Prediction of Winter Wheat Harvest Based on Back Propagation Neural Network Algorithm and Multiple Remote Sensing Indices
Abstract
:1. Introduction
2. Materials & Methods
2.1. Overview of the Research Area
2.2. Research Data
2.2.1. Remote Sensing Data
2.2.2. Remote Sensing Digital Images Extracted from Main Research Areas
2.3. Growth Periods of Winter Wheat in Henan Province
2.4. Research Methods
2.4.1. Calculation Method of Remote Sensing Index
- refers to the near-infrared band reflectivity,
- refers to the red-light band reflectivity.
- refers to the blue-band reflectivity,
- L refers to the soil regulation parameter, set as 1,
- C1 refers to the atmospherically corrected parameter with red-light correction, set as 6.0,
- C2 refers to the atmospherically corrected parameter with blue-light correction, set as 7.5.
- refers to the near-infrared band reflectivity,
- refers to the shortwave infrared band reflectivity.
2.4.2. Data Extraction from Ground Observation
2.4.3. Extraction of Data from Satellite Remote Sensing
2.4.4. Multivariate Regression Analysis and Prediction Model for Winter Wheat Harvest
2.4.5. Winter Wheat Harvest Time Machine BP Neural Network Machine Learning Prediction Model Construction Method
- is the number of neurons in the implicit layer.
- is the number of neurons in the input layer.
- is the number of neurons in the output layer.
- is the number of samples in the training layer.
- is a constant between 2 and 10.
2.4.6. Definition of the Optimal Period of Harvesting Winter Wheat
3. Result
3.1. Establishment of Multiple Linear Regression Prediction Model for Winter Wheat Harvest at Different Growth Stages
3.2. Establishment of Multiple Linear Regression Prediction Model for Winter Wheat Harvest in Henan Province
3.3. Establishment of BP Neural Network Machine Learning Prediction Model for Winter Wheat Harvest in Henan Province
3.4. Evaluation of BP Neural Network Machine Learning Prediction Model
4. Discussion
4.1. Interpretation of Result
4.2. Validation of the Prediction Model
4.2.1. The Prediction Model Was Verified to Predict the Wheat Harvest Time in the Main Wheat-Producing Areas of Henan Province in 2020
4.2.2. The Prediction Model Was Verified to Predict the Wheat Harvest Time in the Main Wheat-Producing Areas of Henan Province in 2021
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, B.J.; Wang, T.H. Dual quantitative analysis of effects of meteorological factors on yield of winter wheat at different growth stages. J. Triticle Crops 2018, 4, 487–492. [Google Scholar]
- Huang, J.X.; Wang, X. Research on Remote Sensing Prediction Method of Regional Winter Wheat Maturity for Agricultural Machinery Navigation and Scheduling; GNSS and LBS Association of China: Beijing, China, 2016; pp. 172–178. [Google Scholar]
- Chen, L.Q. Research on the new mode of rural land transfer. Agric. Mach. Agron. 2020, 51, 74. [Google Scholar]
- Chunjiang, Z.; Xuzhang, X.; Xiu, W.; Liping, C.; Yuchun, P.; Zhijun, M. Research progress and prospect of precision agriculture technology system. Trans. CSAE 2003, 4, 7–12. [Google Scholar]
- Xue, C.L.; Yi, Q.X.; Zhang, C.S. Variation law of different harvesting time on thousand-kernel weight in wheat. J. Shanxi Agric. Sci. 2014, 42, 667–668+682. [Google Scholar]
