Quantitative Comparison of Personal Cooling Garments in Performance and Design: A Review
Abstract
:1. Introduction
2. Methodology
2.1. Literature Search Strategy
2.2. Selection Criteria
- Peer-reviewed journal articles, conference papers, and academic studies.
- Publications addressing personal cooling garments, technologies, and related topics.
- Publications addressing cooling performance (e.g., cooling power).
- Publications addressing the clothing design which affected the cooling performance.
- Non-peer-reviewed sources, such as blog posts.
- Publications that do not directly pertain to personal cooling.
- Publications that do not assess the cooling performance (e.g., cooling power) of personal cooling garments.
- Publications that do not related to garments.
3. Classification and Design Parameters
- Air cooling garments
- Evaporative cooling garments
- Phase-change cooling garments
- Liquid cooling garments
- Thermoelectric cooling garments
- Radiative cooling garments
4. Comparative Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sherwood, S.C. Adapting to the challenges of warming. Science 2020, 370, 782–783. [Google Scholar] [CrossRef]
- Pennisi, E. Living with Heat; American Association for the Advancement of Science: Washington, DC, USA, 2020. [Google Scholar]
- Habibi, P.; Moradi, G.; Dehghan, H.; Moradi, A.; Heydari, A. The impacts of climate change on occupational heat strain in outdoor workers: A systematic review. Urban Clim. 2021, 36, 100770. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Kuklane, K.; Östergren, P.-O.; Kjellstrom, T. Occupational heat stress assessment and protective strategies in the context of climate change. Int. J. Biometeorol. 2018, 62, 359–371. [Google Scholar] [CrossRef]
- Flouris, A.D.; Dinas, P.C.; Ioannou, L.G.; Nybo, L.; Havenith, G.; Kenny, G.P.; Kjellstrom, T. Workers’ health and productivity under occupational heat strain: A systematic review and meta-analysis. Lancet Planet. Health 2018, 2, e521–e531. [Google Scholar] [CrossRef]
- Ioannou, L.G.; Mantzios, K.; Tsoutsoubi, L.; Panagiotaki, Z.; Kapnia, A.K.; Ciuha, U.; Nybo, L.; Flouris, A.D.; Mekjavic, I.B. Effect of a simulated heat wave on physiological strain and labour productivity. Int. J. Environ. Res. Public Health 2021, 18, 3011. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, L.G.; Mantzios, K.; Tsoutsoubi, L.; Nintou, E.; Vliora, M.; Gkiata, P.; Dallas, C.N.; Gkikas, G.; Agaliotis, G.; Sfakianakis, K. Occupational heat stress: Multi-country observations and interventions. Int. J. Environ. Res. Public Health 2021, 18, 6303. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.P.; Yi, W. Heat Stress and Its Impacts on Occupational Health and Performance; SAGE Publications: London, UK, 2016; Volume 25, pp. 3–5. [Google Scholar]
- Zare, S.; Hasheminezhad, N.; Sarebanzadeh, K.; Zolala, F.; Hemmatjo, R.; Hassanvand, D. Assessing thermal comfort in tourist attractions through objective and subjective procedures based on ISO 7730 standard: A field study. Urban Clim. 2018, 26, 1–9. [Google Scholar] [CrossRef]
- Wang, Z.; de Dear, R.; Luo, M.; Lin, B.; He, Y.; Ghahramani, A.; Zhu, Y. Individual difference in thermal comfort: A literature review. Build. Environ. 2018, 138, 181–193. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; He, Y.; Luo, M.; Li, Z.; Hong, T.; Lin, B. Revisiting individual and group differences in thermal comfort based on ASHRAE database. Energy Build. 2020, 219, 110017. [Google Scholar] [CrossRef]
- Guo, W.; Zhou, M. Technologies toward thermal comfort-based and energy-efficient HVAC systems: A review. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 3883–3888. [Google Scholar]
