Tectonic Control on Shale Pore Structure and Gas Content from the Longmaxi Formation Shale in Southern Sichuan Basin, China: Insights from Fractal Analysis and Low-Pressure Gas Adsorption
Abstract
:1. Introduction
2. Geological Setting
2.1. Geological and Stratigraphic Characteristics
2.2. Structural Deformation Characteristics
3. Samples and Experiments
3.1. Subsection
3.2. Experiments and Methods
3.2.1. Geochemical and Petrologic Analysis
3.2.2. FE-SEM Analysis
3.2.3. LP-N2/CO2 GA
3.3. Fractal Theory from CO2 and N2
3.3.1. Fractal Theory of LP-N2 GA
3.3.2. Fractal Theory of LP-CO2 GA
4. Results
4.1. Geochemical Characteristics, Mineralogical Compositions, and Lithofacies
4.2. Core Fractures
4.3. Quantitative Analyses of Pore Structure
4.3.1. CO2 Adsorption for Micropore Structure
4.3.2. N2 Adsorption for Micropore Structure
4.4. Pore Fractal Characteristics
5. Discussion
5.1. Effect of Mineral Compositions and TOC on Pore Structure in Different Tectonic Locations
5.2. Effect of Tectonic Deformation on Pore Morphology
5.3. Effect of Tectonic Deformation on Shale Pore Heterogeneous
5.4. Synergistic Effect of Burial and Tectonic Deformation on Shale Gas Preservation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
DBSD | deeply buried strongly deformed |
DBWD | deeply buried weakly deformed |
LBWD | shallowly buried weakly deformed |
BDS | brittle deformation shale |
DDS | ductile deformation shale |
XRD | X-ray diffraction |
TOC | total organic carbon content |
LP-N2/CO2GA | a low-pressure N2/CO2 adsorption experiment |
Vm | molar volume of the liquid |
R | universal gas content |
T | absolute temperature |
P/P0 | relative pressure |
N(P/P0) | adsorption isotherm data |
J(x) | pore size distribution function |
Θ | micropore filling |
Df | micropore fractal dimension |
Ds | surface fractal dimension |
Dm | matrix fractal dimensions |
OM | organic matter |
FHH | Frenkel-Halsey-Hill |
BJH | Barret-Joyner-Halenda |
DFT | density functional theory |
SEM | scanning electron microscope |
PV | pore volume |
SA | surface area |
TPV | total pore volume |
TSA | total surface area |
BET | Brunauer-Emmett-Teller |
DA | Dubinin-Astakhow |
DR | Dubinin-Radushkevich |
PSD | pore size distribution |
References
- Chen, S.; Zhu, Y.; Wang, H.; Liu, H.; Wei, W.; Fang, J. Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China. Energy 2011, 36, 6609–6616. [Google Scholar] [CrossRef]
- Zou, C.; Zhao, Q.; Dong, D.; Yang, Z.; Qiu, Z.; Liang, F.; Wang, N.; Huang, Y.; Duan, A.; Zhang, Q.; et al. Geological characteristics, main challenges and future prospect of shale gas. J. Nat. Gas Geosci. 2017, 2, 273–288. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, G.; Yin, Q.; Xia, C.; Wang, F.; Zhou, L.; Lu, P.; Ma, L. Exploration and development status of shale gas in china and enlightenment from north american prosperous shale gas. J. Kunming Metall. Coll. 2017, 33, 16. [Google Scholar] [CrossRef]
- Hao, F.; Zou, H.; Lu, Y. Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bull. 2013, 97, 1325–1346. [Google Scholar] [CrossRef]
- Fu, C. China’s Shale Gas and Shale Oil Resources: Opportunities and Challenges. Energy Explor. Exploit. 2014, 32, 759–769. [Google Scholar] [CrossRef]
