and S- @SnO2 nanoparticles loaded on activated carbon for efficient ultrasound assisted dispersive µSPE-spectrophotometric detection of quercetin in Nasturtium officinale extract and fruit juice samples: CCD-RSM design. Ultrason. Sonochem. 2018, 47, 1–9. [Google Scholar] [CrossRef]
- Bakhytkyzy, I.; Hewelt-Belka, W.; Kot-Wasik, A. A comprehensive lipidomic analysis of oilseeds using LC-Q-TOF-MS and dispersive micro-solid phase (D-μ-SPE) extraction techniques. J. Food Compos. Anal. 2023, 116, 105037. [Google Scholar] [CrossRef]
- Sereshti, H.; Toloutehrani, A.; Nodeh, H.R. Determination of cholecalciferol (vitamin D3) in bovine milk by dispersive micro-solid phase extraction based on the magnetic three-dimensional graphene-sporopollenin sorbent. J. Chromatogr. B 2020, 1136, 121907. [Google Scholar] [CrossRef]
- Majidi, S.M.; Hadjmohammadi, M.R. Development of magnetic dispersive micro-solid phase extraction based on magnetic agarose nanoparticles and deep eutectic solvents for the isolation and pre-concentration of three flavonoids in edible natural samples. Talanta 2021, 222, 121649. [Google Scholar] [CrossRef]
- Majidi, S.M.; Hadjmohammadi, M.R. Alcohol-based deep eutectic solvent as a carrier of SiO2 @Fe3O4 for the development of magnetic dispersive micro-solid-phase extraction method: Application for the pre-concentration and determination of morin in apple and grape juices, diluted and acid. J. Sep. Sci. 2019, 42, 2842–2850. [Google Scholar] [CrossRef] [PubMed]
- BelBruno, J.J. Molecularly imprinted polymers. Chemical Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhao, X.; Zhou, J. Selective enrichment and determination of nicosulfuron in water and soil by a stir bar based on molecularly imprinted polymer coatings. Anal. Chim. Acta 2010, 670, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tan, W.; Hu, Y.; Li, G. Simultaneous determination of trace sterols in complicated biological samples by gas chromatography-mass spectrometry coupled with extraction using β-sitosterol magnetic molecularly imprinted polymer beads. J. Chromatogr. A 2011, 1218, 4275–4283. [Google Scholar] [CrossRef]
- Sellergren, B. Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer. Anal. Chem. 1994, 66, 1578–1582. [Google Scholar] [CrossRef]
- Turiel, E.; Martín-Esteban, A. Molecularly imprinted polymers-based microextraction techniques. TrAC—Trends Anal. Chem. 2019, 118, 574–586. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z.; Li, J.; Chen, X.; Zhang, M.; Luo, L.; Yao, S. Novel molecularly imprinted polymers with carbon nanotube as matrix for selective solid-phase extraction of emodin from kiwi fruit root. Food Chem. 2014, 145, 687–693. [Google Scholar] [CrossRef]
- He, C.; Long, Y.; Pan, J.; Li, K.; Liu, F. Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. J. Biochem. Biophys. Methods 2007, 70, 133–150. [Google Scholar] [CrossRef]
- Baker, Z.K.; Sardari, S. Molecularly imprinted polymer (MIP) applications in natural product studies based on medicinal plant and secondary metabolite analysis. Iran. Biomed. J. 2021, 25, 68–77. [Google Scholar] [CrossRef]
- Mahony, J.O.; Nolan, K.; Smyth, M.R.; Mizaikoff, B. Molecularly imprinted polymers—Potential and challenges in analytical chemistry. Anal. Chim. Acta 2005, 534, 31–39. [Google Scholar] [CrossRef]