- Karjalainen, S.; Koistinen, O. User problems with individual temperature control in offices. Build. Environ. 2007, 42, 2880–2887. [Google Scholar] [CrossRef]
- Golbabaei, F.; Heydari, A.; Moradi, G.; Dehghan, H.; Moradi, A.; Habibi, P. The effect of cooling vests on physiological and perceptual responses: A systematic review. Int. J. Occup. Saf. Ergon. 2022, 28, 223–255. [Google Scholar] [CrossRef]
- Morris, N.B.; Jay, O.; Flouris, A.D.; Casanueva, A.; Gao, C.; Foster, J.; Havenith, G.; Nybo, L. Sustainable solutions to mitigate occupational heat strain–an umbrella review of physiological effects and global health perspectives. Environ. Health 2020, 19, 95. [Google Scholar]
- Peng, Y.; Cui, Y. Advanced textiles for personal thermal management and energy. Joule 2020, 4, 724–742. [Google Scholar] [CrossRef]
- Lou, L.; Chen, K.; Fan, J. Advanced materials for personal thermal and moisture management of health care workers wearing PPE. Mater. Sci. Eng. R Rep. 2021, 146, 100639. [Google Scholar] [CrossRef]
- Sajjad, U.; Hamid, K.; Sultan, M.; Abbas, N.; Ali, H.M.; Imran, M.; Muneeshwaran, M.; Chang, J.-Y.; Wang, C.-C. Personal thermal management-A review on strategies, progress, and prospects. Int. Commun. Heat Mass Transf. 2022, 130, 105739. [Google Scholar] [CrossRef]
- Song, W.; Zhang, Z.; Chen, Z.; Wang, F.; Yang, B. Thermal comfort and energy performance of personal comfort systems (PCS): A systematic review and meta-analysis. Energy Build. 2022, 256, 111747. [Google Scholar] [CrossRef]
- Ren, S.; Han, M.; Fang, J. Personal Cooling Garments: A Review. Polymers 2022, 14, 5522. [Google Scholar] [CrossRef] [PubMed]
- Lou, L.; Wu, Y.S.; Shou, D.; Fan, J. Thermoregulatory clothing for personal thermal management. Annu. Rev. Heat Transf. 2018, 21, 205–244. [Google Scholar] [CrossRef]
- Mokhtari Yazdi, M.; Sheikhzadeh, M. Personal cooling garments: A review. J. Text. Inst. 2014, 105, 1231–1250. [Google Scholar] [CrossRef]
- Sarkar, S.; Kothari, V. Cooling garments—A review. Indian J. Fibre Text. Res. 2014, 39, 450–458. [Google Scholar]
- Yi, W.; Zhao, Y.; Chan, A.P. Evaluation of the ventilation unit for personal cooling system (PCS). Int. J. Ind. Ergon. 2017, 58, 62–68. [Google Scholar] [CrossRef]
- Zhai, X. Research on the application of vortex tube type of cooling jacket in coal mine. AIP Conf. Proc. 2017, 1864, 020220. [Google Scholar]
- Al Sayed, C.; Vinches, L.; Dupuy, O.; Douzi, W.; Dugue, B.; Hallé, S. Air/CO2 cooling garment: Description and benefits of use for subjects exposed to a hot and humid climate during physical activities. Int. J. Min. Sci. Technol. 2019, 29, 899–903. [Google Scholar] [CrossRef]
- Ho, C.; Fan, J.; Newton, E.; Au, R. Effects of athletic T-shirt designs on thermal comfort. Fibers Polym. 2008, 9, 503–508. [Google Scholar] [CrossRef]
- Sun, C.; Au, J.S.-C.; Fan, J.; Zheng, R. Novel ventilation design of combining spacer and mesh structure in sports T-shirt significantly improves thermal comfort. Appl. Ergon. 2015, 48, 138–147. [Google Scholar] [CrossRef]
- Wang, W.; Yao, L.; Cheng, C.-Y.; Zhang, T.; Atsumi, H.; Wang, L.; Wang, G.; Anilionyte, O.; Steiner, H.; Ou, J. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Sci. Adv. 2017, 3, e1601984. [Google Scholar] [CrossRef]
- Chai, J.; Kang, Z.; Yan, Y.; Lou, L.; Zhou, Y.; Fan, J. Thermoregulatory clothing with temperature-adaptive multimodal body heat regulation. Cell Rep. Phys. Sci. 2022, 3, 100958. [Google Scholar] [CrossRef]
