Classification of Quality Characteristics of Surimi Gels from Different Species Using Images and Convolutional Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Surimi Gel
2.2. Determination of Surimi Gel Whiteness
2.3. Image Acquisition System and Data Processing
2.4. Modeling
2.4.1. Determination of Training Model (Auto Machine Learning)
2.4.2. Convolutional Neural Network
2.4.3. Performance Metrics
2.5. Statistical Analysis
3. Results and Discussion
3.1. Color Measurement
3.2. Validation of AutoML Models
3.3. Classification of Surimi Gel Based on Moisture Content
3.4. Classification of Surimi Gel Based on Species and Moisture Content Levels
3.5. Classification of Surimi Gel Based on Starch Concentration and Moisture Content Levels
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, J.W. Ingredient technology for surimi and surimi seafood. In Surimi and Surimi Seafood, 2nd ed.; Taylor and Francis Group: Boca Raton, FL, USA, 2005; pp. 649–707. [Google Scholar]
- Jha, S.N. Fact.Mr. Surimi Market. 2023. Available online: https://www.factmr.com/report/5014/surimi-market (accessed on 31 August 2023).
- Xiong, Z.; Shi, T.; Jin, W.; Bao, Y.; Monto, A.R.; Yuan, L.; Gao, R. Gel performance of surimi induced by various thermal technologies: A review. Crit. Rev. Food Sci. Nutr. 2022, 1–16. [Google Scholar] [CrossRef]
- De Albuquerque Sousa, T.C.; Ferreira VC, D.S.; da Silva Araújo, Í.B.; da Silva, F.A.P. Natural Additives as Quality Promoters in Surimi: A Brief Review. J. Aquat. Food Prod. Technol. 2022, 31, 735–744. [Google Scholar] [CrossRef]
- Benjakul, S.; Chantarasuwan, C.; Visessanguan, W. Effect of medium temperature setting on gelling characteristics of surimi from some tropical fish. Food Chem. 2003, 82, 567–574. [Google Scholar] [CrossRef]
- Poowakanjana, S.; Park, J.W. Biochemical characterisation of Alaska pollock, Pacific whiting, and threadfin bream surimi as affected by comminution conditions. Food Chem. 2013, 138, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W. Surimi seafood: Products, market, and manufacturing. In Food Science and Technology, 2nd ed.; Taylor and Francis Group: Boca Raton, FL, USA, 2000; pp. 201–236. [Google Scholar]
- Poowakanjana, S.; Mayer, S.G.; Park, J.W. Optimum chopping conditions for Alaska pollock, Pacific whiting, and threadfin bream surimi paste and gel based on rheological and Raman spectroscopic analysis. J. Food Sci. 2012, 77, E88–E97. [Google Scholar] [CrossRef] [PubMed]
- Yoon, W.B.; Park, J.W.; Kim, B.Y. Linear programming in blending various components of surimi seafood. J. Food Sci. 1997, 62, 561–564. [Google Scholar] [CrossRef]
- Moon, J.H.; Yoon, W.B.; Park, J.W. Assessing the textural properties of Pacific whiting and Alaska pollock surimi gels prepared with carrot under various heating rates. Food Biosci. 2017, 20, 12–18. [Google Scholar] [CrossRef]
- Cao, G.; Chen, X.; Wang, N.; Tian, J.; Song, S.; Wu, X.; Wang, L.; Wen, C. Effect of konjac glucomannan with different viscosities on the quality of surimi-wheat dough and noodles. Int. J. Biol. Macromol. 2022, 221, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Fang, L.; Wang, C.; Shi, L.; Chang, T.; Yang, H.; Cui, M. Effects of starches on the textural, rheological, and color properties of surimi–beef gels with microbial tranglutaminase. Meat Sci. 2013, 93, 533–537. [Google Scholar] [CrossRef]
- Tabilo-Munizaga, G.; Barbosa-Cánovas, G.V. Color and textural parameters of pressurized and heat-treated surimi gels as affected by potato starch and egg white. Food Res. Int. 2004, 37, 767–775. [Google Scholar] [CrossRef]
- Liu, H.; Nie, Y.; Chen, H. Effect of different starches on colors and textural properties of surimi-starch gels. Int. J. Food Prop. 2014, 17, 1439–1448. [Google Scholar] [CrossRef]
- Mi, H.; Li, Y.; Wang, C.; Yi, S.; Li, X.; Li, J. The interaction of starch-gums and their effect on gel properties and protein conformation of silver carp surimi. Food Hydrocoll. 2021, 112, 106290. [Google Scholar] [CrossRef]