- Meng, J.H. Crop growth monitoring. Remote Sens. 2006, 14, 4565. [Google Scholar]
- Huang, J.X.; Niu, W.H.; Ma, H.Y.; Huang, R.; Zhu, D.H. Prediction of maturity data for winter wheat based on time series of HJ-1 A/B CCD images. Trans. Chin. Soc. Agric. Mach. 2016, 47, 278–284. [Google Scholar]
- Huang, J.X.; Wang, L.; Huang, R.; Huang, H.; Su, W.; Zhu, D.H. Forecastin of regional maize maturity using accumulated temperature-solar radiation model and leaf area index integral area model. Trans. Chin. Soc. Agric. Mach. 2019, 50, 133–143. [Google Scholar]
- Meng, J.H.; Wu, B.F.; Du, X.; Dong, T.F.; Niu, L.M. Predicting mature date of winter wheat with HJ-1A/1B data. Trans. CSAE 2011, 27, 25–230. [Google Scholar]
- Huang, J.X.; Gao, X.R.; Huang, H.; Ma, H.Y.; Su, W.; Zhu, D.H. Regional winter wheat maturity date prediction based on MODIS and WOFOST model data assimilation. Trans. Chin. Soc. Agric. Mach. 2019, 50, 186–193. [Google Scholar]
- Ma, Y.P.; Wang, S.L.; Zhang, L.; Hou, Y.Y. A preliminary study on the re-initialization/re-parameterization of a crop model based on remote sensing data. Chin. J. Plant Ecol. 2005, 6, 52–60. [Google Scholar]
- Meng, J.H.; Wu, B.F. The feasibility analysis on satellite data based crop mature data prediction. Remote Sens. Technol. Appl. 2013, 28, 165–173. [Google Scholar]
- Chen, Q.L.; Xie, M.J.; Li, J.P.; Li, Z.; Zhang, M.L.; Wang, S.T. Change of vegetation NDVI and its response to meteorological elements in Hebei Province. For. Ecol. Sci. 2020, 35, 17–24. [Google Scholar]
- He, H.; Zhang, B.; Hou, Q.; Li, S.; Ma, B.; Ma, S.Q. Variation of NDVI and its response to extreme temperature in the growing season of North China from 1982 to 2015. Arid. Zong Res. 2020, 37, 244–253. [Google Scholar]
- Li, Y.; Du, L.; Yang, J.; Sun, H. Prediction of Wheat Mature Time Based on Temperature Index during Specific Growth Stage. Chin. J. Agrometeorol. 2012, 33, 104–108. [Google Scholar]
- Lian, Z.; Zhao, S.; Kuang, S. Application of Phenological Observation Data in Forecast of Suitable Harvest Period of Wheat. Chin. J. Agrometeorol. 2006, 3, 226–228. [Google Scholar]
- Hou, X.; Sui, X.; Yao, H.; Liang, S.; Wang, M. Response of Winter Wheat Phenology to Climate Change in Northern China. J. Triticeae Crops 2019, 39, 202–209. [Google Scholar]
- Li, Z.; Yang, D.H.; Yuan, W.T. Coupling Relationship Between MODIS-NDVI and Climatic Factor. Henan Sci. 2014, 32, 737–740. [Google Scholar]
- Wang, S.; Zhang, K.; Chao, L.; Li, D.; Tian, X.; Bao, H.; Xia, Y. Exploring the utility of radar and satellite-sensed precipitation and their dynamic bias correction for integrated prediction of flood and landslide hazards. J. Hydrol. 2021, 603, 126964. [Google Scholar] [CrossRef]
- Liang, Y.; Jin, W.Y.; Guo, N.; Liu, S.X.; Han, T. Study on correlation between NDVI and precipitation in Longdong. Agric. Res. Arid. Areas 2009, 27, 247–251. [Google Scholar]
- Liu, Y.; Zhang, K.; Li, Z.; Liu, Z.; Wang, J.; Huang, P. A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. J. Hydrol. 2020, 590, 125440. [Google Scholar] [CrossRef]
- Chao, L.; Zhang, K.; Wang, J.; Feng, J.; Zhang, M. A Comprehensive Evaluation of Five Evapotranspiration Datasets Based on Ground and GRACE Satellite Observations: Implications for Improvement of Evapotranspiration Retrieval Algorithm. Remote Sens. 2021, 13, 2414. [Google Scholar] [CrossRef]