- Guo, T. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas. Pet. Explor. Dev. 2016, 43, 349–359. [Google Scholar] [CrossRef]
- Guo, X.; Hu, D.; Li, Y.; Wei, Z.; Wei, X.; Liu, Z. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field. Pet. Explor. Dev. 2017, 44, 513–523. [Google Scholar] [CrossRef]
- Jiang, Z.; Song, Y.; Tang, X.; Li, Z.; Wang, X.; Wang, G.; Xue, Z.; Li, X.; Zhang, K.; Chang, J.; et al. Controlling factors of marine shale gas differential enrichment in southern China. Pet. Explor. Dev. 2020, 47, 661–673. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Li, R. China’s dependency on foreign oil will exceed 80% by 2030: Developing a novel NMGM-ARIMA to forecast China’s foreign oil dependence from two dimensions. Energy 2018, 163, 151–167. [Google Scholar] [CrossRef]
- Dai, J.; Zou, C.; Liao, S.; Dong, D.; Ni, Y.; Huang, J.; Wu, W.; Gong, D.; Huang, S.; Hu, G. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin. Org. Geochem. 2014, 74, 3–12. [Google Scholar] [CrossRef]
- Guo, X.; Li, Y.; Borjigen, T.; Wang, Q.; Yuan, T.; Shen, B.; Ma, Z.; Wei, F. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China. Pet. Explor. Dev. 2020, 47, 204–213. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, Z.; Song, Y.; Luo, Q.; Li, Z.; Wang, G.; Wang, X. Advances on the Mechanism of Reservoir Forming and Gas Accumulation of the Longmaxi Formation Shale in Sichuan Basin, China. Energy Fuels 2021, 35, 3972–3988. [Google Scholar] [CrossRef]
- Schieber, J. Common Themes in the Formation and Preservation of Intrinsic Porosity in Shales and Mudstones—Illustrated with Examples Across the Phanerozoic. In Proceedings of the SPE Unconventional Gas Conference, Pittsburgh, PA, USA, 23–25 February 2010. [Google Scholar]
- Hackley, P.C.; Cardott, B.J. Application of organic petrography in North American shale petroleum systems: A review. Int. J. Coal Geol. 2016, 163, 8–51. [Google Scholar] [CrossRef]
- Guo, T.; Zeng, P. The Structural and Preservation Conditions for Shale Gas Enrichment and High Productivity in the Wufeng—Longmaxi Formation, Southeastern Sichuan Basin. Energy Explor. Exploit. 2015, 33, 259–276. [Google Scholar] [CrossRef]
- He, Z.; Nie, H.; Li, S.; Luo, J.; Wang, H.; Zhang, G. Differential enrichment of shale gas in upper Ordovician and lower Silurian controlled by the plate tectonics of the Middle-Upper Yangtze, south China. Mar. Pet. Geol. 2020, 118, 104357. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S.; Hao, F.; Yang, F.; Shu, Z.; Liu, R. The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation. Energy 2021, 219, 119579. [Google Scholar] [CrossRef]
- Ju, Y.; Sun, Y.; Tan, J.; Bu, H.; Han, K.; Li, X.; Fang, L. The composition, pore structure characterization and deformation mechanism of coal-bearing shales from tectonically altered coalfields in eastern China. Fuel 2018, 234, 626–642. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Z.; Liang, Z.; Yu, H.; Yang, Y. Pore-structure characterisation of tectonically deformed shales: A case study of Wufeng-Longmaxi Formation in western Hunan Province, southern China. Aust. J. Earth Sci. 2019, 66, 1075–1084. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Zhang, K.; Li, Z.; Yu, Y.; Feng, X.; Wang, Z. Pore characteristics and pore structure deformation evolution of ductile deformed shales in the Wufeng-Longmaxi Formation, southern China. Mar. Pet. Geol. 2021, 127, 104992. [Google Scholar] [CrossRef]