- Song, C.; Lin, Y.; Hong, P.; Liu, H.; Zhou, C. Compare with different vegetable oils on the quality of the Nemipterus virgatus surimi gel. Food Sci. Nutr. 2022, 10, 2935–2946. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Jiang, X.; Xiao, N.; Zhang, Q.; Shi, W.; Guo, Q. Assessing the Gel Quality and Storage Properties of Hypophythalmalmichthys molitrix Surimi Gel Prepared with Epigallocatechin Gallate Subject to Multiple Freeze-Thaw Cycles. Foods 2022, 11, 1612. [Google Scholar] [CrossRef]
- Alakhrash, F.; Anyanwu, U.; Tahergorabi, R. Physicochemical properties of Alaska pollock (Theragra chalcograma) surimi gels with oat bran. LWT-Food Sci. Technol. 2016, 66, 41–47. [Google Scholar] [CrossRef]
- ElMasry, G.M.; Nakauchi, S. Image analysis operations applied to hyperspectral images for non-invasive sensing of food quality–a comprehensive review. Biosyst. Eng. 2016, 142, 53–82. [Google Scholar] [CrossRef]
- An, T.; Yu, H.; Yang, C.; Liang, G.; Chen, J.; Hu, Z.; Hu, B.; Dong, C. Black tea withering moisture detection method based on convolution neural network confidence. J. Food Process Eng. 2020, 43, e13428. [Google Scholar] [CrossRef]
- Xu, Y.; Kou, J.; Zhang, Q.; Tan, S.; Zhu, L.; Geng, Z.; Yang, X. Visual Detection of Water Content Range of Seabuckthorn Fruit Based on Transfer Deep Learning. Foods 2023, 12, 550. [Google Scholar] [CrossRef]
- Mendoza, F.; Dejmek, P.; Aguilera, J.M. Calibrated color measurements of agricultural foods using image analysis. Postharvest Biol. Technol. 2006, 41, 285–295. [Google Scholar] [CrossRef]
- Chmiel, M.; Słowiński, M.; Dasiewicz, K. Lightness of the color measured by computer image analysis as a factor for assessing the quality of pork meat. Meat Sci. 2011, 88, 566–570. [Google Scholar] [CrossRef]
- Sahni, V.; Srivastava, S.; Khan, R. Modelling techniques to improve the quality of food using artificial intelligence. J. Food Qual. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, C.; Liu, F.; Qiu, Z.; He, Y. Application of deep learning in food: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1793–1811. [Google Scholar] [CrossRef]
- Du, C.J.; Sun, D.W. Pizza sauce spread classification using colour vision and support vector machines. J. Food Eng. 2005, 66, 137–145. [Google Scholar] [CrossRef]
- Teng, J.; Zhang, D.; Lee, D.J.; Chou, Y. Recognition of Chinese food using convolutional neural network. Multimed. Tools Appl. 2019, 78, 11155–11172. [Google Scholar] [CrossRef]
- Liang, F.; Lin, L.; Zhu, Y.; Jiang, S.; Lu, J. Comparative study between surimi gel and surimi/crabmeat mixed gel on nutritional properties, flavor characteristics, color, and texture. J. Aquat. Food Prod. Technol. 2020, 29, 681–692. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, S.K. Color and texture of surimi-like gels made of protein isolate extracted from catfish byproducts are improved by washing and adding soy whey. J. Food Sci. 2022, 87, 3057–3070. [Google Scholar] [CrossRef] [PubMed]
- Oyinloye, T.M.; Yoon, W.B. Investigation of flow field, die swelling, and residual stress in 3D printing of surimi paste using the finite element method. Innov. Food Sci. Emerg. Technol. 2022, 78, 103008. [Google Scholar] [CrossRef]
- Liu, X.; Ji, L.; Zhang, T.; Xue, Y.; Xue, C. Effects of pre-emulsification by three food-grade emulsifiers on the properties of emulsified surimi sausage. J. Food Eng. 2019, 247, 30–37. [Google Scholar] [CrossRef]
- He, Y.; Xu, C.; Khanna, N.; Boushey, C.J.; Delp, E.J. Analysis of food images: Features and classification. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 2744–2748. [Google Scholar] [CrossRef]
- Sari, Y.A.; Utaminingrum, F.; Adinugroho, S.; Dewi, R.K.; Adikara, P.P.; Wihandika, R.C.; Mutrofin, S.; Izzah, A. Indonesian traditional food image identification using random forest classifier based on color and texture features. In Proceedings of the 2019 International Conference on Sustainable Information Engineering and Technology (SIET), Lombok, Indonesia, 28–30 September 2019; pp. 206–211. [Google Scholar] [CrossRef]