- Quan, Q.; Gao, S.; Shang, Y.; Wang, B. Assessment of the sustainability of Gymnocypris eckloni habitat under river damming in the source region of the Yellow River. Sci. Total Environ. 2021, 778, 146312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Ali, A.; Antonarakis, A.; Moghaddam, M.; Saatchi, S.; Tabatabaeenejad, A.; Moorcroft, P. The Sensitivity of North American Terrestrial Carbon Fluxes to Spatial and Temporal Variation in Soil Moisture: An Analysis Using Radar-Derived Estimates of Root-Zone Soil Moisture. J. Geophys. Res. Biogeosci. 2019, 124, 3208–3231. [Google Scholar] [CrossRef]
- Zhao, T.; Shi, J.; Lv, L.; Xu, H.; Chen, D.; Cui, Q.; Zhang, Z. Soil moisture experiment in the Luan Riversupporting new satellite mission opportunities. Remote Sens. Environ. 2020, 240, 111680. [Google Scholar] [CrossRef]
- Zhu, D.M.; Wang, H.; Liu, D.T.; Gao, D.R.; Liu, G.F.; Wang, J.C.; Gao, Z.F.; Lu, C.B. Characteristics of grain filling and dehydration in wheat. Sci. Agric. Sin. 2019, 52, 4251–4261. [Google Scholar]
- Wang, P.; Wu, J.J.; Nie, J.L.; Kong, F.M.; Ding, H.Y.; Zhao, L.H. A Comparatively Study of the Capabilities of Different Vegetation Water Indices in Monitoring Water Status of Wheat. Remote Sens. Land Resour. 2010, 3, 97–100. [Google Scholar]
- Zhao, T.; Shi, J.; Entekhabi, D.; Jackson, T.J.; Hu, L.; Peng, Z.; Kang, C.S. Retrievals of soil moisture and vegetation optical depth using a multi-channel collaborative algorithm. Remote Sens. Environ. 2021, 257, 112321. [Google Scholar] [CrossRef]
- Tian, H.; Qin, Y.; Niu, Z.; Wang, L.; Ge, S. Summer Maize Mapping by Compositing Time Series Sentinel-1A Imagery Based on Crop Growth Cycles. J. Indian Soc. Remote Sens. 2021, 49, 2863–2874. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Y.; Chen, T.; Zhang, L.; Qin, Y. Early-Season Mapping of Winter Crops Using Sentinel-2Optical Imagery. Remote Sens. 2021, 13, 3822. [Google Scholar] [CrossRef]
- Ji, H.; Wang, W.Z.; Chong, D.F.; Zhang, B.Y. CARS algorith m-based detection of wheat moisture content before harvest. Symmetry 2020, 12, 115. [Google Scholar] [CrossRef] [Green Version]
- Guo, N. Vegetation index and its advances. J. Arid. Meteorol. 2003, 4, 71–75. [Google Scholar]
- Shen, X.J.; Han, D.J.; Hou, B.C.; Ma, R. Discussion on classification and application of vegetation indices. Comput. Era 2016, 12, 17–20. [Google Scholar]
- Schell, J.A.; Rouse, J.W.; Haas, R.H. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1974; NASA: Washington, DC, USA, 1974; Volume 351, pp. 310–317. [Google Scholar]
- Wang, H.H. Prediction Model of Poplar Drying Rate and Shrinkage Rate Based on Support Vector Machine and BP Neural Network; Northeast Forestry University: Harbin, China, 2022. [Google Scholar]
- Xie, H. Vehicle Speed Prediction Based on BP Neural Network and Its Optimization Algorithm; Chongqing University: Chongqing, China, 2014. [Google Scholar]
- Bai, Y.Y.; Gao, J.L.; Zhang, B.L. Monitoring of crops growth based on NDVI and EVI. Trans. Chin. Soc. Agric. Mach. 2019, 50, 153–161. [Google Scholar]