- Xie, J.; Xiong, J.; Ding, L.S.; Chen, L.; Zhou, H.; Liu, L.; Zhang, Z.F.; Hu, X.M.; Luo, P.; Qing, L. Sen A efficient method to identify cardioprotective components of Astragali radix using a combination of molecularly imprinted polymers-based knockout extract and activity evaluation. J. Chromatogr. A 2018, 1576, 10–18. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, M.; Fu, Q.; Wang, L.; Wang, D.; Zhang, K.; Xia, Z.; Gao, D. Novel dual functional monomers based molecularly imprinted polymers for selective extraction of myricetin from herbal medicines. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1097–1098, 1–9. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, Z.; Zhang, H.; Ye, L.; He, J.; Ou, J.; Wu, Q. Ordered macroporous molecularly imprinted polymers prepared by a surface imprinting method and their applications to the direct extraction of flavonoids from Gingko leaves. Food Chem. 2020, 309, 125680. [Google Scholar] [CrossRef]
- Pan, T.; Lin, Y.; Wu, Q.; Huang, K.; He, J. Preparation of boronate-functionalized surface molecularly imprinted polymer microspheres with polydopamine coating for specific recognition and separation of glycoside template. J. Sep. Sci. 2021, 44, 2465–2473. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Xiao, A.; Chen, G.; Guo, Q.; Chang, C.; Zeng, A.; Fu, Q. Preparation and application of molecularly imprinted polymers for the selective extraction of naringin and genistein from herbal medicines. Anal. Methods 2019, 11, 4890–4898. [Google Scholar] [CrossRef]
- Li, X.; Row, K.H. Preparation of deep eutectic solvent-based hexagonal boron nitride-molecularly imprinted polymer nanoparticles for solid phase extraction of flavonoids. Microchim. Acta 2019, 186, 753. [Google Scholar] [CrossRef]
- Saad, E.M.; El Gohary, N.A.; Abdel-Halim, M.; Handoussa, H.; Mohamed El Nashar, R.; Mizaikoff, B. Molecularly imprinted polymers for selective extraction of rosmarinic acid from Rosmarinus officinalis L. Food Chem. 2021, 335, 127644. [Google Scholar] [CrossRef]
- Yu, H.; He, Y.; She, Y.; Wang, M.; Yan, Z.; Ren, J.H.; Cao, Z.; Shao, Y.; Wang, S.; Abd El-Aty, A.M.; et al. Preparation of molecularly imprinted polymers coupled with high-performance liquid chromatography for the selective extraction of salidroside from Rhodiola crenulata. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1118–1119, 180–186. [Google Scholar] [CrossRef]
- Ghasemi, S.; Nematollahzadeh, A. Molecularly imprinted ultrafiltration polysulfone membrane with specific nano-cavities for selective separation and enrichment of paclitaxel from plant extract. React. Funct. Polym. 2018, 126, 9–19. [Google Scholar] [CrossRef]
- Machyňáková, A.; Hroboňová, K. Preparation and application of magnetic molecularly imprinted polymers for the selective extraction of coumarins from food and plant samples. Anal. Methods 2017, 9, 2168–2176. [Google Scholar] [CrossRef]
- Wang, L.; Fu, W.; Shen, Y.; Tan, H.; Xu, H.; McPhee, D.J. Molecularly imprinted polymers for selective extraction of Oblongifolin C from Garcinia yunnanensis Hu. Molecules 2017, 22, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Lin, H.; Zhang, J.; She, Y.; Zhou, X.; Li, X.; Cui, Y.; Wang, J.; Rabah, T.; Shao, Y. Extraction and Identification of Matrine-Type Alkaloids from Sophora Moorcroftiana Using Double-Templated Molecularly Imprinted Polymers with HPLC–MS/MS; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Volume 41, ISBN 1389361241. [Google Scholar]
Compounds | Sample | Amount | Mode | Type of Fiber | Limit of Detection | Conditions | Instrumentation | Relative Recovery (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Volatile organic compounds | Citrus-based fruits (C. reticulata, C. sinensis, and C. limon) | 1.0 g | HS-SPME | PDMS (100 µm) | n.s. | Equilibration: 30 min at room temperature; Extraction: 5 s to 5 min (n.s.); Desorption: time n.s., 220 °C. | GC-MS | n.s. | [20] |
Volatile compounds | Phaeodactylum sp. | n.s. | HS-SPME | DVB/CWR/PDMS (1.1 mm) | n.s. | Equilibration: 15 min at 60 °C; Extraction: 15 min at 60 °C; Desorption: 2 min at 250 °C. | GC-MS | n.s. | [21] |
