Model Predictive Current Control of an Induction Motor Considering Iron Core Losses and Saturation
Abstract
:1. Introduction
- The proposed control algorithm is the first algorithm from the MPC group that is based on the IM model from [27]. This simplifies the corresponding equations greatly compared to similar advanced IM models while not sacrificing the accuracy too much. In general, a simpler model leads to a simpler control algorithm and a less expensive implementation.
- The proposed control algorithm is the first MPC algorithm that allows for inclusion of the IM magnetic saturation, iron losses, and SLLs. A more accurate model leads to a more accurate prediction of controlled variables and, hence, better control.
- The proposed control algorithm is the first algorithm from the MPCC group that includes any of the mentioned IM phenomena.
- The proposed control algorithm allows us to partially include the mentioned IM phenomena so different algorithms can be applied for different applications. The transition between the algorithms is straightforward and could be implemented online if required.
- The level of the IM model’s complexity that ensures both a practical and sufficiently accurate control algorithm is to be determined. This requires evaluating the necessity of accounting the mentioned phenomena as well as the way they should be accounted, all based on the selected performance metrices.
- After the IM model suitable for the selected application is identified, the impact of control effort penalization (CEP) on the performance metrices is to be evaluated.
- The steady-state and dynamic performance of the final proposed MPCC algorithm is to be evaluated against the industry-standard FOC method and the existing competing MPC algorithms.
2. Induction Machine Modeling
2.1. Iron Loss Modeling
2.2. Stray-Load Loss Modeling
2.3. Magnetic Saturation Modeling
3. Control System Overview
4. Proposed Model Predictive Current Controller
5. Results and Discussion
- Both DC-link voltage and load torque are assumed constant.
- The inverter switches are assumed ideal.
- Feedback signals do not contain noise, offset, or gain error.
- There is no electromagnetic interference (EMI).
- There is no delay in application of the command (switching) signal.
5.1. MPCC Performance with Different IM Models
- (a)
- Lm = Lm-nonsat, Rsll = 0, and Rm → ∞
- (b)
- Lm = f (ψr*), Rsll = 0, and Rm → ∞
- (c)
- Lm = f (ψr*), Rsll = 0, and Rm = Rm-rated
- (d)
- Lm = f (ψr*), Rsll = 0, and Rm = f (ωr)
- (e)
- Lm = f (ψr*), Rsll = f (ωr, ψr*), and Rm = f (ωr, ψr*)
5.2. Impact of Control Effort Penalization
5.3. MPCC vs. IRFO Performance Comparison
5.4. Performance Comparison with the Existing Competing MPC Algorithms
5.5. Practical Considerations and Challenges
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Blaschke, F. The principle of field orientation applied to the new transvector closed-loop control system for rotating field machines. Siemens Rev. 1972, 39, 217–220. [Google Scholar]
- Takahashi, I.; Noguchi, T. A new quick-response and high-efficiency control strategy of an induction motor. IEEE Trans. Ind. Appl. 1986, IA-22, 820–827. [Google Scholar] [CrossRef]
- Rawlings, J.B.; Mayne, D.Q. Model Predictive Control: Theory and Design; Nob Hill Publishing: Madison, WI, USA, 2009. [Google Scholar]
- Cortés, P.; Kazmierkowski, M.P.; Kennel, R.M.; Quevedo, D.E.; Rodríguez, J. Predictive control in power electronics and drives. IEEE Trans. Ind. Electron. 2008, 55, 4312–4324. [Google Scholar] [CrossRef]
- Rodríguez, J.; Kazmierkowski, M.P.; Espinoza, J.R.; Zanchetta, P.; Abu-Rub, H.; Young, H.A.; Rojas, C.A. State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inform. 2013, 9, 1003–1016. [Google Scholar] [CrossRef]
- Kouro, S.; Perez, M.A.; Rodríguez, J.; Llor, A.M.; Young, H.A. Model predictive control: MPC’s role in the evolution of power electronics. IEEE Ind. Electron. Mag. 2015, 9, 8–21. [Google Scholar] [CrossRef]