- Zhao, M.; Gao, C.; Wang, F.; Kuklane, K.; Holmér, I.; Li, J. A study on local cooling of garments with ventilation fans and openings placed at different torso sites. Int. J. Ind. Ergon. 2013, 43, 232–237. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, J.; Wang, F.; Udayraj; Chan, W.C. The cooling performance of forced air ventilation garments in a warm environment: The effect of clothing eyelet designs. J. Text. Inst. 2022, 114, 378–387. [Google Scholar] [CrossRef]
- Yang, J.; Wang, F.; Song, G.; Li, R.; Raj, U. Effects of clothing size and air ventilation rate on cooling performance of air ventilation clothing in a warm condition. Int. J. Occup. Saf. Ergon. 2022, 28, 354–363. [Google Scholar] [CrossRef]
- Lou, L.; Wu, Y.S.; Zhou, Y.; Fan, J. Effects of body positions and garment design on the performance of a personal air cooling/heating system. Indoor Air 2022, 32, e12921. [Google Scholar] [CrossRef] [PubMed]
- Hes, L.; de Araujo, M. Simulation of the effect of air gaps between the skin and a wet fabric on resulting cooling flow. Text. Res. J. 2010, 80, 1488–1497. [Google Scholar] [CrossRef]
- Guan, M.; Annaheim, S.; Li, J.; Camenzind, M.; Psikuta, A.; Rossi, R.M. Apparent evaporative cooling efficiency in clothing with continuous perspiration: A sweating manikin study. Int. J. Therm. Sci. 2019, 137, 446–455. [Google Scholar] [CrossRef]
- Gillis, D.J.; Barwood, M.; Newton, P.; House, J.; Tipton, M. The influence of a menthol and ethanol soaked garment on human temperature regulation and perception during exercise and rest in warm, humid conditions. J. Therm. Biol. 2016, 58, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Pause, B. Driving more comfortably with phase change materials. Tech. Text. Int. 2002, 11, 24–27. [Google Scholar]
- Zhang, W.; Hao, S.; Zhao, D.; Bai, G.; Zuo, X.; Yao, J. Preparation of PMMA/SiO2 PCM microcapsules and its thermal regulation performance on denim fabric. Pigment Resin Technol. 2020, 49, 491–499. [Google Scholar] [CrossRef]
- Geng, X.; Li, W.; Wang, Y.; Lu, J.; Wang, J.; Wang, N.; Li, J.; Zhang, X. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing. Appl. Energy 2018, 217, 281–294. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Huang, Y. Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Appl. Energy 2011, 88, 3133–3139. [Google Scholar] [CrossRef]
- Golestaneh, S.; Mosallanejad, A.; Karimi, G.; Khorram, M.; Khashi, M. Fabrication and characterization of phase change material composite fibers with wide phase-transition temperature range by co-electrospinning method. Appl. Energy 2016, 182, 409–417. [Google Scholar] [CrossRef]
- Yoo, H.; Lim, J.; Kim, E. Effects of the number and position of phase-change material-treated fabrics on the thermo-regulating properties of phase-change material garments. Text. Res. J. 2013, 83, 671–682. [Google Scholar] [CrossRef]
- House, J.R.; Lunt, H.C.; Taylor, R.; Milligan, G.; Lyons, J.A.; House, C.M. The impact of a phase-change cooling vest on heat strain and the effect of different cooling pack melting temperatures. Eur. J. Appl. Physiol. 2013, 113, 1223–1231. [Google Scholar] [CrossRef]
- Gao, C.; Kuklane, K.; Holmér, I. Cooling vests with phase change material packs: The effects of temperature gradient, mass and covering area. Ergonomics 2010, 53, 716–723. [Google Scholar] [CrossRef]
- Richardson, G.; Cohen, J.; McPhate, D.; Hayes, P. A personal conditioning system based on a liquid-conditioned vest and a thermoelectric supply system. Ergonomics 1988, 31, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Vallerand, A.; Michas, R.; Frim, J.; Ackles, K. Heat balance of subjects wearing protective clothing with a liquid-or air-cooled vest. Aviat. Space Environ. Med. 1991, 62, 383–391. [Google Scholar] [PubMed]