Volatile compounds | Fruit (Passiflora alata Ait) | 5.0 g | HS-SPME | DVB (n.s.) | n.s. | Equilibration: n.s. Extraction: 30 min at 50 °C; Desorption: 5 min at 250 °C | GC-MS | n.s. | [22] |
Volatile compounds | Brewing malt | 5.0 mL | HS-SPME | DVB/CAR/PDMS (50/30 μm) | n.s. | Equilibration: 20 min at 60 °C; Extraction: 40 min at 60 °C; Desorption: 5 min at 250 °C. | GC-MS | n.s. | [23] |
Volatile compounds | Microalgal/cyanobacterial biomass | 0.3 g | HS-SPME | DVB/CAR/PDMS (50/30 μm) | n.s. | Equilibration: 15 min (T n.s.) Extraction: 30 min at 30 °C; Desorption: 15 min at 240 °C | GC-MS | n.s. | [24] |
Volatile compounds | Prunus avium L. stems, leaves, and flowers | 0.1 g | HS-SPME | DVB/CAR/PDMS (50/30 μm) | n.s. | Equilibration: 5 min (T n.s.) Extraction: 10 min at 45 °C; Desorption: 20 min at 250 °C | GC-MS | n.s. | [25] |
Volatile compounds | Wheat protein and rice protein hydrolysates | 2.0 g | HS-SPME | DVB/CAR/PDMS (50/30 μm) | n.s. | Equilibration: 15 min (T n.s.) Extraction: 30 min at 60 °C; Desorption: 5 min at 240 °C | GC-MS | 100% | [26] |
Volatile compounds | Chrysanthemum genus Leaves | n.s. | HS-SPME | DVB/CAR/PDMS (50/30 μm) | n.s. | Equilibration: (n.s.) Extraction: 30 min at 40 °C; Desorption: 5 min at 250 °C | GC-MS | n.s. | [27] |
Volatile compounds | Orange Juice | 5.0 mL | HS-SPME | DVB/CAR/PDMS (50/30 μm) | n.s. | Equilibration: 20 min at 40 °C; Extraction: 30 min at 40 °C; Desorption: 5 min at 250 °C. | GC-MS | n.s. | [28] |
Volatile compounds | Black rice (Oryza sativa L.) | 2.0 g | HS-SPME | DVB/CAR/PDMS (n.s.) | n.s. | Extraction time: 18 min; Extraction temperature: 80 °C. | GC-MS | n.s. | [29] |
Volatile compounds | Leaves of Solidago altíssima | n.s. | SPME | PDMS-DVB (65 μm) | n.s. | Stir rate: 400 rpm; Desorption time: 3–5 min; Desorption temperature: 200–230 °C | GC-FID | 56.3–98.3 | [30] |
Volatile compounds | Fruits of Eugenia stipitata | n.s. | HS-SPME | DVB/CAR/PDMS (n.s) | n.s. | Extraction time: 15 min; Extraction temperature: 50 °C; Sampling rate: 1.0 mL/min; Desorption solvent: mixture of ethanol–water; Desorption time: 5 min; Desorption temperature: 270 °C | GC-MS | n.s. | [31] |
Volatile compounds | Mango fruit | 2 g | HS-SPME | DVB/CAR/PDMS (50/30 μm) | n.s. | Extraction time: 30 min; Extraction temperature: 60 °C; Desorption time: 5 min; Desorption temperature: 260 °C | GC-MS | n.s. | [32] |
Volatiles compounds | Sesame oils | 5 g | HS-SPME | DVB/CAR/PDMS (50/30 μm) | n.s. | Stir rate: 100 rpm; Desorption time: 3 min; Desorption temperature: 250 °C | GC-MS | 16–89 | [33] |
Essential oils | Cowpea bean | 5 g | HS-SPME | DVB/CAR/PDMS (50/30 μm) | 0.0057 μg/kg | Extraction time: 3–10 min; Extraction temperature: 30/60 °C; Desorption time: 3 min | GC-FID | 99.26–104.85 | [34] |
Volatile compounds | Leaf samples from C. aromaticum, C. nankingense, and hybrids | n.s. | HS-SPME | DVD/CAR/PDMS (50/30 µm) | n.s. | Extraction time: 30 min; Extraction temperature: 40 °C; Desorption time: 5 min; desorption temperature: 250 °C | GC-MS | n.s. | [27] |
Volatile compounds | Leaves and flowers Rosmarinus officinalis L. and bread | 1 g | HS-SPME | DVD/CAR/PDMS (50/30 µm) | n.s. | Extraction time: 30 min; Extraction temperature: 50 °C; Desorption time: 0.50 min; Desorption temperature: 270 °C | GC-MS | n.s. | [35] |
Volatile compounds | Kiwi peels | 2 g | HS-SPME | DVD/CAR/PDMS (50/30 µm) | n.s. | Extraction time: 30 min; Extraction temperature: 40 °C; Desorption temperature: 250 °C | GC-MS | n.s. | [36] |
Volatile compounds | Fruit and vegetables fermented | 2 g | HS-SPME | DVD/CAR/PDMS (50/30 µm) | n.s. | Extraction time: 10 min; Extraction temperature: 60 °C; Desorption time: 1 min; Desorption temperature: 250 °C | GC-MS | n.s. | [17] |