- Vazquez, S.; Rodríguez, J.; Rivera, M.; Franquelo, L.G.; Norambuena, M. Model predictive control for power converters and drives: Advances and trends. IEEE Trans. Ind. Electron. 2017, 64, 935–947. [Google Scholar] [CrossRef]
- Karamanakos, P.; Geyer, T. Guidelines for the design of finite control set model predictive controllers. IEEE Trans. Power Electron. 2020, 35, 7434–7450. [Google Scholar] [CrossRef]
- Varga, T.; Benšić, T.; Jerković Štil, V.; Barukčić, M. Continuous control set predictive current control for induction machine. Appl. Sci. 2021, 11, 6230. [Google Scholar] [CrossRef]
- Anuchin, A.; Aliamkin, D.; Lashkevich, M.; Podzorova, V.; Aarniovuori, L.; Kennel, R. Model predictive control with reduced integration step size for continuous control of an IPM motor. In Proceedings of the 2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Quanzhou, China, 31 May–2 June 2019. [Google Scholar]
- Nemec, M.; Nedeljković, D.; Ambrožič, V. Predictive torque control of induction machines using immediate flux control. IEEE Trans. Ind. Electron. 2007, 54, 2009–2017. [Google Scholar] [CrossRef]
- Correa, P.; Pacas, M.; Rodríguez, J. Predictive torque control for inverter-fed induction machines. IEEE Trans. Ind. Electron. 2007, 54, 1073–1079. [Google Scholar] [CrossRef]
- Rodríguez, J.; Pontt, J.; Silva, C.A.; Correa, P.; Lezana, P.; Cortes, P.; Ammann, U. Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron. 2007, 54, 495–503. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z.; Mei, X.; Rodríguez, J.; Kennel, R. Advanced control strategies of induction machine: Field oriented control, direct torque control and model predictive control. Energies 2018, 11, 120. [Google Scholar] [CrossRef]
- Wang, F.; Li, S.; Mei, X.; Xie, W.; Rodríguez, J.; Kennel, R. Model-based predictive direct control strategies for electrical drives: An experimental evaluation of PTC and PCC methods. IEEE Trans. Ind. Inform. 2015, 11, 671–681. [Google Scholar] [CrossRef]
- Holtz, J. The dynamic representation of AC drive systems by complex signal flow graphs. In Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), Santiago, Chile, 25–27 May 1994. [Google Scholar]
- Eftekhari, S.R.; Davari, S.A.; Naderi, P.; Garcia, C.; Rodríguez, J. Robust loss minimization for predictive direct torque and flux control of an induction motor with electrical circuit model. IEEE Trans. Power Electron. 2020, 35, 5417–5426. [Google Scholar] [CrossRef]
- Mossa, M.A.; Bolognani, S. Implicit predictive flux control for high-performance induction motor drives. Electr. Eng. 2021, 103, 373–395. [Google Scholar] [CrossRef]
- Aziz, A.G.M.A.; Rez, H.; Diab, A.A.Z. Robust sensorless model-predictive torque flux control for high-performance induction motor drives. Mathematics 2021, 9, 403. [Google Scholar] [CrossRef]
- Karlovsky, P.; Lipcak, O.; Bauer, J. Iron loss minimization strategy for predictive torque control of induction motor. Electronics 2020, 9, 566. [Google Scholar] [CrossRef]
- Accetta, A.; Pucci, M. Model modulated predictive control (M2PC) of induction motors including magnetic saturation and iron losses. In Proceedings of the International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022. [Google Scholar]
- Raptis, D.S.; Kladas, A.G. Adaptive predictive control of induction motors with on line parameter estimation using a modified genetic algorithm. In Proceedings of the IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Athens, Greece, 22–23 April 2019. [Google Scholar]
- Eftekhari, S.R.; Davari, S.A.; Naderi, P.; Garcia, C.; Rodríguez, J. Reducing the parameter dependency of model-based loss minimization method for induction motor drives. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina, 26–28 February 2020. [Google Scholar]
- Mossa, M.A.; Bolognani, S. Predictive power control for a linearized doubly fed induction generator model. In Proceedings of the 21st International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 17–19 December 2019. [Google Scholar]