- Gao, B.C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water fromspace. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Qi, H.X.; Wu, Z.Y.; Zhang, L.; Li, J.W.; Zhou, J.K.; Zou, J.; Zhu, B.Y. Monitoring of peanut leaves chlorophyll content based on drone-based multispectral image feature extraction. Comput. Electron. Agric. 2021, 187, 106292. [Google Scholar] [CrossRef]
- Taghizade, S.; Navid, H.; Maghsodi, Y.; Vahed, M.M.; Fellegarii, R. Predicting Wheat Harvest Time Using Satellite Images and Regression Models. AMA 2019, 50, 28–33. [Google Scholar]
- Kewen, X.; Changbiao, L.; Junyi, S. An optimization algorithm for the number of hidden layer nodes of feedforward neural networks. Comput. Sci. 2005, 10, 143–145. [Google Scholar]
- Baofeng, Z.; Qiuyan, C. Water detection data processing based on BP neural network. J. Liaoning Inst. Technol. 2006, 3, 158–160. [Google Scholar]
- Meng, Z.J.; Liu, H.Y.; An, X.F.; Yin, Y.X.; Jin, C.Q.; Zhang, A.Q. Prediction model of wheat straw moistuecontent based on SPA-SSA-BP. Trans. Chin. Soc. Agric. Mach. 2021, 12, 1542. [Google Scholar]
No. | Time | Research Area | No. | Time | Research Area |
---|---|---|---|---|---|
1 | 3 March 2020 | Zhengzhou, Zhumadian | 8 | 29 April 2020 | Anyang, Zhumadian |
2 | 12 March 2020 | Anyang | 9 | 6 May 2020 | Anyang, Zhengzhou |
3 | 19 March 2020 | Anyang, Zhengzhou | 10 | 15 May 2020 | Anyang, Zhumadian |
4 | 28 March 2020 | Anyang, Zhumadian | 11 | 22 May 2020 | Anyang, Zhengzhou |
5 | 4 April 2020 | Anyang, Zhengzhou | 12 | 31 May 2020 | Anyang |
6 | 13 April 2020 | Anyang, Zhumadian | 13 | 6 June 2020 | Anyang |
7 | 20 April 2020 | Anyang, Zhengzhou |
Observation Points | March | April | May | June | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Early | Middle | Late | Early | Middle | Late | Early | Middle | Late | Early | Middle | Late | |
Zhumadian | Elongation Stage | Heading Stage | Filling Stage | Maturation Stage | ||||||||
Zhengzhou | Elongation Stage | Heading Stage | Filling Stage | Maturation Stage | ||||||||
Anyang | Elongation Stage | Heading Stage | Filling Stage | Maturation Stage |
Band | Wavelength Range (μm) | Spatial Resolution (m) |
---|---|---|
NIR | 0.845–0.885 | 30 |
Red | 0.630–0.680 | 30 |
Blue | 0.450–0.515 | 30 |
SWIR | 1.560–1.660 | 30 |
Observation Points | Sowing Date | Elongation Stage | Heading and Flowering Stage | Filling and Ripening Stage | Harvest Date | Growth Cycle (Day) |
---|---|---|---|---|---|---|
Zhumadian | 23 October 2019 | 5 March 2020 to 2 April 2020 | 3 April 2020 to 15 April 2020 | 16 April 2020 to 23 May 2020 | 24 May 2020 | 215 |
Zheng zhou | 16 October 2019 | 10 March 2020 to 9 April 2020 | 10 April 2020 to 24 April 2020 | 25 April 2020 to 28 May 2020 | 29 May 2020 | 227 |
Anyang | 25 October 2019 | 15 March 2020 to 22 April 2020 | 23 April 2020 to 30 April 2020 | 1 May 2020 to 9 June 2020 | 10 June 2020 | 230 |
Observation Points | Winter Wheat Growth Period | Forecasting Model | R2 | RMSE |
---|---|---|---|---|
Zhumadian | Elongation stage | y = 824.23NDVI + 179.77NDWI − 423.4EVI − 377.14 | 0.993 | 1.07 |
Heading and flowering stage | y = −45.12NDVI + 114.28NDWI − 260.13EVI + 314.98 | 0.87 | 0.98 | |
Filling and ripening stage | y = −59.09NDVI − 33.75NDWI + 51.13EVI + 218.39 | 0.998 | 0.78 | |
Zhengzhou | Elongation stage | y = 91.57NDVI + 384.76NDWI − 213.6EVI + 6.69 | 0.998 | 1.21 |