Volatile compounds | Strawberry | 2 g | HS-SPME | DVD/CAR/PDMS (50/30 µm) | n.s. | Extraction time: 15 min; Extraction temperature: 50 °C; Desorption time: 2 min; Desorption temperature: 220 °C | GC-MS | n.s. | [37] |
Volatile compounds | Soybean Oil | 3 g | HS-SPME | DVD/CAR/PDMS (50/30 µm) | n.s. | Extraction time: 40 min; Extraction temperature: 100 °C; Desorption time: 5 min; Desorption temperature: 240 °C | GC-MS | n.s. | [38] |
Volatile compounds | Sausage Analogue Elaborated with Edible Mushrooms and Soy Protein Isolate | 6 g | HS-SPME | DVB/CAR/PDMS (50/30 mm) | ns | Extraction time: 20 min; Extraction temperature: 60 °C; Desorption time: 30 min | GC-MS | n.s. | [18] |
Linalool | Essential Oils | 1 g | HS-SPME | DVB/CAR/PDMS (n.s) | ns | Extraction time: 5 min; Desorption time: 30 min Desorption temperature: 270 °C | GC-MS | n.s. | [39] |
Volatile Compounds | Fermented Tetragonula pagdeni Schwarz honey | n.s. | HS-SPME | n.s. | n.s. | n.s. | CG-MS | n.s. | [40] |
Volatile aroma substances | Gracilaria lemaneiformis | 6 mL | HS-SPME | n.s. | n.s. | Sodium chloride (3.0 g); Preincubation Time: 10 min; Preincubation Temperature: 60 °C; Extraction time: 35 min with stirring | CG-MS | n.s. | [41] |
Volatile Metabolites | Brettanomyces bruxellensis fermentation of apple pomace, carrot pomace, and orange pomace | 2 mL | HS-SPME | DVB/CAR/PDMS (50/30 µm) | n.s. | Preincubation Time: 10 min; Preincubation Temperature: 60 °C; Extraction time: 10 min; Desorption time: 1 min; Desorption Temperature: 250 °C. | CG-MS | n.s. | [42] |
Volatile components | Soybean paste | 4.0 g | HS-SPME | n.s. | n.s. | water bath at 50 °C for 60 min | CG-MS | n.s. | [43] |
Volatile compounds | Pét-Nat ciders | 5 mL | SPME-ARROW | DVB/CWR/PDMS (120 µm/20 mm) | n.s. | NaCl (2.0 g); Preincubation Time: 20 min; Preincubation Temperature: Extraction time: 49 min; Desorption time: 10 min; Desorption Temperature: 250 °C | CG-MS | n.s. | [44] |
Volatile Aroma | Cucumber | 3.0 g | SPME | DVB/CAR/PDMS, (50/30 μm) | n.s. | Preincubation Time: 3 min; Preincubation Temperature: 200 °C; NaCl (1 g); sample incubated to reach equilibrium at 40 °C for 15 min; Extraction time: 20 min; Agitation: 250 rpm; Desorption time: 3 min; Desorption temperature: 250 °C | CG-MS | n.s. | [19] |
Volatile constituents | Clinopodium Candidissimum (Munby) Kuntze (Lamiaceae) | n.s. | HS-SPME | PDMS (100 µm) | n.s. | Preincubation time: 1 h; Preincubation Temperature: 25 °C; Extraction time: 30 min | CG-MS | n.s. | [45] |
Compounds | Sample | Amount | Life-Time | Type of Sorbent | Limit of Detection | Conditions | Instrumentation | Relative Recovery (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Artemisinin | Artemisia annua L. | 5 g | up to 200 | C8 | 1500 ng/L | Extraction cycles: 10 draw/discharge; Sampling rate: 2 μL/s; Washing: 100 μL ultrapure water, 100 μL methanol/water 95:5; Washing rate: 10 μL/s; Elution cycles: 5 × 100 μL; Elution solvent: methanol; Elution rate: 2 μL/s. | LC-DAD-MS/MS | 88–93 | [52] |
Phenolic compounds | Argania spinosa leaves | 25 g | up to 200 | M1 | 100 ng/L | Extraction cycles: 10 draw/discharge; Sampling rate: 5 μL/s; Washing: 100 μL of ultrapure water, 100 μL methanol/water 90:10 (v/v); Washing rate: 10 μL/s; Elution Cycles: 2 × 250 μL; Elution solvent: methanol; Elution rate: 5 μL/s. | LC-DAD-MS/MS | >95 | [51] |
Major furanic derivatives | dry/medium dry fortified wine | 0.2 mL | 100 | C8 | 4.5–129.3 ng/L | Extraction cycles: 3 × 200 μL draw–eject; Washing: 100 μL water containing 0.1% formic acid; Elution solvent: 200 μL methanol: water (95:5, v/v). | UHPLC–PDA | 74 to 97 | [53] |
sweet/medium sweet, fortified wine | 6.9–285.2 ng/L | 83 to 99 | |||||||