- Zhu, H.; Ju, Y.; Huang, C.; Han, K.; Qi, Y.; Shi, M.; Yu, K.; Feng, H.; Li, W.; Ju, L.; et al. Pore structure variations across structural deformation of Silurian Longmaxi Shale: An example from the Chuandong Thrust-Fold Belt. Fuel 2019, 241, 914–932. [Google Scholar] [CrossRef]
- Zhu, H.; Ju, Y.; Qi, Y.; Huang, C.; Zhang, L. Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks. Fuel 2018, 228, 272–289. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Y.; Zhang, D.; Liu, Z.; Wang, Z.; Jiang, Z. Influence of tectonic evolution on pore structure and fractal characteristics of coal by low pressure gas adsorption. J. Nat. Gas Sci. Eng. 2021, 87, 103788. [Google Scholar] [CrossRef]
- Liang, Z.; Jiang, Z.; Li, Z.; Song, Y.; Gao, F.; Liu, X.; Xiang, S. Nanopores Structure and Multifractal Characterization of Bulk Shale and Isolated Kerogen—An Application in Songliao Basin, China. Energy Fuels 2021, 35, 5818–5842. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, Z.; Li, Z.; Gao, Z.; Bai, Y.; Zhao, S.; Feng, J. The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi formation in the southeastern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2015, 23, 464–473. [Google Scholar] [CrossRef]
- Wang, G. Deformation of organic matter and its effect on pores in mud rocks. AAPG Bull. 2020, 103, 21–36. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, B.; Pan, Z.; Hou, C.; Zuo, Q.; Sun, M. Effect of thermal maturity on shale pore structure: A combined study using extracted organic matter and bulk shale from Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2020, 74, 103089. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, Z.; Jiang, S.; Li, Z. Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods. Mar. Pet. Geol. 2016, 78, 99–109. [Google Scholar] [CrossRef]
- Eliyahu, M.; Emmanuel, S.; Day-Stirrat, R.J.; Macaulay, C.I. Mechanical properties of organic matter in shales mapped at the nanometer scale. Mar. Pet. Geol. 2015, 59, 294–304. [Google Scholar] [CrossRef]
- Kumar, V.; Curtis, M.E.; Gupta, N.; Sondergeld, C.H.; Rai, C.S. Estimation of Elastic Properties of Organic Matter and Woodford Shale Through Nano-indentation Measurements. In Proceedings of the SPE Canadian Unconventional Resources Conference, Calgary, AB, Canada, 30 October–1 November 2012. [Google Scholar]
- Meng, M.; Ge, H.; Shen, Y.; Ji, W.; Li, Z. Insight into Water Occurrence and Pore Size Distribution by Nuclear Magnetic Resonance in Marine Shale Reservoirs, Southern China. Energy Fuels 2022, 37, 319–327. [Google Scholar] [CrossRef]
- Meng, M.; Peng, J.; Ge, H.; Ji, W.; Li, X.; Wang, Q. Rock Fabric of Lacustrine Shale and Its Influence on Residual Oil Distribution in the Upper Cretaceous Qingshankou Formation, Songliao Basin. Energy Fuels 2023, 37, 7151–7160. [Google Scholar] [CrossRef]
