Collaborative Effect of In-Plasma Catalysis with Sequential Na2SO3 Wet Scrubbing on Co-Elimination of NOx and VOCs from Simulated Sinter Flue Gas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Experimental Setup and Analytical Method
2.3. Plasma Status Determination and Calculation
3. Results and Discussion
3.1. In-Plasma Catalytic Oxidation of Nitric Oxide
3.2. NOx Removal by IPC Coupling with Na2SO3 Scrubbing
3.2.1. Investigation on Na2SO3 Initial Concentration
3.2.2. Investigation of pH Value
3.2.3. Investigation of NO Velocity
3.2.4. Investigation of NO Initial Concentration
3.3. Co-Elimination of NO and VOCs after IPC Combined with Na2SO3 Wet Scrubbing
3.3.1. Removal of NO
3.3.2. Removal of VOCs
3.4. Role of Na2SO3 Scrubbing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hien, T.T.; Huy, D.H.; Dominutti, P.A.; Thien Chi, N.D.; Hopkins, J.R.; Shaw, M.; Forster, G.; Mills, G.; Le, H.A.; Oram, D. Comprehensive volatile organic compound measurements and their implications for ground-level ozone formation in the two main urban areas of Vietnam. Atmos. Environ. 2022, 269, 118872. [Google Scholar] [CrossRef]
- Li, M.; Wang, T.; Shu, L.; Qu, Y.; Xie, M.; Liu, J.; Wu, H.; Kalsoom, U. Rising surface ozone in China from 2013 to 2017: A response to the recent atmospheric warming or pollutant controls? Atmos. Environ. 2021, 246, 118130. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Lu, K.; Zeng, L.; Hu, M.; Zhang, Y. The trend of surface ozone in Beijing from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity. Atmos. Environ. 2020, 242, 117801. [Google Scholar] [CrossRef]
- Chang, Y.; Hu, P.; Huang, Y.; Duan, Z. Effectiveness and heterogeneity evaluation of regional collaborative governance on haze pollution control: Evidence from 284 prefecture-level cities in China. Sustain. Cities Soc. 2022, 86, 104120. [Google Scholar] [CrossRef]
- Yu, Z.; Yan, T.; Liu, X.; Bao, A. Urban land expansion, fiscal decentralization and haze pollution: Evidence from 281 prefecture-level cities in China. J. Environ. Manag. 2022, 323, 116198. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Cai, M.; Liu, X.; Zhu, T.; Zou, Y. O3 oxidation combined with semi-dry method for simultaneous desulfurization and denitrification of sintering/pelletizing flue gas. J. Environ. Sci. 2021, 104, 253–263. [Google Scholar] [CrossRef]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef]
- Han, T.; Yao, L.; Liu, L.; Xian, A.; Chen, H.; Dong, W.; Chen, J. Baosteel emission control significantly benefited air quality in Shanghai. J. Environ. Sci. 2018, 71, 127–135. [Google Scholar] [CrossRef]
- Cai, C.; Li, J.; He, Y.; Jia, J. Target the neglected VOCs emission from iron and steel industry in China for air quality improvement. Front. Environ. Sci. Eng. 2023, 17, 95. [Google Scholar] [CrossRef]
- Tang, L.; Xue, X.; Jia, M.; Jing, H.; Wang, T.; Zhen, R.; Huang, M.; Tian, J.; Guo, J.; Li, L.; et al. Iron and steel industry emissions and contribution to the air quality in China. Atmos. Environ. 2020, 237, 117668. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Yi, H.; Tang, X.; Li, Z.; Yu, Q.; Zhao, S.; Gao, F.; Zhou, Y.; Wang, Y. Air pollutant emission and reduction potentials from the sintering process of the iron and steel industry in China in 2017. Env. Pollut. 2022, 307, 119512. [Google Scholar] [CrossRef] [PubMed]