Polyphenols | Wine | 250 μL | 100 | C8 | 0.01–0.2 μg/mL | Extraction time: 1 min; Sampling rate: 17.4–22.6 μL/s; Extraction cycles: 5; Ionic strength: 20% strong cationic exchange; Elution solvent: 50 μL methanol:water (95:5 v/v) | UHPLC- PDA | 77-100 | [55] |
Prenylflavors | Beer | 500 μL | >100 | C18 | 0.4–0.9 ng/mL | Extraction time: 5 min; Sampling rate: 20 μL/s; pH: 5; Ionic strength: 20% strong cationic exchange; Elution solvent: 250 μL acetonitrile | UHPLC-PDA | 67.1–99.9 | [56] |
Polyphenols | Rosemary | 50 mg | 80 | CMK-3 nanoporous carbon | 0.059 μg/mL | Sapling rate: 1.0 mL/s; Extraction cycles: 14; pH: 2; Elution time: 20 min | HPLC-UV/VIS | 94–105 | [54] |
(E)–Reveratrol | Wine | 250 μL | n.s. | C8 | 0.21 μg/mL | Extraction time: 3 min; Sampling rate: 20 μL/s; Extraction cycles: 1; pH: 2.7; Elution solvent: 0.1% formic acid and methanol; Elution time: 10 min | UHPLC-PDA | 89.2–100.8 | [57] |
SBSE | SPME | MEPS | |
---|---|---|---|
Type of matrices | Liquid | Gaseous, liquid, and solid | Liquid |
Sorbent amount | Coated 0.5–1 mm | Thickness 150 µm | 1–4 mg |
Sample volume (mL) | 1–100 | 0.5–20 | 0.01–0.1 |
Handling time (min) | 10–240 | 5–120 | 1–4 |
Cartridge re-use (extractions) | 6–80, depending on the material used for coating | 50–100 | 100 |
Recovery | Good | Low | Good |
Sensitivity | Good | Low | Good |
Carry-over | Low | High | Low |
Main Advantages | Sample volume and stirring speed greatly influence extraction efficiency | No organic solvents are required; all the extracted material can be directly analysed; extracting device is portable and allows field sampling | Reduced sample preparation time, organic solvent consumption and cost of analysis |
Main Drawbacks | It requires a particular desorption unit | Competition between drug and endogenous compounds for the fibre; the extraction is not exhaustive | Sorbent clogging |
Compounds | Sample | Amount | Type of Sorbent | Limit of Quantitation | Conditions of Extraction | Instrumentation | Recovery (%) | Ref. |
---|---|---|---|---|---|---|---|---|
Volatile compounds | Soursop pulp and rehydrated dried powder | 10 g | PDMS (10 mm) | n.s. | Salts: 3 g of NaCl; Extraction time: 30 min; Extraction temperature: room temperature; Desorption temperature: 40 °C to 230 °C at a rate of 60 °C/min; Desorption time: 10 min | GC-MS | n.s. | [66] |
Estrogens | Milk | 2 g | MIP/GC and PDMS/PA | 1.2–3.5 ng/mL | Stir rate: 500 rpm; Extraction time: 20 min; Desorption solvent: 5 mL methanol: Hac (99:1, v/v); Desorption time: 20 min | HPLC-UV | 83–96 | [67] |
Amino acids | Camellia nitidissima Chi seeds | 6 g | aLGN (100 nm × 100–300 µm) and PDMS (10 mm × 3.2 mm) | n.s. | Stir time: 120 min; Desorption solvent: 8 mL DMF; Desorption temperature: 150–300 °C during 10 min | GC-MS | n.s. | [68] |
Phenolic acids | Grape juice | 10 mL | Magnetic Zn-Al LDH | 0.18–0.92 ng/mL | Stirred rate: 200 rpm; Stir time: 20 min (25 °C); Desorption time: 2 min | HPLC-UV | 90–105 | [69] |
Caffeine | Coca-Cola, 7up, Pepsi, ZamZam, Diet Coca-Cola, black tea | 10 mL | ZIF-67 | 0.16 ng/mL | Stirred rate: 700 rpm; Stir time: 20 min at room temperature; Desorption solvent: 100 µL of methanol; Desorption time: 4 min | HPLC-UV | 91–104 | [70] |
Phytohormones | Apple and pears | 10 mL | ZIF-8/poly (MMA-EGDMA) | n.s. | Stir rate: 800 rpm; Stir time: 50 min; Desorption solvent: 120 µL of 30 mM NaOH (methanol); Desorption time: 15 min | HPLC-UV | 12–46 | [71] |
Estrogens | Chicken and pork | 10 mL | PANi- PDMS | n.s. | Stir rate: 400 rpm; Extraction time: 40 min; Extraction temperature: 25 °C; Desorption solvent: 50 μL methanol; Desorption time: 15 min | HPLC-UV | 82–106 | [72] |