- Wang, M.; Li, Z.; Liang, Z.; Jiang, Z.; Wu, W. Method Selection for Analyzing the Mesopore Structure of Shale—Using a Combination of Multifractal Theory and Low-Pressure Gas Adsorption. Energies 2023, 16, 2464. [Google Scholar] [CrossRef]
- Liang, Z.; Jiang, Z.; Han, Y.; Wang, B.; Wu, W.; Li, Z.; Li, Y.; Xue, Z. A Modified Dent-Fractal Mathematical Model to Investigate the Water Vapor Adsorption on Nanopore Structure Heterogeneity from the Longmaxi Shale, Sichuan Basin, China. Energy Fuels 2023, 37, 9131–9150. [Google Scholar] [CrossRef]
- Liang, M.; Wang, Z.; Gao, L.; Li, C.; Li, H. Evolution of pore structure in gas shale related to structural deformation. Fuel 2017, 197, 310–319. [Google Scholar] [CrossRef]
- Ma, Y.; Ardakani, O.H.; Zhong, N.; Liu, H.; Huang, H.; Larter, S.; Zhang, C. Possible pore structure deformation effects on the shale gas enrichment: An example from the Lower Cambrian shales of the Eastern Upper Yangtze Platform, South China. Int. J. Coal Geol. 2020, 217, 103349. [Google Scholar] [CrossRef]
- Sun, W.; Zuo, Y.; Wang, S.; Wu, Z.; Liu, H.; Zheng, L.; Lou, Y. Pore structures of shale cores in different tectonic locations in the complex tectonic region: A case study of the Niutitang Formation in Northern Guizhou, Southwest China. J. Nat. Gas Sci. Eng. 2020, 80, 103398. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, A.; Wang, Y.; Li, S.; Dong, Y.; Liu, S.; He, D.; Cheng, S.; Lu, R.; Yao, A. Tectonics of South China continent and its implications. Sci. China Earth Sci. 2013, 56, 1804–1828. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Z.; Jiang, S.; Li, Z.; Song, Y.; Jiang, H.; Cao, X.; Qiu, H.; Huang, Y.; Ming, W.; et al. Characteristics of matrix-related pores associated with various lithofacies of marine shales inside of Guizhong Basin, South China. J. Pet. Sci. Eng. 2020, 185, 106671. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Li, Z.; Zhang, K.; Feng, X.; Wang, Z. Impact of Brittle Deformation on Pore Structure Evolution in Shale: Samples Collected from Different Fault Positions. Energy Fuels 2022, 36, 1441–1456. [Google Scholar] [CrossRef]
- Liu, R.; Zheng, J.; Hao, F.; Nie, Z.; Heng, D.; Tan, X.; Jiang, D. Variation in pore systems with tectonic stress in the overthrust Wufeng-Longmaxi shale of the southern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2020, 83, 103617. [Google Scholar] [CrossRef]
- Shang, F.; Zhu, Y.; Hu, Q.; Zhu, Y.; Wang, Y.; Du, M.; Liu, R.; Han, Y. Characterization of methane adsorption on shale of a complex tectonic area in Northeast Guizhou, China: Experimental results and geological significance. J. Nat. Gas Sci. Eng. 2020, 84, 103676. [Google Scholar] [CrossRef]
- Xiao, X.; Zhou, Q.; Cheng, P.; Sun, J.; Liu, D.; Tian, H. Thermal maturation as revealed by micro-Raman spectroscopy of mineral-organic aggregation (MOA) in marine shales with high and over maturities. Sci. China Earth Sci. 2020, 63, 1540–1552. [Google Scholar] [CrossRef]
- Dubinin, M.M.; Stoeckli, H.F. Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents. J. Colloid Interface Sci. 1980, 75, 34–42. [Google Scholar] [CrossRef]
- Jaroniec, M.; Lu, X.; Madey, R.; Choma, J. Evaluation of structural heterogeneities and surface irregularities of microporous solids. Mater. Chem. Phys. 1990, 26, 87–97. [Google Scholar] [CrossRef]