- Frim, J.; Michas, R.D.; Cain, B. Personal cooling garment performance: A parametric study. In Environmental Ergonomics. Recent Progress and New Frontiers; Freund Publishing House, Ltd.: London, UK; Tel Aviv, Israel, 1996. [Google Scholar]
- Kayacan, Ö.; Kurbak, A. Effect of garment design on liquid cooling garments. Text. Res. J. 2010, 80, 1442–1455. [Google Scholar] [CrossRef]
- Burton, D. Performance of water conditioned suits. Aerosp. Med May 1966, 1966, 500–504. [Google Scholar]
- Cheuvront, S.N.; Kolka, M.A.; Cadarette, B.S.; Montain, S.J.; Sawka, M.N. Efficacy of intermittent, regional microclimate cooling. J. Appl. Physiol. 2003, 94, 1841–1848. [Google Scholar] [CrossRef]
- Xu, X. Multi-loop control of liquid cooling garment systems. Ergonomics 1999, 42, 282–298. [Google Scholar] [CrossRef]
- Branson, D.H.; Cao, H.; Jin, B.; Peksoz, S.; Farr, C.; Ashdown, S. Fit analysis of liquid cooled vest prototypes using 3D body scanning technology. J. Text. Appar. Technol. Manag. 2005, 4, 1–15. [Google Scholar]
- Burton, D. Engineering aspects of personal conditioning. In Proceedings of the Symposium on Individual Cooling, Manhattan, KS, USA, 17–18 March 1969; pp. 33–49. [Google Scholar]
- Young, A.J.; Sawka, M.N.; EpStein, Y.; Decristofano, B.; Pandolf, K.B. Cooling different body surfaces during upper and lower body exercise. J. Appl. Physiol. 1987, 63, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Branson, D.H.; Peksoz, S.; Nam, J.; Farr, C.A. Fabric selection for a liquid cooling garment. Text. Res. J. 2006, 76, 587–595. [Google Scholar] [CrossRef]
- Dionne, J.; Semeniuk, K.; Makris, A.; Teal, W.; Laprise, B. Thermal manikin evaluation of liquid cooling garments intended for use in hazardous waste management. In Proceedings of the Waste Management 2003 Symposium, Tucson, AZ, USA, 3–27 February 2003. [Google Scholar]
- Enescu, D.; Virjoghe, E.O. A review on thermoelectric cooling parameters and performance. Renew. Sustain. Energy Rev. 2014, 38, 903–916. [Google Scholar] [CrossRef]
- Riffat, S.B.; Ma, X. Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 2003, 23, 913–935. [Google Scholar] [CrossRef]
- Hong, S.; Gu, Y.; Seo, J.K.; Wang, J.; Liu, P.; Meng, Y.S.; Xu, S.; Chen, R. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 2019, 5, eaaw0536. [Google Scholar] [CrossRef] [PubMed]
- Lou, L.; Shou, D.; Park, H.; Zhao, D.; Wu, Y.S.; Hui, X.; Yang, R.; Kan, E.C.; Fan, J. Thermoelectric air conditioning undergarment for personal thermal management and HVAC energy saving. Energy Build. 2020, 226, 110374. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Wang, J.; Zhang, M.; Jia, M.; Wang, Q. Man-portable cooling garment with cold liquid circulation based on thermoelectric refrigeration. Appl. Therm. Eng. 2022, 200, 117730. [Google Scholar] [CrossRef]
- Sanchez-Marin, F.J.; Calixto-Carrera, S.; Villaseñor-Mora, C. Novel approach to assess the emissivity of the human skin. J. Biomed. Opt. 2009, 14, 024006. [Google Scholar] [CrossRef]
- Tong, J.K.; Huang, X.; Boriskina, S.V.; Loomis, J.; Xu, Y.; Chen, G. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. Acs Photonics 2015, 2, 769–778. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Song, A.Y.; Catrysse, P.B.; Liu, C.; Peng, Y.; Xie, J.; Fan, S.; Cui, Y. Radiative human body cooling by nanoporous polyethylene textile. Science 2016, 353, 1019–1023. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Pian, S.; Su, M.; Wang, Z.; Wu, M.; Liu, X.; Chen, M.; Xiang, Y.; Wu, J.; Zhang, M. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 2021, 373, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ji, Y.; Javed, M.; Li, X.; Fan, Z.; Wang, Y.; Cai, Z.; Xu, B. Preparation of passive daytime cooling fabric with the synergistic effect of radiative cooling and evaporative cooling. Adv. Mater. Technol. 2022, 7, 2100803. [Google Scholar] [CrossRef]