Aroma compounds | Six different sake | 10 mL | PDMS (10 mm length × 1.0 mm thickness, capacity 63 µL) | n.s. | Stir rate: 800 rpm; Extraction time: 1h; Extraction temperature: 25 °C; Desorption solvent: 500 μL acetone; Desorption time: 30 min | GC-MS | n.s. | [73] |
Polychlorinated biphenyls | Fish | n.s. | Apt-MOF | 0.011–0.015 ng/mL | Stir rate: 500 rpm; Extraction time: 50 min; Extraction temperature: 50 °C; Desorption solvent: 5 mL of methylene chloride–pH 3 glycine–HCl buffer (1:10, v/v); Desorption time: 20 min, pH = 3 | GC-MS | 89–97 | [74] |
Aflatoxins | Soy milk | 0.1 L | GO | 7.5–25 pg/mL | Stir time: 40 min; Extraction time: 40 min; Desorption solvent: 1.5 mL methanol; Desorption time: 10 min | HPLC-LIF | 80–102 | [75] |
Volatile aroma compounds | Apple juice | 20.0 mL | PDMS (length 10 mm, thickness 1.0 mm) | n.s. | Stir rate: 800 rpm; Extraction time: 120 min; DHE: incubation temperature: 30 °C; Incubation time: 30 min; Agitator on time: 10 s; Agitator off time: 1 s; Agitator speed: 500 rpm; Transfer heater temp: 70 °C; Trapping volume: 200 mL; Flow: 10 mL/min; Trap temp: 30 °C; Incubation temp: 30 °C; Drying phase volume: 10 mL; Drying flow: 10 mL/min and drying temperature of 30 °C | GC-FID | n.s. | [76] |
Volatile compounds | Longjing tea | 0.6 g | PDMS (10 mm length, 0.5 mm thickness, 24 μL capacity) | n.s. | Salt: 500 mg NaCl; Extraction time: 90 min; Extraction temperature: room temperature; Stir rate: 1250 rpm | GC-MS | 112 | [77] |
Volatile compounds | Dark tea | 0.6 g | PDMS twister (10 mm length, 1.0 mm thickness, 24 μL capacity) | n.s. | Salt: 500 mg NaCl; Extraction time: 90min; Extraction temperature 80 °C; Stir rate: 1200 rpm; Thermal desorption: 80 °C, held at 30 °C for 1 min, and then increased to 240 °C at a rate of 100 °C/min and held for 5 min | GC-MS | n.s. | [78] |
Volatile compounds | Green tea | 1.0 g | PDMS | n.s. | Stirred at 1000 rpm for 60 min at 60 °C (a control experiment was carried out at room temperature, about 28–30) | Es-GC-O/MS | n.s. | [79] |
Volatile compounds | Beer | 50.0 mL | PDMS (10 mm long and 0.5 mm thick) | 0.01–45.71 ppb | Salt: 25% (w/v); Stir rate: 1000 rpm; Extraction time: 180 min; Thermal desorption: the desorption temperature was set up to climb from 40 °C to 300 °C with 0.5 min delay time and 10 min holding time | GC-MS | 80–120 | [80] |
Compounds | Sample | Amount | Mode | Type of Sorbent | Limit of Quantitation | Conditions of extraction | Instrumentation | Recovery (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Gibberellins | Arabidopsis thaliana leaves | 0.30−0.80 mg | MSPD | silica | 0.87–4.37 pg/mL | Stir time: 10 min; Stir rate: 10,000 rpm; Extraction solvent: methanol (10 mL/g); Extraction temperature: 4 °C | UPLC-MS/MS | 83–104 | [86] |
Polyphenols | Grape residues | 0.1 g | MSPD | titanium dioxide nanoparticles and diatomaceous earth | 0.2–207 µg/g | Stir time: 1 min; Stir rate: 3000 rpm; Extraction solvent: 2 mL ethanol: water (20:80, v/v); Extraction temperature: room temperature; Other extraction time: 3 min | cLC-DAD-MS | ns | [87] |
Sesquiterpenes | Curcuma wenyujin | 2.0 g | MSPD | polypropylene | 0.005–0.034 mg/mL | 200 mg dispersant; Extraction solvent: 1 mL of methanol | MEEKC | 99–102 | [88] |
5-HMF and glycosides | Fructus Corni | 20.0 mg | MSPD | silica | 0.07–0.24 µg/mL | Stir time: 3 min; Extraction solvent: 6 mL [Domim]HSO4; Extraction time: 6 min | UHPLC-UV | 95–103 | [89] |
Caffeic acid; Forsythoside A; Philyrin; Quercetin; Isorhamnetic; Arctigenin | Forsythiae Fructus | 20.0 mg | MSPD | Surfactant T114-based vortex-synchronized | 0.08–0.25 µg/mL | Extraction solvent: 2 mL 10% surfactant T114; Extraction time: 5 min | UHPLC-DAD | 95–104 | [90] |