- Shinnaka, S. Proposition of new mathematical models with core loss factor for controlling AC motors. In Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, Aachen, Germany, 31 August–4 September 1998. [Google Scholar]
- Boglietti, A.; Cavagnino, A.; Ferraris, L.; Lazzari, M. Induction motor equivalent circuit including the stray load losses in the machine power balance. IEEE Trans. Energy Convers. 2008, 23, 796–803. [Google Scholar] [CrossRef]
- Bašić, M.; Vukadinović, D. Small-size induction machine equivalent circuit including variable stray load and iron losses. J. Electr. Eng. Technol. 2018, 13, 1604–1613. [Google Scholar]
- Bašić, M.; Vukadinović, D.; Grgić, I. Compensation of stray load and iron losses in small vector-controlled induction generators. IEEE Trans. Energy Convers. 2019, 34, 1677–1685. [Google Scholar] [CrossRef]
- Bašić, M.; Vukadinović, D.; Grgić, I.; Bubalo, M. Speed-sensorless vector control of an induction generator including stray load and iron losses and online parameter tuning. IEEE Trans. Energy Convers. 2020, 35, 724–732. [Google Scholar] [CrossRef]
- Bubalo, M.; Bašić, M.; Vukadinović, D.; Grgić, I. Wind energy conversion system using advanced speed control and model-based loss minimization. IEEE Trans. Energy Convers. 2023, 38, 869–878. [Google Scholar] [CrossRef]
- Aberbour, A.; Bašić, M.; Vukadinović, D. Advanced sliding mode speed observer with compensated stray-load and iron losses for a stand-alone wind turbine-driven induction generator. Int. J. Circ. Theor. Appl. 2022, 50, 3462–3486. [Google Scholar] [CrossRef]
- Levi, E.; Lamine, A.; Cavagnino, A. Impact of stray load losses on vector control accuracy in current-fed induction motor drives. IEEE Trans. Energy Convers. 2006, 1, 442–450. [Google Scholar] [CrossRef]
- Levi, E.; Sokola, M.; Boglietti, A.; Pastorelli, M. Iron loss in rotor-flux-oriented induction machines: Identification, assessment of detuning, and compensation. IEEE Trans. Power Electron. 1996, 11, 698–709. [Google Scholar] [CrossRef]
- Sousa, G.C.D.; Bose, B.K. Loss modelling of converter induction machine system for variable speed drive. In Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation, San Diego, CA, USA, 9–13 November 1992. [Google Scholar]
- Vamvakari, A.; Kandianis, A.; Kladas, A.; Manias, S.; Tegopoulos, J. Analysis of supply voltage distortion effects on induction motor operation. IEEE Trans. Energy Convers. 2001, 16, 209–213. [Google Scholar] [CrossRef]
- Bašić, M.; Vukadinović, D.; Polić, M. Stray load and iron losses in small induction machines under variable operating frequency and flux: A simple estimation method. IEEE Trans. Energy Convers. 2018, 33, 869–876. [Google Scholar] [CrossRef]
- Boglietti, A.; Cavagnino, A.; Lazzari, M.; Pastorelli, M. Predicting iron losses in soft magnetic materials with arbitrary voltage supply: An engineering approach. IEEE Trans. Magn. 2003, 39, 981–989. [Google Scholar] [CrossRef]
- Holtz, J. The induction motor-a dynamic system. In Proceedings of the 20th International Conference on Industrial Electronics, Control and Instrumentation, Bologna, Italy, 5–9 September 1994. [Google Scholar]
- Vargas, R.; Ammann, U.; Rodríguez, J. Predictive approach to increase efficiency and reduce switching losses on matrix converters. IEEE Trans. Power Electron. 2009, 24, 894–902. [Google Scholar] [CrossRef]
- Rivera, M.; Rojas, C.; Rodríguez, J.; Wheeler, P.; Wu, B.; Espinoza, J. Predictive current control with input filter resonance mitigation for a direct matrix converter. IEEE Trans. Power Electron. 2011, 26, 2794–2803. [Google Scholar] [CrossRef]
- Karamanakos, P.; Pavlou, K.; Manias, S. An enumeration-based model predictive control strategy for the cascaded H-bridge multilevel rectifier. IEEE Trans. Ind. Electron. 2014, 61, 3480–3489. [Google Scholar] [CrossRef]