- Bo, X.; Li, Z.; Qu, J.; Cai, B.; Zhou, B.; Sun, L.; Cui, W.; Zhao, X.; Tian, J.; Kan, H. The spatial-temporal pattern of sintered flue gas emissions in iron and steel enterprises of China. J. Clean. Prod. 2020, 266, 121667. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, X.; Kan, T.; Strezov, V.; Nelson, P.; Evans, T.; Jiang, Y. Characterization of size resolved atmospheric particles in the vicinity of iron and steelmaking industries in China. Sci. Total Environ. 2019, 694, 133534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, W.; Li, W.; Wang, Y. Physical and chemical characterization of fugitive particulate matter emissions of the iron and steel industry. Atmos. Pollut. Res. 2022, 13, 101272. [Google Scholar] [CrossRef]
- Qie, J.; Zhang, C.; Li, X.; Guo, Y.; Wang, H.; Wu, S. Lower SO2 Emissions in the Sintering Process Utilizing the Difference of Sulphur Contents of Iron Ores. ISIJ Int. 2017, 57, 2115–2123. [Google Scholar] [CrossRef]
- Chun, T.; Long, H.; Di, Z.; Zhang, X.; Wu, X.; Qian, L. Novel technology of reducing SO2 emission in the iron ore sintering. Process Saf. Environ. Prot. 2017, 105, 297–302. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, M.; Liu, Z.; Cheng, M.; Chen, J. Modeling NOx emission of coke combustion in iron ore sintering process and its experimental validation. Fuel 2016, 179, 322–331. [Google Scholar] [CrossRef]
- Liu, B.; Ji, J.; Zhang, B.; Huang, W.; Gan, Y.; Leung, D.Y.C.; Huang, H. Catalytic ozonation of VOCs at low temperature: A comprehensive review. J. Hazard. Mater. 2022, 422, 126847. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Shao, M.; Yang, Y.; Liu, R.; Wu, Y.; Zhu, T. Mercury emission from sintering process in the iron and steel industry of China. Fuel Process. Technol. 2017, 159, 340–344. [Google Scholar] [CrossRef]
- Shunda, L.; Jiang, X.; Zhao, Y.; Yan, J. Disposal technology and new progress for dioxins and heavy metals in fly ash from municipal solid waste incineration: A critical review. Environ. Pollut. 2022, 311, 119878. [Google Scholar] [CrossRef]
- Lau, L.L.; Strezov, V.; Gonçalves, M.V.B.; Bagatini, M.C. Trace elements emission in iron ore sintering: A review. Environ. Adv. 2021, 6, 100123. [Google Scholar] [CrossRef]
- Li, J.; He, X.; Pei, B.; Li, X.; Ying, D.; Wang, Y.; Jia, J. The ignored emission of volatile organic compounds from iron ore sinter process. J. Environ. Sci. 2019, 77, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wei, W.; Chen, K.; Wang, X.; Han, L.; Cheng, S. Diagnosis of photochemical O3 production of urban plumes in summer via developing the real-field IRs of VOCs: A case study in Beijing of China. Environ. Pollut. 2023, 318, 120836. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Liao, H.; Zhang, L.; Yue, X.; Dang, R.; Yang, Y. Persistent ozone pollution episodes in North China exacerbated by regional transport. Environ. Pollut. 2020, 265, 115056. [Google Scholar] [CrossRef] [PubMed]
- Sunil Kumar, M.; Alphin, M.S.; Senthil Kumar, P.; Raja, S. A review on zeolite catalyst for deNOx performance in ammonia–selective catalytic reduction. Fuel 2023, 334, 126828. [Google Scholar] [CrossRef]
- Yuan, P.; Ma, H.; Shen, B.; Ji, Z. Abatement of NO/SO2/Hg0 from flue gas by advanced oxidation processes (AOPs): Tech-category, status quo and prospects. Sci. Total Environ. 2022, 806, 150958. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Pan, J.; Zhu, D.; Guo, Z.; Yang, C.; Xue, Y.; Wang, D.; Wang, Y. Performance on desulfurization and denitrification of one-step produced activated carbon for purification of sintering flue gas. J. Environ. Manag. 2022, 323, 116281. [Google Scholar] [CrossRef]