Polyphenols | Pomegranate peel | 26.0 mg | µ-MSPD | Carbon molecular sieve | 0.76–11.00 ng/mL | Extraction solvent; 200 µL methanol; Extraction time: 1.5 min | UHPLC-Q-TOF-MS | 88–106 | [91] |
Lignans | Aerial parts of Saururus chinensis | 0.2 g | MSPD | Silica gel | 0.26–2.63 µg/mL | Extraction solvent: 5 mL of methanol; Extraction time: 15 min | HPLC-DAD | 93–103 | [92] |
Anthraquinones | Cassieae Semen | 0.02 g | MSPD | C18 and silica gel | 2.20–13.20 µg/mL | Extraction solvent: 1 mL of 250 mM [Domim]HSO4; Extraction time: 10 min | HPLC | 91–106 | [93] |
Terpenoids, crocins, quinic acid flavonoids | Gardeniae fructus | 10.0 mg | MSPD | 2,6-dimethyl-β-cyclodextrin | 0.06–1.25 µg/mL | Extraction solvent: 0.5 mL of 100 mM [C12mim]HSO4; | UHPLC-DAD | 96–100 | [94] |
Compounds | Sample | Amount | Mode | Type of Sorbent | Limit of Quantitation | Conditions of Extraction | Instrumentation | Recovery (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Aflatoxins | Coffee and malt beverage | 10.0 mL | µ-SPE | C8 | 0.40–1.94 ng/g | Stir rate: 1000 rpm; Extraction time: 90 min; Desorption solvent: 350 µL acetonitrile; Desorption time: 25 min | LC-MS/MS | 86–109 | [97] |
Phenolics | Sea algae | 50.0 mg | µ-SPE | MCX, MAX, WAX, WCX, | 0.23–1.68 ng/mL | Conditioning: 50 µL methanol and 50 µL water; Washing: 2% acetic acid in methanol; Elution: 2% ammonium hydroxide in methanol | RRLC-MS/MS | n.s. | [98] |
Ochratoxin A | Coffee and grape juice | 10.0 g of coffee and 10 mL of juice | µ-SPE | MIP | 0.06–0.19 ng/g | Stir rate: 1000 rpm; Extraction time: 30 min; pH sample: 1.5; Desorption solvent: 250 µL methanol: acetic acid (98:2, v/v); Desorption time: 20 min | HPLC-FD | 90–101 | [99] |
Quercetin | Nasturtium officinale extract and fruit juice | 0.01 g | D-µ-SPE | Cu- and S- @SnO2-NPs-AC | 14.49 ng/mL | pH sample: 3.5; Stir rate: 4000 rpm; Extraction time: 4 min; Desorption solvent: 200 μL methanol; Desorption time: 2 min | UV-Vis | 90–97 | [101] |
Lipids | Oilseed | 1.0 mL | D-µ-SPE | HybridSPE-Phospholipid and C18, (50/50, w/w) | n.s. | Stir rate: 20 000 rpm; Stir time: 10 min; centrifuged for 5 min at 7000 rpm. Washing: 1 mL of 70% methanol in water, mixed for 10 min and centrifuged for 5 min. Elution: 1 mL methanol: ammonium (95:5, v/v) | LC-Q-TOF-MS | n.s. | [102] |
Cholecalciferol | Milk | 1.0 mL | D-µ-SPE | 3DG-Fe3O4@Sp | 10.23 µg/L | Stir time: 15 min; Desorption solvent: 400 μL acetonitrile; Desorption time: 4 min | HPLC-UV | 71–113 | [103] |
Flavonoids | Dark tea, chocolate, vegetable and fruit juice | 10.0 mL | D-µ-SPE | MANPs | 0.66–3.63 µg/L | pH sample: 4.9; Stir time: 2.1 min; Desorption solvent: 100 μL tetramethylammonium chloride and lactic acid; Desorption time: 5 min | HPLC-UV | >91 | [104] |
Flavonoids | Apple, grape juice, green tea | 0.5–1.0 g | Magnetic D-µ-SPE | SiO2@Fe3O4 | 2.98 µg/L | Extraction time: 10 min; Desorption solvent: 250 μL of ethanol; Desorption time: 2 min | HPLC-UV | 97 | [105] |
Compounds | Sample | Amount | Mode | Type of Sorbent | Limit of Detection | Condition of Extraction | Instrument | Recovery (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Rosmarinic acid | Aerial parts of Rosmarinus officinalis L. | 113.0 g | SPE | MIP | 2.01 µg/mL | Loading solvent: 2 mL acetonitrile/water (97.5:2.5, v/v); Washing solvent: 2 mL of water; Elution solvent: 2 mL of methanol: acetic acid (9:1, v/v). | HPLC/DAD/MS | 81 | [121] |
Salidroside | Rhodiola crenulata root powder | 1.0 g | SPE | MIP (200 mg) | 0.21 µg/L | Loading solvent: methanol Washing solvent: 1 mL methanol: water (5:95, v/v); Elution solvent: 2 mL methanol: acetic acid (1:9, v/v) | HPLC-UV | 88–97 | [122] |