- Zhu, F.; Feng, Q. Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments. Int. J. Therm. Sci. 2021, 165, 106899. [Google Scholar] [CrossRef]
- Zhu, B.; Li, W.; Zhang, Q.; Li, D.; Liu, X.; Wang, Y.; Xu, N.; Wu, Z.; Li, J.; Li, X. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 2021, 16, 1342–1348. [Google Scholar] [CrossRef]
- Iqbal, M.I.; Lin, K.; Sun, F.; Chen, S.; Pan, A.; Lee, H.H.; Kan, C.-W.; Lin, C.S.K.; Tso, C.Y. Radiative cooling nanofabric for personal thermal management. ACS Appl. Mater. Interfaces 2022, 14, 23577–23587. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Jiang, Q.; Zhang, W.; Wang, B.; Li, R.; Zhao, S.; Wang, F.; Huang, Y.; Lyu, P. An all-weather radiative human body cooling textile. Nat. Sustain. 2023, 2023, 1–9. [Google Scholar]
- Bogerd, N.; Psikuta, A.; Daanen, H.; Rossi, R. How to measure thermal effects of personal cooling systems: Human, thermal manikin and human simulator study. Physiol. Meas. 2010, 31, 1161. [Google Scholar] [CrossRef]
- Ouahrani, D.; Itani, M.; Ghaddar, N.; Ghali, K.; Khater, B. Experimental study on using PCMs of different melting temperatures in one cooling vest to reduce its weight and improve comfort. Energy Build. 2017, 155, 533–545. [Google Scholar] [CrossRef]
- Zheng, Q.; Ke, Y.; Wang, H. Design and evaluation of cooling workwear for miners in hot underground mines using PCMs with different temperatures. Int. J. Occup. Saf. Ergon. 2022, 28, 118–128. [Google Scholar] [CrossRef]
- Yang, Y.; Stapleton, J.; Diagne, B.T.; Kenny, G.P.; Lan, C.Q. Man-portable personal cooling garment based on vacuum desiccant cooling. Appl. Therm. Eng. 2012, 47, 18–24. [Google Scholar] [CrossRef]
- Jetté, F.-X.; Dionne, J.-P.; Rose, J.; Makris, A. Effect of thermal manikin surface temperature on the performance of personal cooling systems. Eur. J. Appl. Physiol. 2004, 92, 669–672. [Google Scholar] [CrossRef]
- Miura, K.; Takagi, K.; Ikematsu, K. Evaluation of two cooling devices for construction workers by a thermal manikin. Fash. Text. 2017, 4, 23. [Google Scholar] [CrossRef]
- Schellen, L.; Loomans, M.; Kingma, B.; De Wit, M.; Frijns, A.; van Marken Lichtenbelt, W. The use of a thermophysiological model in the built environment to predict thermal sensation: Coupling with the indoor environment and thermal sensation. Build. Environ. 2013, 59, 10–22. [Google Scholar] [CrossRef]
- Zolfaghari, A.; Maerefat, M. A new simplified thermoregulatory bioheat model for evaluating thermal response of the human body to transient environments. Build. Environ. 2010, 45, 2068–2076. [Google Scholar] [CrossRef]
- Kang, Z.; Wang, F. An advanced three-dimensional thermoregulation model of the human body: Development and validation. Int. Commun. Heat Mass Transf. 2019, 107, 34–43. [Google Scholar] [CrossRef]
- Wu, G.; Liu, H.; Wu, S.; Liu, Z.; Mi, L.; Gao, L. A study on the capacity of a ventilation cooling vest with pressurized air in hot and humid environments. Int. J. Ind. Ergon. 2021, 83, 103106. [Google Scholar] [CrossRef]
- Lou, L.; Zhou, Y.; Yan, Y.; Hong, Y.; Fan, J. Wearable cooling and dehumidifying system for personal protective equipment (PPE). Energy Build. 2022, 276, 112510. [Google Scholar] [CrossRef]
- Stolwijk, J.A. A Mathematical Model of Physiological Temperature Regulation in Man; NASA: Washington, DC, USA, 1971.