- Stoeckli, H.F.; Ballerini, L.; De Bernardini, S. On the evolution of micropore widths and areas in the course of activation. Carbon 1989, 27, 501–502. [Google Scholar] [CrossRef]
- Xiong, Y.H.; Zhou, S.W.; Jiao, P.F.; Yang, M.W.; Zhou, J.P.; Wei, W.E.I.; Cai, J.C. Fractal Analysis of Micropore Structure in Coal and Shale Based on Low-Temperature CO2 Adsorption. Nat. Gas Geosci. 2020, 31, 1028–1040. [Google Scholar] [CrossRef]
- Wang, P.; Jiang, Z.; Yin, L.; Chen, L.; Li, Z.; Zhang, C.; Li, T.; Huang, P. Lithofacies classification and its effect on pore structure of the Cambrian marine shale in the Upper Yangtze Platform, South China: Evidence from FE-SEM and gas adsorption analysis. J. Pet. Sci. Eng. 2017, 156, 307–321. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Wang, Y.; Sheng, Y.; Zheng, S.; Wu, W.; Luo, Z. Comparison of the pore structures of Lower Silurian Longmaxi Formation shales with different lithofacies in the southern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2020, 81, 103419. [Google Scholar] [CrossRef]
- Zeng, L.; Lyu, W.; Li, J.; Zhu, L.; Weng, J.; Yue, F.; Zu, K. Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 30, 1–9. [Google Scholar] [CrossRef]
- Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Ji, W.; Song, Y.; Jiang, Z.; Meng, M.; Liu, Q.; Chen, L.; Wang, P.; Gao, F.; Huang, H. Fractal characteristics of nano-pores in the Lower Silurian Longmaxi shales from the Upper Yangtze Platform, south China. Mar. Pet. Geol. 2016, 78, 88–98. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Ma, Y.; Zhong, N.; Li, D.; Pan, Z.; Cheng, L.; Liu, K. Organic matter/clay mineral intergranular pores in the Lower Cambrian Lujiaping Shale in the north-eastern part of the upper Yangtze area, China: A possible microscopic mechanism for gas preservation. Int. J. Coal Geol. 2015, 137, 38–54. [Google Scholar] [CrossRef]
- Dong, T.; He, Q.; He, S.; Zhai, G.; Zhang, Y.; Wei, S.; Wei, C.; Hou, Y.; Guo, X. Quartz types, origins and organic matter-hosted pore systems in the lower cambrian Niutitang Formation, middle yangtze platform, China. Mar. Pet. Geol. 2021, 123, 104739. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 2002, 73, 373–380. [Google Scholar] [CrossRef]
- Morley, C.K.; von Hagke, C.; Hansberry, R.; Collins, A.; Kanitpanyacharoen, W.; King, R. Review of major shale-dominated detachment and thrust characteristics in the diagenetic zone: Part II, rock mechanics and microscopic scale. Earth-Sci. Rev. 2018, 176, 19–50. [Google Scholar] [CrossRef]
- Wu, L.; Hu, D.; Lu, Y.; Liu, R.; Liu, X. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China. Pet. Explor. Dev. 2016, 43, 208–217. [Google Scholar] [CrossRef]
Well | Sample | Depth (m) | TOC (wt.%) | Mineral Composition (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Calcite | K-Feldspar | Dolomite | Pyrite | Clays | ||||
L11 | L11-1 | 4884.79 | 2.54 | 29.10 | 4.30 | 8.70 | 0.00 | 8.90 | 0.00 | 45.80 |
L11-2 | 4896.77 | 2.11 | 34.00 | 13.00 | 15.00 | 4.00 | 4.00 | 3.00 | 27.00 | |
L11-3 | 4900.53 | 1.49 | 32.00 | 16.00 | 13.00 | 2.00 | 2.00 | 2.00 | 33.00 | |
L11-4 | 4906.05 | 3.55 | 39.00 | 10.00 | 7.00 | 0.00 | 2.00 | 5.00 | 37.00 | |