- Liu, Y.; Pu, H.; Sun, D.W. Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices. Trends Food Sci. Technol. 2021, 113, 193–204. [Google Scholar] [CrossRef]
- Saha, D.; Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Moses, K.; Miglani, A.; Kankar, P.K. Deep CNN-based damage classification of milled rice grains using a high-magnification image dataset. Comput. Electron. Egriculture 2022, 195, 106811. [Google Scholar] [CrossRef]
- Al-Sarayreh, M.; MReis, M.; Qi Yan, W.; Klette, R. Detection of red-meat adulteration by deep spectral–spatial features in hyperspectral images. J. Imaging 2018, 4, 63. [Google Scholar] [CrossRef]
- Santana, P.; Huda, N.; Yang, T.A. Physicochemical properties and sensory characteristics of sausage formulated with surimi powder. J. Food Sci. Technol. 2015, 52, 1507–1515. [Google Scholar] [CrossRef] [PubMed]
- Alipour, H.J.; Rezaei, M.; Shabanpour, B.; Tabarsa, M. Effects of sulfated polysaccharides from green alga Ulva intestinalis on physicochemical properties and microstructure of silver carp surimi. Food Hydrocoll. 2018, 74, 87–96. [Google Scholar] [CrossRef]
- Chang, T.; Wang, C.; Wang, X.; Shi, L.; Yang, H.; Cui, M. Effects of soybean oil, moisture and setting on the textural and color properties of surimi gels. J. Food Qual. 2015, 38, 53–59. [Google Scholar] [CrossRef]
- Feurer, M.; Hutter, F. Towards further Automation in AutoML. In Proceedings of the ICML AutoML Workshop, Stockholm, Sweden, 14 July 2018; p. 13. Available online: https://ml.informatik.uni-freiburg.de/wp-content/uploads/papers/18-AUTOML-AutoAutoML.pdf (accessed on 31 August 2023).
Surimi Species | Surimi Content (%) | Salt (%) | Ice (%) | Corn Starch (%) | Total Weight (g) | Moisture Content (%) | Sample Code |
---|---|---|---|---|---|---|---|
Threadfin breams | 59.34 | 2 | 33.66 | 5 | 100 | 78% | TBS78-5% |
42.34 | 2 | 45.66 | 10 | 100 | 78% | TBS78-10% | |
23.24 | 2 | 58.76 | 16 | 100 | 78% | TBS78-16% | |
Threadfin breams | 50.67 | 2 | 42.33 | 5 | 100 | 80% | TBS80-5% |
33.81 | 2 | 54.19 | 10 | 100 | 80% | TBS80-10% | |
14.55 | 2 | 67.45 | 16 | 100 | 80% | TBS80-16% | |
Alaska pollock | 62.33 | 2 | 30.77 | 5 | 100 | 78% | APS78-5% |
44.22 | 2 | 43.78 | 10 | 100 | 78% | APS78-10% | |
22.13 | 2 | 59.87 | 16 | 100 | 78% | APS78-16% | |
Alaska pollock | 52.04 | 2 | 40.96 | 5 | 100 | 80% | APS80-5% |
35.34 | 2 | 52.66 | 10 | 100 | 80% | APS80-10% | |
15.44 | 2 | 66.56 | 16 | 100 | 80% | APS80-16% | |
Threadfin breams | 84.45 | 2 | 13.55 | - | 100 | 76 | TB-76% |
76.65 | 2 | 21.35 | - | 100 | 78 | TB-78% | |
68.85 | 2 | 29.15 | - | 100 | 80 | TB-80% | |
61.05 | 2 | 36.95 | - | 100 | 82 | TB-82% | |
Alaska pollock | 88.06 | 2 | 9.94 | - | 100 | 76 | AP-76% |
79.32 | 2 | 18.68 | - | 100 | 78 | AP-78% | |
71.45 | 2 | 26.55 | - | 100 | 80 | AP-80% | |
63.94 | 2 | 34.06 | - | 100 | 82 | AP-82% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, W.B.; Oyinloye, T.M.; Kim, J. Classification of Quality Characteristics of Surimi Gels from Different Species Using Images and Convolutional Neural Network. Processes 2023, 11, 2864. https://doi.org/10.3390/pr11102864
Yoon WB, Oyinloye TM, Kim J. Classification of Quality Characteristics of Surimi Gels from Different Species Using Images and Convolutional Neural Network. Processes. 2023; 11(10):2864. https://doi.org/10.3390/pr11102864
Chicago/Turabian StyleYoon, Won Byong, Timilehin Martins Oyinloye, and Jinho Kim. 2023. "Classification of Quality Characteristics of Surimi Gels from Different Species Using Images and Convolutional Neural Network" Processes 11, no. 10: 2864. https://doi.org/10.3390/pr11102864
APA StyleYoon, W. B., Oyinloye, T. M., & Kim, J. (2023). Classification of Quality Characteristics of Surimi Gels from Different Species Using Images and Convolutional Neural Network. Processes, 11(10), 2864. https://doi.org/10.3390/pr11102864