- Gao, C.; Kuklane, K.; Wang, F.; Holmér, I. Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective. Indoor Air 2012, 22, 523–530. [Google Scholar] [CrossRef]
- Hou, J.; Yang, Z.; Xu, P.; Huang, G. Design and performance evaluation of novel personal cooling garment. Appl. Therm. Eng. 2019, 154, 131–139. [Google Scholar]
- Nag, P.; Pradhan, C.; Nag, A.; Ashtekar, S.; Desai, H. Efficacy of a water-cooled garment for auxiliary body cooling in heat. Ergonomics 1998, 41, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Shang, B.; Duan, B.; Luo, X. Design and testing of a liquid cooled garment for hot environments. J. Therm. Biol. 2015, 49, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Bartkowiak, G.; Dabrowska, A.; Marszalek, A. Assessment of an active liquid cooling garment intended for use in a hot environment. Appl. Ergon. 2017, 58, 182–189. [Google Scholar] [CrossRef]
- Shirish, A.; Kapadia, V.; Kumar, S.; Kumar, S.; Mishra, S.; Singh, G. Effectiveness of a cooling jacket with reference to physiological responses in iron foundry workers. Int. J. Occup. Saf. Ergon. 2016, 22, 487–493. [Google Scholar] [CrossRef]
- Butts, C.L.; Torretta, M.L.; Smith, C.R.; Petway, A.J.; McDermott, B.P. Effects of a phase change cooling garment during exercise in the heat. Eur. J. Sport Sci. 2017, 17, 1065–1073. [Google Scholar] [CrossRef]
- Rykaczewski, K. Rational design of sun and wind shaded evaporative cooling vests for enhanced personal cooling in hot and dry climates. Appl. Therm. Eng. 2020, 171, 115122. [Google Scholar] [CrossRef]
No. | Cooling Power | Weight | Duration | Testing Scenario | Flow Rate | Cooling Area |
---|---|---|---|---|---|---|
ACG 1 | 71.5–106 W | N/A | N/A | 34 °C, 60% RH, 0.4 m/s | 12 L/s | N/A |
ACG 2 | 79.5–97.6 W | N/A | N/A | 30–34 °C, 90% RH | 10 m3/h or 14 m3/h. | 0.53 m2 |
ACG 3 | 67.72 ± 0.74 W | 98 g (Fan only) | 7.05 h | 34 °C, 60% RH, 0.4 ± 0.1 m/s | 8–22 L/s | N/A |
ACG 4 | 15.5 W | 994 g | N/A | 26.1 °C, 50% RH | 1 × 10−3~1.17 × 10−3 m3/s | N/A |
ACG 5 | 51.7 W | 1.2 kg | N/A | 23 °C, 50% RH | 70 L/min | N/A |
NO. | Cooling Power | Weight | Duration | Testing Scenario | Phase-Transition Temperature | Cooling Area | Cooling Temperature |
---|---|---|---|---|---|---|---|
PCCG 1 | 19.2–28.4 W | 2224 g | 150 min | Hot climates (the required temperature gradient is suggested to be greater than 6 °C) | 24 °C | 0.2054 m2 | ≥24 °C |
12.9–21.2 W | 2226 g | 288 min | 28 °C | ≥28 °C | |||
6.0–14.2 W | 1973 g | 360 min | 32 °C | ≥32 °C | |||
PCCG 2 | 8.4 W | 1296 g | 65 min | 30 ± 0.5 °C, 80 ± 5% RH, <0.1 m/s | 15°C + 15 °C | 0.1404 m2 | ≥15 °C |
10.5 W | 125 min | 15°C + 23 °C | ≥15 °C | ||||
PCCG 3 | 10–20 W | 2224 g | 210 min | 34 ± 0.5 °C, 60% RH, 0.4 m/s | 21 °C | 0.57 m2 | ≥21 °C |
PCCG 4 | 89.6 ± 9 W | 3400 g | N/A | 37 °C, 50% RH | N/A | 0.4 m2 | ≥16 °C |