L11-5 | 4910.28 | 4.51 | 42.00 | 9.00 | 8.00 | 0.00 | 2.00 | 7.00 | 32.00 | |
L11-6 | 4915.56 | 3.71 | 47.20 | 2.30 | 13.90 | 0.00 | 9.90 | 2.00 | 21.90 | |
L11-7 | 4917.8 | 4.26 | 43.60 | 2.50 | 16.20 | 0.00 | 11.30 | 2.00 | 21.90 | |
L11-8 | 4921.95 | 4.17 | 43.80 | 2.30 | 11.70 | 0.00 | 20.20 | 2.00 | 19.20 | |
L11-9 | 4923.29 | 3.82 | 46.00 | 4.00 | 17.00 | 0.00 | 13.00 | 3.00 | 17.00 | |
N33 | N33-1 | 3176 | 3.44 | 53.00 | 4.00 | 19.00 | 0.00 | 0.00 | 4.00 | 20.00 |
N33-2 | 3182.54 | 4.10 | 52.00 | 3.00 | 18.00 | 0.00 | 0.00 | 4.00 | 23.00 | |
N33-3 | 3186.05 | 4.90 | 48.00 | 3.00 | 20.00 | 0.00 | 4.00 | 4.00 | 21.00 | |
N33-4 | 3187.82 | 4.64 | 52.00 | 3.00 | 20.00 | 0.00 | 4.00 | 4.00 | 17.00 | |
N33-5 | 3189.45 | 3.80 | 53.00 | 3.00 | 16.00 | 0.00 | 7.00 | 4.00 | 17.00 | |
N33-6 | 3192 | 4.30 | 55.00 | 4.00 | 15.00 | 0.00 | 7.00 | 4.00 | 15.00 | |
N33-7 | 3193 | 4.43 | 49.00 | 3.00 | 20.00 | 0.00 | 9.00 | 3.00 | 16.00 | |
N33-8 | 3193.3 | 4.35 | 67.00 | 2.00 | 10.00 | 0.00 | 5.00 | 3.00 | 13.00 | |
N33-9 | 3194.9 | 3.77 | 40.00 | 2.00 | 30.00 | 2.00 | 10.00 | 6.00 | 10.00 | |
N31 | N31-1 | 4628.11 | 1.49 | 30.30 | 15.70 | 45.90 | 0.70 | 0.00 | 2.10 | 4.60 |
N31-2 | 4633.39 | 3.39 | 33.80 | 6.80 | 9.20 | 2.30 | 0.00 | 4.10 | 43.80 | |
N31-3 | 4639.4 | 4.37 | 41.10 | 4.90 | 10.30 | 1.70 | 0.00 | 4.40 | 37.60 | |
N31-4 | 4645.93 | 4.87 | 47.10 | 4.10 | 13.70 | 1.40 | 4.10 | 4.20 | 25.50 | |
N31-5 | 4648.88 | 4.87 | 41.60 | 2.70 | 17.10 | 0.90 | 14.40 | 3.30 | 20.00 | |
N31-6 | 4650.96 | 2.84 | 35.80 | 2.20 | 24.30 | 0.90 | 13.20 | 3.00 | 20.60 | |
N31-7 | 4656.2 | 8.29 | 70.90 | 0.20 | 3.90 | 0.10 | 8.30 | 3.40 | 13.20 | |
N31-8 | 4662.16 | 5.39 | 69.50 | 2.60 | 6.80 | 0.90 | 2.80 | 0.00 | 17.50 |
Sample | Micropore | Meso-Macropore | Total Pore Volume Area (cm3/g) | Total Pore Surface Area (m2/g) | Average Pore Diameter (nm) | ||
---|---|---|---|---|---|---|---|
Pore Volume | Surface Area | Pore Volume | Surface Area | ||||
(cm3/g) | (m2/g) | (cm3/g) | (m2/g) | ||||
L11-1 | 0.0021 | 12.436 | 0.0217 | 20.3836 | 0.0237 | 32.8196 | 4.469 |
L11-3 | 0.0014 | 11.306 | 0.0297 | 17.8612 | 0.0311 | 29.1672 | 5.082 |
L11-4 | 0.0029 | 17.497 | 0.0343 | 27.5246 | 0.0371 | 45.0216 | 4.157 |
L11-5 | 0.0018 | 11.663 | 0.0251 | 15.5592 | 0.0270 | 27.2222 | 4.505 |
L11-6 | 0.0024 | 15.300 | 0.0313 | 22.7734 | 0.0337 | 38.0734 | 4.370 |
L11-9 | 0.0024 | 16.055 | 0.0351 | 23.1943 | 0.0375 | 39.2493 | 4.467 |
N33-1 | 0.0025 | 16.019 | 0.0287 | 23.2542 | 0.0312 | 39.2732 | 4.257 |
N33-3 | 0.0024 | 17.401 | 0.0408 | 26.4846 | 0.0432 | 43.8856 | 4.516 |
N33-4 | 0.0020 | 13.384 | 0.0273 | 17.8271 | 0.0292 | 31.2111 | 4.621 |
N33-6 | 0.0024 | 15.845 | 0.0390 | 26.1574 | 0.0413 | 42.0024 | 4.587 |
N33-7 | 0.0026 | 15.191 | 0.0197 | 19.2703 | 0.0223 | 34.4613 | 3.847 |
N33-8 | 0.0021 | 13.462 | 0.0236 | 18.9984 | 0.0257 | 32.4604 | 4.334 |
L31-2 | 0.0021 | 13.481 | 0.0424 | 21.6477 | 0.0445 | 35.1287 | 5.231 |
L31-3 | 0.0025 | 16.197 | 0.0300 | 22.5142 | 0.0325 | 38.7112 | 4.257 |
L31-4 | 0.0023 | 14.409 | 0.0251 | 15.5522 | 0.0274 | 29.9612 | 4.659 |
L31-6 | 0.0016 | 10.801 | 0.0311 | 14.0037 | 0.0327 | 24.8047 | 5.543 |