- Cubides, D.; Guimerà, X.; Jubany, I.; Gamisans, X. A review: Biological technologies for nitrogen monoxide abatement. Chemosphere 2022, 311, 137147. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Shen, D.; Luo, K.H. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. J. Hazard. Mater. 2020, 389, 122102. [Google Scholar] [CrossRef]
- Re, A.; Schiavon, M.; Torretta, V.; Polvara, E.; Invernizzi, M.; Sironi, S.; Caruson, P. Application of different packing media for the biofiltration of gaseous effluents from waste composting. Environ. Technol. 2022, 1–14. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Z.; Zhou, R. High activity of CeO2-TiO2 composites for deep oxidation of 1,2-dichloroethane. J. Rare Earths. 2020, 38, 906–911. [Google Scholar] [CrossRef]
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, J.; Chen, J.; Zhong, F. Mn2O3/γ-Al2O3 catalysts synergistic double dielectric barrier discharge (DDBD) degradation of toluene, ethyl-acetate and acetone. Chemosphere 2021, 284, 131299. [Google Scholar] [CrossRef]
- Xu, J.; Lyu, Y.; Zhuo, J.; Xu, Y.; Zhou, Z.; Yao, Q. Formation and emission characteristics of VOCs from a coal-fired power plant. Chin. J. Chem. Eng. 2021, 35, 254–256. [Google Scholar] [CrossRef]
- Chen, L.; Liao, Y.; Xin, S.; Song, X.; Liu, G.; Ma, X. Simultaneous removal of NO and volatile organic compounds (VOCs) by Ce/Mo doping-modified selective catalytic reduction (SCR) catalysts in denitrification zone of coal-fired flue gas. Fuel 2020, 262, 116485. [Google Scholar] [CrossRef]
- Xiao, G.; Guo, Z.; Lin, B.; Fu, M.; Ye, D.; Hu, Y. Cu-VWT Catalysts for Synergistic Elimination of NOx and Volatile Organic Compounds from Coal-Fired Flue Gas. Environ. Sci. Technol. 2022, 56, 10095–10104. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liao, Y.; Chen, Y.; Wu, J.; Ma, X. Performance of Ce-modified V-W-Ti type catalyst on simultaneous control of NO and typical VOCS. Fuel Process. Technol. 2020, 207, 106483. [Google Scholar] [CrossRef]
- Chen, Y.; Liao, Y.; Chen, L.; Chen, Z.; Ma, X. Performance of transition metal (Cu, Fe and Co) modified SCR catalysts for simultaneous removal of NO and volatile organic compounds (VOCs) from coal-fired power plant flue gas. Fuel 2021, 289, 119849. [Google Scholar] [CrossRef]
- Cui, S.; Hao, R.; Fu, D. Integrated method of non-thermal plasma combined with catalytical oxidation for simultaneous removal of SO2 and NO. Fuel 2019, 246, 365–374. [Google Scholar] [CrossRef]
- Li, S.; Dang, X.; Yu, X.; Abbas, G.; Zhang, Q.; Cao, L. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: A review. Chem. Eng. J. 2020, 388, 124275. [Google Scholar] [CrossRef]
- Qu, M.; Cheng, Z.; Sun, Z.; Chen, D.; Yu, J.; Chen, J. Non-thermal plasma coupled with catalysis for VOCs abatement: A review. Process Saf. Environ. Prot. 2021, 153, 139–158. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, B.; Xu, Y.; Li, X.; Yu, P.; Sun, Y.; Zheng, H. Catalytic oxidation of toluene in air using manganese incorporated catalyst by non-thermal plasma system. Sep. Purif. Technol. 2021, 257, 117973. [Google Scholar] [CrossRef]
