150USRT Class R-513A Refrigerant Two-Stage Centrifugal Compressor Design Point and Separation Point Flow Field Simulation Analysis
Abstract
:1. Introduction
1.1. Development and Introduction of Magnetic Levitation Oil-Free Centrifugal Refrigerant Compressor
- A = COP at 100% load; B = COP at 75% load
- C = COP at 50% load; D = COP at 25% load
1.2. Magnetic Levitation Oil-Free Centrifugal Refrigerant Compressor Structure
1.3. Literature Review
1.3.1. Documents about Centrifugal Compressors
1.3.2. Documents about R-513A Refrigerant
1.3.3. Documents about R-1234yf Refrigerant and R-1234ze Refrigerant
2. Materials and Methods
2.1. Symbol Description
- :
- :
- :
- :
- :
- :
- :
- :
- :
- :
- :
- :
- :
- :
- :
- :
2.2. Research Methods
2.3. Refrigerant Selection
2.4. Design of Compressor Flow Element
2.5. Research Process
2.6. Meshing
2.7. Boundary Condition Setting
3. Results
3.1. Description of Equations
- (1)
- Total Pressure Ratio
- (2)
- Isentropic Efficiency
- = Inlet Total Enthlpy (kJ/kg)
- = Outlet Total Enthlpy (kJ/kg)
- = Outlet Isentropic Total Enthalpy (kJ/kg)
- (3)
- Shaft Power
3.1.1. Total Pressure Ratios Comparison
3.1.2. Shaft Power Comparison
3.1.3. Comparison of Isentropic Efficiency
3.2. Flow Field Simulation Result Analysis
3.2.1. Flow Field Simulation Analysis Description
3.2.2. Pressure Contour
3.2.3. Isentropic Compression Efficiency Contour
3.2.4. Velocity (Rotor) Vector
4. Discussion and Conclusions
- In the 75% load case, the first and second stage compressors had the maximum isentropic efficiency values, 88.19% and 89.06%, respectively. The isentropic efficiency values were minimized in the 25% load case to 76.30% and 82.28%, respectively.
- The pressure ratios for the first and second stage compressors decreased with the load. The pressure ratio for the first stage compressor decreased from 1.62 to 1.22. The pressure ratio for the second stage compressor decreased from 1.51 to 1.21.
- In the 25% load case, an obvious eddy flow field distribution occurred at the impeller shroud of the first stage compressor. There was no eddy flow field distribution at the impeller shroud for the second stage compressor. Nonetheless, the flow velocity at the impeller shroud was approximated to 0 m/s, leading to a decrease in isentropic efficiency.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- AHRI 551/591 (SI/2020): Performance Rating of Water-Chilling and Heat Pump Water-Heating Packages Using the Vapor Compression Cycle (with Addendum 1), “Performance Rating of Water-Chilling and Heat Pump Water-Heating Packages Using the Vapor Compression Cycle.” [Online]. Available online: www.ahrinet.org (accessed on 11 January 2022).
- Huang, J.-M.; Tsai, Y.-H. Design and Analysis of a Split Deswirl Vane in a Two-Stage Refrigeration Centrifugal Compressor. Adv. Mech. Eng. 2014, 6, 130925. [Google Scholar] [CrossRef]
- Hsu, C.-N.; Wang, S.-H. Evaluating the Performance of Water Chillers Equipped with Constant- or Variable-Frequency Centrifugal Compressors. Processes 2021, 9, 1039. [Google Scholar] [CrossRef]
- Trébinjac, I.; Bulot, N.; Buffaz, N. Analysis of the flow in a transonic centrifugal compressor stage from choke to surge. Proc. Inst. Mech. Eng. Part A J. Power Energy 2011, 225, 919–929. [Google Scholar] [CrossRef]