L31-7 | 0.0037 | 22.025 | 0.0344 | 25.0980 | 0.0382 | 47.1230 | 4.535 |
Samples ID | Depth | Fitting Equation | Df | Fitting Equation | Ds | Fitting Equation | Dm |
---|---|---|---|---|---|---|---|
L11-4 | 4906.05 | y = −0.5345x − 1.1127 | 2.5345 | y = −0.4374x + 2.2555 | 2.5626 | y = −0.1873x + 2.3664 | 2.8127 |
L11-5 | 4910.28 | y = −0.4688x − 1.0452 | 2.4688 | y = −0.4141x + 1.687 | 2.5859 | y = −0.2428x + 1.7366 | 2.7572 |
L11-6 | 4915.56 | y = −0.3432x − 0.9678 | 2.3432 | y = −0.4887x + 2.0673 | 2.5113 | y = −0.2058x + 2.1803 | 2.7942 |
L11-9 | 4923.29 | y = −0.2059x − 0.8956 | 2.2059 | y = −0.4498x + 2.0855 | 2.5502 | y = −0.2247x + 2.167 | 2.7753 |
N33-3 | 3186.05 | y = −0.2541x − 0.9943 | 2.2541 | y = −0.4216x + 2.2244 | 2.5784 | y = −0.245x + 2.273 | 2.755 |
N33-4 | 3187.82 | y = −0.3079x − 0.9312 | 2.3079 | y = −0.4516x + 1.824 | 2.5484 | y = −0.242x + 1.891 | 2.758 |
N33-6 | 3192 | y = −0.3464x − 0.9481 | 2.3464 | y = −0.4901x + 2.2069 | 2.5099 | y = −0.2228x + 2.3146 | 2.7772 |
N33-7 | 3193 | y = −0.3824x − 0.9642 | 2.3824 | y = −0.3973x + 1.8997 | 2.6027 | y = −0.1625x + 1.9666 | 2.8375 |
N33-8 | 3193.3 | y = −0.3073x − 0.9078 | 2.3073 | y = −0.4288x + 1.893 | 2.5712 | y = −0.2069x + 1.9758 | 2.7931 |
N31-2 | 4633.39 | y = −0.5759x − 1.1062 | 2.5759 | y = −0.4005x + 2.021 | 2.5995 | y = −0.2609x + 2.0961 | 2.7391 |
N31-3 | 4639.4 | y = −0.6014x − 1.1301 | 2.6014 | y = −0.3795x + 2.0554 | 2.6205 | y = −0.2121x + 2.1299 | 2.7879 |
N31-4 | 4645.93 | y = −0.5306x − 1.0986 | 2.5306 | y = −0.3917x + 1.6859 | 2.6083 | y = −0.2547x + 1.7325 | 2.7453 |
N31-6 | 4650.96 | y = −0.6112x − 1.151 | 2.6112 | y = −0.3932x + 1.5835 | 2.6068 | y = −0.3292x + 1.5809 | 2.6708 |
N31-7 | 4656.2 | y = −0.3565x − 0.9882 | 2.3565 | y = −0.4455x + 2.1696 | 2.5545 | y = −0.2185x + 2.2669 | 2.7815 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Liang, Z.; Yang, Y.; Li, Y.; Jiang, Z.; Li, Y.; Li, R.; Deng, F. Tectonic Control on Shale Pore Structure and Gas Content from the Longmaxi Formation Shale in Southern Sichuan Basin, China: Insights from Fractal Analysis and Low-Pressure Gas Adsorption. Processes 2023, 11, 2873. https://doi.org/10.3390/pr11102873
Shi X, Liang Z, Yang Y, Li Y, Jiang Z, Li Y, Li R, Deng F. Tectonic Control on Shale Pore Structure and Gas Content from the Longmaxi Formation Shale in Southern Sichuan Basin, China: Insights from Fractal Analysis and Low-Pressure Gas Adsorption. Processes. 2023; 11(10):2873. https://doi.org/10.3390/pr11102873
Chicago/Turabian StyleShi, Xuewen, Zhikai Liang, Yuran Yang, Yi Li, Zhenxue Jiang, Yanyou Li, Runtong Li, and Feiyong Deng. 2023. "Tectonic Control on Shale Pore Structure and Gas Content from the Longmaxi Formation Shale in Southern Sichuan Basin, China: Insights from Fractal Analysis and Low-Pressure Gas Adsorption" Processes 11, no. 10: 2873. https://doi.org/10.3390/pr11102873
APA StyleShi, X., Liang, Z., Yang, Y., Li, Y., Jiang, Z., Li, Y., Li, R., & Deng, F. (2023). Tectonic Control on Shale Pore Structure and Gas Content from the Longmaxi Formation Shale in Southern Sichuan Basin, China: Insights from Fractal Analysis and Low-Pressure Gas Adsorption. Processes, 11(10), 2873. https://doi.org/10.3390/pr11102873