PCCG 5 | 13.4–19.4 W | 1800 g | ≥2 h | 30 °C, 45% RH | 24–26 °C | N/A | ≥24 °C |
NO. | Cooling Power | Weight | Duration | Testing Scenario | Flow Rate | Cooling Area | Cooling Temperature |
---|---|---|---|---|---|---|---|
LCG 1 | 67.2–138.1 W | 1.5 kg | 0.79–3.36 h | 40 °C–50 °C | 224.5–544.2 mL/min | 0.568 m2 | N/A |
LCG 2 | 300 W | <10 kg | ≥1 h | 30–45 °C, 20–80% RH | 3.8 L/min | N/A | 22–27 °C |
LCG 3 | 90.8–96.5 W | 3 kg | 90 min | 35.89 ± 1.25 °C, 35% RH | N/A | 10–15 °C | |
LCG 4 | 340.4 W | N/A | N/A | 30 °C | N/A | N/A | 15.7 °C |
Ref. | Cooling Technique | Cooling Power | Weight | Duration | Testing Scenario | Cooling Area | Cooling Temperature |
---|---|---|---|---|---|---|---|
[32] | ACG | 71.5–106 W | N/A | N/A | 34 °C, 60% RH, 0.4 m/s | N/A | N/A |
[83] | 79.5–97.6 W | N/A | N/A | 30–34 °C, 90% RH | 0.53 m2 | 30 °C | |
[25] | 67.72 ± 0.74 W | 98g (Fan only) | 7.05 h | 34 °C, 60% RH, 0.4 ± 0.1 m/s | N/A | N/A | |
[63] | 15.5 W | 994 g | N/A | 26.1 °C, 50% RH | N/A | 19.8–26.5 °C | |
[84] | 51.7 W | 1.2 kg | N/A | 23 °C, 50% RH | N/A | N/A | |
[47] | PCCG | 19.2–28.4 W | 2224 g | 2.5 h | Hot climates (the required temperature gradient is suggested to be greater than 6 °C) | 0.2054 m2 | ≥24 °C |
12.9–21.2 W | 2226 g | 4.8 h | ≥28 °C | ||||
6.0–14.2 W | 1973 g | 6 h | ≥32 °C | ||||
[76] | 8.4 W | 1296 g | 65 min | 30 ± 0.5 °C, 80 ± 5% RH, <0.1m/s | 0.1404 m2 | ≥15 °C | |
10.5 W | 125 min | ≥15 °C | |||||
[86] | 10–20 W | 2224 g | 210 min | 34 ± 0.5 °C, 60% RH, 0.4 m/s | 0.57 m2 | ≥21 °C | |
[77] | 89.6 ± 9 W | 3400 g | N/A | 37 °C, 50% RH | 0.4 m2 | N/A | |
[87] | 13.4–19.4 W | 1800 g | ≥2 h | 30 °C, 45% RH | N/A | N/A | |
[89] | LCG | 67.2–138.1 W | 1500 g | 0.79–3.36 h | 40 °C–50 °C | 0.568 m2 | N/A |
[90] | 300 W | <10 kg | ≥1 h | 30–45 °C, 20–80% RH | N/A | 22–27 °C | |
[91] | 90.8–96.5 W | 3000 g | 90 min | 35.89 ± 1.25 °C, 35% RH | 10–15 °C | ||
[64] | 340.4 W | N/A | N/A | 30 °C | ≥15.7 °C | ||
[93] | ECG | 48–57 W | N/A | N/A | 40 °C, 10% RH | 0.6 m2 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Lou, L.; Fan, J. Quantitative Comparison of Personal Cooling Garments in Performance and Design: A Review. Processes 2023, 11, 2976. https://doi.org/10.3390/pr11102976
Zhou Y, Lou L, Fan J. Quantitative Comparison of Personal Cooling Garments in Performance and Design: A Review. Processes. 2023; 11(10):2976. https://doi.org/10.3390/pr11102976
Chicago/Turabian StyleZhou, Yiying, Lun Lou, and Jintu Fan. 2023. "Quantitative Comparison of Personal Cooling Garments in Performance and Design: A Review" Processes 11, no. 10: 2976. https://doi.org/10.3390/pr11102976
APA StyleZhou, Y., Lou, L., & Fan, J. (2023). Quantitative Comparison of Personal Cooling Garments in Performance and Design: A Review. Processes, 11(10), 2976. https://doi.org/10.3390/pr11102976