- Shafieian, M.; Zavar, M.; Rahmanian, M. Simulation and Control of Surge Phenomenon in Centrifugal Compressors. Trait. Du Signal 2019, 36, 259–264. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z. Influence of different types of volutes on centrifugal aviation fuel pump. Adv. Mech. Eng. 2021, 13, 16878140211005202. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, P.; Wu, J.; Li, Q. Numerical Study of Unsteady Flow in Centrifugal Cold Compressor. Phys. Procedia 2015, 67, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Huo, Q.; Zhang, L.; Song, L.; Yang, J. Effect of Vaneless Diffuser Shape on Performance of Centrifugal Compressor. Appl. Sci. 2020, 10, 1936. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Li, W.; Cui, B. Energy and exergy analyses of R513a as a R134a drop-in replacement in a vapor compression refrigeration system. Int. J. Refrig. 2019, 112, 348–356. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, H.; Meng, Z.; Qin, Y. Experimental study on R1234yf/R134a mixture (R513A) as R134a replacement in a domestic refrigerator. Appl. Therm. Eng. 2018, 146, 540–547. [Google Scholar] [CrossRef]
- Saadoon, Y.G. EXPERIMENTAL ANALYSIS OF MOBILE AIR CONDITIONING SYSTEM USING R513A AS ALTERNATIVE REFRIGERANTS TO R134A. J. Mech. Contin. Math. Sci. 2019, 14, 450–469. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Wu, X.; Pan, X.; Xing, Z. Theoretical and experimental research on the performance of twin screw compressor using R513A as R134a replacement Author. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 235, 170–177. [Google Scholar] [CrossRef]
- Pérez-García, V.; Mota-Babiloni, A.; Navarro-Esbrí, J. Influence of operational modes of the internal heat exchanger in an experimental installation using R-450A and R-513A as replacement alternatives for R-134a. Energy 2019, 189, 116348. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, H.; Qiu, J.; Lei, M. Theoretical analysis of R1234ze(E), R152a, and R1234ze(E)/R152a mixtures as replacements of R134a in vapor compression system. Adv. Mech. Eng. 2016, 8, 1687814016676945. [Google Scholar] [CrossRef] [Green Version]
- Mota-Babiloni, A.; Navarro-Esbrí, J.; Mendoza-Miranda, J.M.; Peris, B. Experimental evaluation of system modifications to increase R1234ze(E) cooling capacity. Appl. Therm. Eng. 2017, 111, 786–792. [Google Scholar] [CrossRef]
- Hung, K.-S.; Ho, K.-Y.; Hsiao, W.-C.; Kuan, Y.-D. The Characteristic of High-Speed Centrifugal Refrigeration Compressor with Different Refrigerants via CFD Simulation. Processes 2022, 10, 928. [Google Scholar] [CrossRef]
- Yi, K.; Zhao, Y.; Liu, G.; Yang, Q.; Yu, G.; Li, L. Performance Evaluation of Centrifugal Refrigeration Compressor Using R1234yf and R1234ze(E) as Drop-In Replacements for R134a Refrigerant. Energies 2022, 15, 2552. [Google Scholar] [CrossRef]
- Acharya, R. Investigation of Differences in Ansys Solvers CFX and Fluent. Master’s Thesis, Royal Institute of Technology, Stockholm, Sweden, 2016. [Google Scholar]
- Henningson, D.S.; Berggren, M. “Fluid Dynamics: Theory and Computation.” 2005. [Online]. Available online: https://www.semanticscholar.org/paper/Fluid-Dynamics%3A-Theory-and-Computation-Henningson-Berggren/4d5e197e452441c421e53250dd802f6d8b32c972 (accessed on 11 January 2022).
- “ANSYS CFX-Solver Theory Guide”; Release 14.0; ANSYS: Canonsburg, PA, USA, 2011; Volume 15317, pp. 724–746. Available online: http://www1.ansys.com/customer/content/documentation/140/cfx_thry.pdf (accessed on 11 January 2022).
- UNEP. Amendment to the Montreal Protocol on Substances That Deplete the Ozone Layer, Kigali, no. 1522 UNTS 3; 26 ILM 1550; UNEP: Nairobi, Kenya, 2016. [Google Scholar]
- Bell, I.H.; Domanski, P.A.; McLinden, M.O.; Linteris, G.T. The hunt for nonflammable refrigerant blends to replace R-134a. Int. J. Refrig. 2019, 104, 484–495. [Google Scholar] [CrossRef] [PubMed]
- ANSI/ASHRAE Addendum f to ANSI/ASHRAE Standard 34-2019. 2019. [Online]. Available online: www.ashrae.org (accessed on 11 November 2022).