Heading and flowering stage | y = −6.3NDVI + 257.71NDWI + 40.94EVI + 12.32 | 0.956 | 0.66 | |
Filling and ripening stage | y = −83.76NDVI + 71.81NDWI − 3.13EVI + 233.15 | 0.999 | 0.67 | |
Anyang | Elongation stage | y = 252.17.04NDVI + 208.14NDWI + 2.2.25EVI + 133.61 | 0.938 | 5.84 |
Heading and flowering stage | y = −241.36NDVI − 310.1NDWI − 184.59EVI + 281.16 | 0.88 | 1.9 | |
Filling and ripening stage | y = 33.03NDVI − 7.23NDWI − 90.92EVI + 235.07 | 0.989 | 1.29 |
Winter Wheat Growth Period | Forecasting Model | R2 | RMSE |
---|---|---|---|
Grain-filling and maturation stage | y = 40.89NDVI + 19NDWI − 129.40EVI + 235.1 | 0.81 | 6.6 |
Filling stage | y = −193.67NDVI − 8.44NDWI − 119.08EVI + 121.35 | 0.958 | 3.39 |
Maturity stage | y = −16.85NDVI + 215.23NDWI − 536.14EVI + 320.2 | 0.97 | 2.23 |
Type of Samples | Number of Samples | Min | Max | Mean | Standard Devitation |
---|---|---|---|---|---|
Training | 305 | 183 | 204 | 198 | 9.85 |
Validation | 130 | 197 | 219 | 210 | 6.59 |
Overall | 435 | 183 | 219 | 200 | 10.34 |
Implied Number of Neurons | Training Set | Test Set | ||||
---|---|---|---|---|---|---|
RMSE | MAE | MAPE (%) | RMSE | MAE | MAPE (%) | |
3 | 0.8694 | 0.5668 | 0.0204 | 0.8290 | 0.5524 | 0.0192 |
4 | 0.5949 | 0.3508 | 0.0133 | 0.6790 | 0.4075 | 0.0150 |
5 | 0.5310 | 0.3001 | 0.0114 | 0.5947 | 0.3104 | 0.0119 |
6 | 0.6001 | 0.3131 | 0.0121 | 0.5446 | 0.3208 | 0.0121 |
7 | 0.6170 | 0.3336 | 0.0128 | 0.5961 | 0.3194 | 0.0119 |
8 | 0.5864 | 0.2981 | 0.0115 | 0.6595 | 0.3694 | 0.0139 |
9 | 0.4099 | 0.2392 | 0.0092 | 0.9711 | 0.4505 | 0.0171 |
Prediction Model | R2 | RMSE |
---|---|---|
Multiple linear regression | 0.97 | 2.23 |
BP neural network machine learning | 0.99 | 0.59 |
Observation Points | Observed Value (Day) | Predicted Value (Day) | Error Value (Day) |
---|---|---|---|
Nanyang | 224 | 227 | 3 |
Shangqiu | 220 | 221 | 1 |
Luohe | 222 | 220 | −2 |
Xuchang | 223 | 224 | 1 |
Xinxiang | 234 | 236 | 2 |
Puyang | 220 | 219 | −1 |
Average error | 1.67 |
Observation Points | Observed Value (Day) | Predicted Value (Day) | Error Value (Day) |
---|---|---|---|
Zhumadian | 223 | 225 | 2 |
Shangqiu | 226 | 223 | −3 |
Luohe | 230 | 229 | −1 |
Xuchang | 226 | 228 | 2 |
Zhengzhou | 233 | 231 | −2 |
Xinxiang | 230 | 227 | 3 |
Puyang | 230 | 233 | 3 |
Anyang | 230 | 231 | 1 |
Average Error | 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.; He, X.; Wang, W.; Zhang, H. Prediction of Winter Wheat Harvest Based on Back Propagation Neural Network Algorithm and Multiple Remote Sensing Indices. Processes 2023, 11, 293. https://doi.org/10.3390/pr11010293
Ji H, He X, Wang W, Zhang H. Prediction of Winter Wheat Harvest Based on Back Propagation Neural Network Algorithm and Multiple Remote Sensing Indices. Processes. 2023; 11(1):293. https://doi.org/10.3390/pr11010293
Chicago/Turabian StyleJi, Hong, Xun He, Wanzhang Wang, and Hongmei Zhang. 2023. "Prediction of Winter Wheat Harvest Based on Back Propagation Neural Network Algorithm and Multiple Remote Sensing Indices" Processes 11, no. 1: 293. https://doi.org/10.3390/pr11010293
APA StyleJi, H., He, X., Wang, W., & Zhang, H. (2023). Prediction of Winter Wheat Harvest Based on Back Propagation Neural Network Algorithm and Multiple Remote Sensing Indices. Processes, 11(1), 293. https://doi.org/10.3390/pr11010293