- Zhang, Z.; Hackl, C.M.; Kennel, R. Computationally efficient DMPC for three-level NPC back-to-back converters in wind turbine systems with PMSG. IEEE Trans. Power Electron. 2017, 32, 8018–8034. [Google Scholar] [CrossRef]
- Sandre-Hernandez, O.; Rangel-Magdaleno, J.; Morales-Caporal, R. A comparison on finite-set model predictive torque control schemes for PMSMs. IEEE Trans. Power Electron. 2018, 33, 8838–8847. [Google Scholar] [CrossRef]
- Karamanakos, P.; Geyer, T.; Kennel, R. On the choice of norm in finite control set model predictive control. IEEE Trans. Power Electron. 2018, 33, 7105–7117. [Google Scholar] [CrossRef]
- Kawabata, T.; Miyashita, T.; Yamamoto, Y. Dead beat control of three phase PWM inverter. IEEE Trans. Power Electron. 1990, 5, 21–28. [Google Scholar] [CrossRef]
- Rossi, M.; Toscani, N.; Mauri, M.; Decca, F.C. Introduction to Microcontroller Programming for Power Electronics Control Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022; pp. 325–370. [Google Scholar]
- Seborg, D.E.; Edgar, T.F.; Mellichamp, D.A.; Doyle, F.J. Process Dynamics and Control, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 201–205. [Google Scholar]
- Pérez-Estévez, D.; Doval-Gandoy, J. A model predictive current controller with improved robustness against measurement noise and plant model variations. IEEE Open J. Ind. Appl. 2021, 2, 131–142. [Google Scholar] [CrossRef]
- Le, V.T.; Lee, H.H. Grid-voltage sensorless model-free predictive current control for PWM rectifiers with measurement noise suppression. IEEE Trans. Power Electron. 2022, 37, 10681–10697. [Google Scholar] [CrossRef]
P | n | ψr | PFe | Psll | Rs | Rr | Lsl = Lrl | J |
---|---|---|---|---|---|---|---|---|
1.5 kW | 1390 rpm | 0.864 Wb | 123.0 W | 70.7 W | 4.811 Ω | 3.154 Ω | 0.017 H | 0.003 kgm2 |
IM Model | THDI (≤5%) | fsw-avg (≤10 kHz) | Δψr (1 ± 0.02 p.u.) | Δθr (0 ± 2 deg.) |
---|---|---|---|---|
a | 10.91% | 11.82% | 4.55% | 20.91% |
b | 14.55% | 19.09% | 67.27% | 30.00% |
c | 56.36% | 29.09% | 72.73% | 50.91% |
d | 80.00% | 100.00% | 90.00% | 52.73% |
e | 91.82% | 78.18% | 92.73% | 72.73% |
IM Model | THDI (≤5%) | fsw-avg (≤5 kHz) | Δψr (1 ± 0.02 p.u.) | Δθr (0 ± 2 deg.) |
---|---|---|---|---|
d | 80.00% | 20.00% | 90.00% | 52.73% |
d + CEP | 70.91% | 100.00% | 89.09% | 52.73% |
t [s] | 0–0.5 | 0.5–1 | 1–1.5 | 1.5–2 | 2–2.5 | 2.5–3 | 3–3.5 | 3.5–4 |
---|---|---|---|---|---|---|---|---|
ωr* [p.u.] | 0.5 | 1.0 | 1.0 | 1.0 | 0.25 | 0.25 | 0.25 | –0.25 |
T [p.u.] | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
t [s] | 0–0.5 | 0.5–1 | 1–1.5 | 1.5–2 | 2–2.5 | 2.5–3 | 3–3.5 | 3.5–4 |
---|---|---|---|---|---|---|---|---|
THD [%] (MPCC) | 9.15 | 5.65 | 3.13 | 5.67 | 20.79 | 12.72 | 19.69 | 19.69 |
THD [%] (IRFO) | 8.56 | 8.89 | 8.13 | 9.03 | 11.99 | 6.62 | 12.12 | 12.12 |
Control Algorithm | IRFO | MPCC-a | MPCC-b | MPCC-c | MPCC-d | MPCC-e | MPCC-d + CEP |
---|---|---|---|---|---|---|---|
ET [s] | 16.14 | 15.74 | 15.75 | 15.84 | 15.90 | 15.93 | 16.36 |
ΔET [%] | - | –2.83 | –2.42 | –1.86 | –1.49 | –1.30 | +1.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bašić, M.; Vukadinović, D.; Grgić, I. Model Predictive Current Control of an Induction Motor Considering Iron Core Losses and Saturation. Processes 2023, 11, 2917. https://doi.org/10.3390/pr11102917
Bašić M, Vukadinović D, Grgić I. Model Predictive Current Control of an Induction Motor Considering Iron Core Losses and Saturation. Processes. 2023; 11(10):2917. https://doi.org/10.3390/pr11102917
Chicago/Turabian StyleBašić, Mateo, Dinko Vukadinović, and Ivan Grgić. 2023. "Model Predictive Current Control of an Induction Motor Considering Iron Core Losses and Saturation" Processes 11, no. 10: 2917. https://doi.org/10.3390/pr11102917
APA StyleBašić, M., Vukadinović, D., & Grgić, I. (2023). Model Predictive Current Control of an Induction Motor Considering Iron Core Losses and Saturation. Processes, 11(10), 2917. https://doi.org/10.3390/pr11102917