- Cravero, C.; Leutcha, P.J.; Marsano, D. Simulation and Modeling of Ported Shroud Effects on Radial Compressor Stage Stability Limits. Energies 2022, 15, 2571. [Google Scholar] [CrossRef]
Refrigerant | Type | Critical Specific Volume (m3/mol) | Critical Temperature (K) | Critical Pressure (kPa) | Boiling Temperature (K) |
---|---|---|---|---|---|
R-134a | HFC-134a | 0.0002008 | 374.26 | 4059 | 247.04 |
R-513A | HFO-1234yf/HFC-134a(56/44) | 0.000221092 | 368.06 | 3647.8 | 243.68 |
Refrigerant | ODP | GWP100 | Safety Classifications |
---|---|---|---|
R-134a | 0 | 1430 | A1 |
R-513A | 0 | 573 | A1 |
Total Pressure Ratio | Mass Flow Rate (kg/s) | Isentropic Compression Power (J/kg) | Rotating Speed (rpm) | Impeller Diameter (mm) | Specific Speed Ns | Specific Diameter Ds | |
---|---|---|---|---|---|---|---|
Stage 1 | 1.6 | 2.797 | 8840 | 19,450 | 132.5 | 0.81 | 3.53 |
Stage 2 | 1.52 | 3.227 | 7990 | 19,450 | 129 | 0.75 | 3.91 |
R1T | R1H | R2 | B2 | Beta2 | SA | Number of Blades | ||
---|---|---|---|---|---|---|---|---|
R-513A | Stage 1 | 36 mm | 22.5 mm | 66.25 mm | 7.6 mm | −48.5° | 45° | 13 |
150USRT | Stage 2 | 36 mm | 26 mm | 64.5 mm | 6.1 mm | −52.5° | 45° | 13 |
Load | 100% | |
---|---|---|
Rotating Speed (RPM) | 19,450 | |
- | Stage 1 | Stage 2 |
Inlet Total Temperature (℃) | 6.4 | 24.8 |
Inlet Total Pressure (kPa) | 398 | 635 |
Outlet Mass Flow Rate (kg/s) | 2.797 | 3.227 |
Load | 75% | |
---|---|---|
Rotating Speed (RPM) | 16,650 | |
- | Stage 1 | Stage 2 |
Inlet Total Temperature (°C) | 6.7 | 20.5 |
Inlet Total Pressure (kPa) | 403 | 575 |
Outlet Mass Flow Rate (kg/s) | 2.032 | 2.248 |
Load | 50% | |
---|---|---|
Rotating Speed (RPM) | 13,650 | |
- | Stage 1 | Stage 2 |
Inlet Total Temperature (°C) | 6.8 | 14.25 |
Inlet Total Pressure (kPa) | 406 | 521 |
Outlet Mass Flow Rate (kg/s) | 1.316 | 1.404 |
Load | 25% | |
---|---|---|
Rotating Speed (RPM) | 12,150 | |
- | Stage 1 | Stage 2 |
Inlet Total Temperature (°C) | 6.8 | 13.6 |
Inlet Total Pressure (kPa) | 407 | 508 |
Outlet Mass Flow Rate (kg/s) | 0.6533 | 0.6931 |
IPLV | Stage | Mass Flow Rate (kg/s) | Inlet Pressure (kPa) | Outlet Pressure (kPa) | Isentropic Efficiency (%) | Shaft Power (kW) | Pr |
---|---|---|---|---|---|---|---|
100% | Stage 1 | 2.80 | 398 | 641.8 | 88.09 | 29.8 | 1.62 |
Stage 2 | 3.23 | 635 | 959.5 | 88.18 | 30.3 | 1.51 | |
75% | Stage 1 | 2.03 | 403 | 579.3 | 88.19 | 16.5 | 1.44 |
Stage 2 | 2.25 | 575 | 783.2 | 89.06 | 15.7 | 1.37 | |
50% | Stage 1 | 1.32 | 406 | 523.9 | 87.44 | 7.6 | 1.29 |
Stage 2 | 1.40 | 521 | 649.7 | 87.79 | 7.0 | 1.25 | |
25% | Stage 1 | 0.65 | 407 | 495.1 | 76.30 | 3.4 | 1.22 |
Stage 2 | 0.70 | 508 | 614.8 | 82.28 | 3.2 | 1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, K.-S.; Hsiao, W.-C.; Li, Y.-C.; Kuan, Y.-D. 150USRT Class R-513A Refrigerant Two-Stage Centrifugal Compressor Design Point and Separation Point Flow Field Simulation Analysis. Processes 2023, 11, 253. https://doi.org/10.3390/pr11010253
Hung K-S, Hsiao W-C, Li Y-C, Kuan Y-D. 150USRT Class R-513A Refrigerant Two-Stage Centrifugal Compressor Design Point and Separation Point Flow Field Simulation Analysis. Processes. 2023; 11(1):253. https://doi.org/10.3390/pr11010253
Chicago/Turabian StyleHung, Kuo-Shu, Wei-Chung Hsiao, Yi-Chen Li, and Yean-Der Kuan. 2023. "150USRT Class R-513A Refrigerant Two-Stage Centrifugal Compressor Design Point and Separation Point Flow Field Simulation Analysis" Processes 11, no. 1: 253. https://doi.org/10.3390/pr11010253
APA StyleHung, K. -S., Hsiao, W. -C., Li, Y. -C., & Kuan, Y. -D. (2023). 150USRT Class R-513A Refrigerant Two-Stage Centrifugal Compressor Design Point and Separation Point Flow Field Simulation Analysis. Processes, 11(1), 253. https://doi.org/10.3390/pr11010253