Paclitaxel | Pacific yew tree powder | 10.0 g | n.s. | MIP | n.s. | Extraction solvent: 400 mL of methanol; extraction time: 30 min | HPLC | n.s. | [123] |
Coumarins, 7-hydroxycoumarin, 7-methoxycoumarin | food and plant extracts | 1.0 g | SPE | MMIPs | 1.04–5.92 µg/g | Conditioning: 3 mL of methanol: acetic acid (9:1, v/v) and 5 mL of analyte solvent (methanol/water 1/1, v/v); Stir time 30 min at 22 °C. Washing: 2 mL water; Elution: 1.25 mL methanol: acetic acid (9:1, v/v) and stirred for 30 min. | HPLC-DAD | 71.4–90.3 | [124] |
Oblongifolin C | Garcinia yunnanensis Hu | 45.0 g | SPE | MIP | n.s | Loading solvent: methanol-water (80:20, v/v); Eluting solution: methanol-water (50:50, v/v) and 70:30 (v/v) | HPLC | 48–77 | [125] |
Matrine, oxymatrine, and sophocarpine | Sophora moorcroftiana (roots, stems, leaves, and seeds) | 1.0 mL | SPE | double-templated molecularly imprinted polymers | 9.23–15.42 ng/g | Wash with water, acetic acid/MeOH (20:80, v/v), and acetonitrile; Loading solvents: MeOH, acetonitrile, and water; Washing solvents: (2 mL) of n-hexane, carbon tetrachloride (CCl4), methylene chloride (CH2Cl2), acetonitrile, MeOH, and water; Elution solvent: acetic acid-MeOH. | HPLC–MS/MS | 73–98 | [126] |
Myricetin | Carthamus tinctorius L. and Abelmoschus manihot | 15.0 g | SPE | MIP | 0–25 μg/mL | Column rinsed with 5 mL water and 5 mL methanol (×3). Extract solution was loaded on the column at a flow rate of 0.2 mL/ min. Wash with 10 mL pure water (×3) and 10 mL 10% methanol–water (v/v) (×3). Elution with 10 mL of methanol–acetic acid (8:2, v/v). | HPLC-DAD | 79–84 | [116] |
Flavonoids | Astragali Radix extract | 10.0 mL | SPE | calycosin-MIPs | n.s. | Conditioning: 10 mL of methanol; Sample load flow rate: 1 mL/min; Washing: 9 mL of methanol and 12 mL of methanol: acetic acid (9:1 v/v); Elution: methanol: acetic acid | HPLC-UV | n.s. | [115] |
Flavonoids | Ginkgo leaves | 4.0 g | SPE | MIP | n.s. | Conditioning: methanol; Sample loading flow rate: 1 mL/min; Washing: 12 mL of acetone; Elution: 9 mL methanol: acetic acid (9:1, v/v) | HPLC-UV | n.s. | [117] |
Naringin | Citri grandis extract | n.s. | SPE | SMIMs | n.s. | Conditioning: 5 mL methanol; Washing: 4 mL of methanol; Elution: 4 mL of ethanol: water: acetic acid (50:50:2) | HPLC-UV | 84 | [118] |
Naringin; genistein | Sophora japonica or shaddock peels | 10.0 g or 5.0 g | SPE | MIP | n.s. | Washing: ethanol; Elution: ethanol: acetic acid (4:1, v/v) | HPLC-UV | n.s. | [119] |
Flavonoids | Ginkgo biloba tea | 5.0 g | SPE | h-BN-MIP | n.s. | Washing: 1 mL deionized water; Elution: 1 mL ethanol | HPLC-UV | 98–100 | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosendo, L.M.; Brinca, A.T.; Pires, B.; Catarro, G.; Rosado, T.; Guiné, R.P.F.; Araújo, A.R.T.S.; Anjos, O.; Gallardo, E. Miniaturized Solid Phase Extraction Techniques Applied to Natural Products. Processes 2023, 11, 243. https://doi.org/10.3390/pr11010243
Rosendo LM, Brinca AT, Pires B, Catarro G, Rosado T, Guiné RPF, Araújo ARTS, Anjos O, Gallardo E. Miniaturized Solid Phase Extraction Techniques Applied to Natural Products. Processes. 2023; 11(1):243. https://doi.org/10.3390/pr11010243
Chicago/Turabian StyleRosendo, Luana M., Ana Teresa Brinca, Bruno Pires, Gonçalo Catarro, Tiago Rosado, Raquel P. F. Guiné, André R. T. S. Araújo, Ofélia Anjos, and Eugenia Gallardo. 2023. "Miniaturized Solid Phase Extraction Techniques Applied to Natural Products" Processes 11, no. 1: 243. https://doi.org/10.3390/pr11010243
APA StyleRosendo, L. M., Brinca, A. T., Pires, B., Catarro, G., Rosado, T., Guiné, R. P. F., Araújo, A. R. T. S., Anjos, O., & Gallardo, E. (2023). Miniaturized Solid Phase Extraction Techniques Applied to Natural Products. Processes, 11(1), 243. https://doi.org/10.3390/pr11010243