- Adelodun, A.A. Influence of Operation Conditions on the Performance of Non-thermal Plasma Technology for VOC Pollution Control. J. Ind. Eng. Chem. 2020, 92, 41–55. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, M.; Liao, K.; Li, G.; An, T. Preferential removal of aromatics-dominated electronic industrial emissions using the integration of spray tower and photocatalysis technologies. J. Clean. Prod. 2022, 364, 132706. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, J.; Ge, R.; Wu, S.; Zeng, K.; Huang, H.; Yang, K.; Sun, Z. Research progress on selective catalytic reduction (SCR) catalysts for NOx removal from coal-fired flue gas. Fuel Process. Technol. 2022, 236, 107432. [Google Scholar] [CrossRef]
- Liu, Z.-y.; Zhang, Y.-l.; Jiang, S.-y.; Liu, S.-y.; Cao, j.; Ai, Y.-w. Enhanced catalytic performance and reduced by-products emission on plasma catalytic oxidation of high-concentration toluene using Mn-Fe/rGO catalysts. J. Environ. Chem. Eng. 2022, 10, 108770. [Google Scholar] [CrossRef]
- Zhou, H.; Cheng, M.; Zhou, M.; Liu, Z.; Liu, R.; Cen, K. Influence of sintering parameters of different sintering layers on NOx emission in iron ore sintering process. Appl. Therm. Eng. 2016, 94, 786–798. [Google Scholar] [CrossRef]
- Mouele, E.S.M.; Tijani, J.O.; Badmus, K.O.; Pereao, O.; Babajide, O.; Fatoba, O.O.; Zhang, C.; Shao, T.; Sosnin, E.; Tarasenko, V.; et al. A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. J. Environ. Chem. Eng. 2021, 9, 105758. [Google Scholar] [CrossRef]
- Peng, M.; Zhao, R.; Xia, M.; Li, C.; Gong, X.; Wang, D.; Xia, D. Study on the mechanism of NO removal by plasma-adsorption catalytic process. Fuel 2017, 200, 290–298. [Google Scholar] [CrossRef]
- Co-absorption and Reduction Mechanism of SO2 and NO2 from Flue Gas Using a Na2SO3 Solution with an Oxidation Inhibitor. Environ. Eng. Sci. 2021, 38, 277–284. [CrossRef]
- Lin, F.; Wang, Z.; Zhang, Z.; He, Y.; Zhu, Y.; Shao, J.; Yuan, D.; Chen, G.; Cen, K. Flue gas treatment with ozone oxidation: An overview on NOx, organic pollutants, and mercury. Chem. Eng. J. 2020, 382, 123030. [Google Scholar] [CrossRef]
- Cai, M.; Liu, X.; Zhu, T.; Zou, Y.; Tao, W.; Tian, M. Simultaneous removal of SO2 and NO using a spray dryer absorption (SDA) method combined with O3 oxidation for sintering/pelleting flue gas. J. Environ. Sci. 2020, 96, 64–71. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhao, R.; Sun, M.; Shi, Q.; Zhao, M.; Zhang, J.; Liu, Y.; Jia, J. Collaborative Effect of In-Plasma Catalysis with Sequential Na2SO3 Wet Scrubbing on Co-Elimination of NOx and VOCs from Simulated Sinter Flue Gas. Processes 2023, 11, 2916. https://doi.org/10.3390/pr11102916
Li J, Zhao R, Sun M, Shi Q, Zhao M, Zhang J, Liu Y, Jia J. Collaborative Effect of In-Plasma Catalysis with Sequential Na2SO3 Wet Scrubbing on Co-Elimination of NOx and VOCs from Simulated Sinter Flue Gas. Processes. 2023; 11(10):2916. https://doi.org/10.3390/pr11102916
Chicago/Turabian StyleLi, Juexiu, Rui Zhao, Maiqi Sun, Qixu Shi, Mingzhu Zhao, Junmei Zhang, Yue Liu, and Jinping Jia. 2023. "Collaborative Effect of In-Plasma Catalysis with Sequential Na2SO3 Wet Scrubbing on Co-Elimination of NOx and VOCs from Simulated Sinter Flue Gas" Processes 11, no. 10: 2916. https://doi.org/10.3390/pr11102916
APA StyleLi, J., Zhao, R., Sun, M., Shi, Q., Zhao, M., Zhang, J., Liu, Y., & Jia, J. (2023). Collaborative Effect of In-Plasma Catalysis with Sequential Na2SO3 Wet Scrubbing on Co-Elimination of NOx and VOCs from Simulated Sinter Flue Gas. Processes, 11(10), 2916. https://doi.org/10.3390/pr11102916