Systematic Evaluation of Research Progress in the Textile Field over the Past 10 Years: Bibliometric Study on Smart Textiles and Clothing
Abstract
:1. Introduction
2. Research Methodology and Data Analysis
2.1. Research Methodology
2.2. Data Analysis
3. Results and Analysis
3.1. Volume of Literature
3.2. Network Analysis of the Country Based on Published Articles
3.3. Institutions Analysis
3.4. Author Group Analysis
3.5. Journals Analysis
3.6. Citations Analysis
3.7. Keywords Analysis
4. Limitations
5. Conclusions
- (1)
- In terms of the number of published papers and countries represented, the WOS has seen a steady increase in publications since 2015, with particularly rapid growth observed after 2017 in terms of the number of published papers and countries represented. The United States has maintained close collaborations with other countries and regions, followed by China, which has also emerged as a leading contributor to global research output in recent years.
- (2)
- From the perspectives of the authors and institutions, the WOS database research institutions are very close, with institutions such as the University of Boras, Sweden, Sungkyunkwan University, Korea, and the University of Manchester, UK, forming the central collaborative forces. Among them, scholars such as Li, Yi, Qu, Lijun, Jin, and Lu form the core group of authors, whose research concentration and intensity of cooperation are greatest.
- (3)
- Based on the journals and citations, SCIENCE and ADV MATER are the authoritative journals in the field in the WOS database, and together with journals such as ACS APPL MATER INTER, NANO LETT, and ADV FUNCT MATER, they constitute the top journals in the field. The most cited paper was written by the Stoppa M. group, which had a significant influence. It can be seen from the citation explosion that research in this field focuses on flexible, sensitive strain sensors, supercapacitors, integrated microelectronic systems, and functional textiles.
- (4)
- Based on the analysis of keyword co-occurrence, the keywords in the WOS database have a high frequency of occurrence and diversified research topics. The overall intensity of keywords for smart textiles and clothing in the WOS database is large, and there is a significant difference in intensity among the emergent words. The literature in the WOS database focuses more on the manufacturing of electronic components and smart fibers and polymers in smart textiles and clothing. Therefore, future research on electronic component manufacturing and smart fibers and fabrics in the field of smart textiles and apparel is expected to be the focus of attention.
- (5)
- From the point of view of research hotspots and stage characteristics, the research hotspots in the WOS in recent years have been more diverse, involving yarn supercapacitors, biomaterials, carbon nanotubes, wearable strains, and electronic skin. Future research is expected to pay more attention to the intelligence of fibers and fabrics and the accurate detectability of electronic components. This work will strengthen the development of intelligent core technology, which will also be a key focus in the future.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, L.; Sang, P.; Xie, Z. Development of intelligent cycling clothing based on outdoor visual warning functions. Knitt. Ind. 2019, 1, 57–61. [Google Scholar]
- Tian, M.; Li, J. The design model and development trend of intelligent clothing. J. Text. 2014, 35, 109–115. [Google Scholar]
- Van Langenhove, L.; Hertleer, C. Smart clothing: A new life. Int. J. Cloth. Sci. Technol. 2004, 16, 63–72. [Google Scholar] [CrossRef]
- Tian, M.; Zhang, G.; Qu, L.; Wang, B.; Shi, Y. The application of conductive fibers and their flexible sensors in the field of wearable intelligent textiles. Basic Sci. J. Text. Univ. 2021, 34, 51–59. [Google Scholar]
- Ahsan, M.; Teay, S.H.; Sayem, A.S.M.; Albarbar, A. Smart Clothing Framework for Health Monitoring Applications. Signals 2022, 3, 113–145. [Google Scholar] [CrossRef]
- Su, Y.G.; Zhao, X. Modern garment design from the perspective of smart textiles. Woolen Technol. 2020, 48, 102–106. [Google Scholar]
- Sun, Y.; Fan, J.; Wang, L.; Liu, Y. Research Progress on the Application of Wearable Technology in Textile and Apparel. J. Text. 2018, 39, 132–138. [Google Scholar]
- Wang, X.; Yu, M.; Zhang, C.; Zheng, G.; Qin, R.; Liu, J. Based on flexible sensor application and progress of smart clothing. Basic Sci. J. Text. Univ./Fangzhi Gaoxiao Jichu Kexue Xuebao 2019, 32, 133–137. [Google Scholar]
- He, S.; Jin, H.; Hong, W.; Liu, Z. Design and application research of knitted flexible intelligent patient garments. Knitt. Ind. 2020, 7, 81–84. [Google Scholar]
- Yan, N.; Zhang, H.; Deng, Y. Research status and development trend of wearable medical monitoring clothing. J. Text. 2015, 36, 163–167. [Google Scholar]
- Xie, H.Y.; Tang, H.; Gu, L.Y.; Sun, J.; Gao, Q.; Zhang, S.B. Research on Intelligent Fire Underwear Based on Temperature and Humidity Monitoring Function. Knitt. Ind. 2019, 5, 58–62. [Google Scholar]
- Wang, Y.; Deng, Y.; Yang, X. Research status and development trend of breast monitoring intelligent underwear. Knitt. Ind. 2018, 5, 62–65. [Google Scholar]
- Tang, Q.; Zhang, B.; Zheng, X. Infant wearable intelligent monitoring clothing design. Acta Textile Sinica 2021, 42, 156–160. [Google Scholar]
- Sheng, Q.; Zheng, J.; Liu, J.; Shi, W.; Li, H. Research progress and trends in CiteSpace-based inner surface defect detection. Spectrosc. Spectr. Anal. 2023, 43, 9–15. [Google Scholar]
- Zhang, X.; Wang, J.; Hu, J.R.; Wang, Y.; Lai, J.; Zhou, L.Y.; Zhu, Y.C. Visual analysis of surimi research based on CiteSpace and the bibliometric analysis platform. Food Sci. 2023, 44, 362–370. [Google Scholar]
- Peng, Z.; Wu, Q.; Chen, H.; Zheng, Y.; Wang, S. A review of bibliometric-based research on machine vision defect detection. Comput. Eng. Appl. 2021, 57, 28–34. [Google Scholar]
- Liu, Z.; Zheng, Y.; Jin, L.; Chen, K.; Zhai, H.; Huang, Q.; Chen, Z.; Yi, Y.; Umar, M.; Xu, L.; et al. Highly Breathable and Stretchable Strain Sensors with Insensitive Response to Pressure and Bending. Adv. Funct. Mater. 2021, 31, 2007622. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Zhi, J.; Huang, M.; Pei, F. A bibliometric analysis: Current status and frontier trends of Schwann cells in neurosciences. Front. Mol. Neurosci. 2023, 15, 1087550. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, F.; Zhao, M.; Yang, M. Bibliometric Evaluation of 2012–2020 Publications on Ferroptosis in Cancer Treatment. Front. Cell Dev. Biol. 2022, 9, 793347. [Google Scholar] [CrossRef]
- Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X.M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.S.; Eom, J.; Kim, Y.H.; Park, S.K. Recent progress of textile-based wearable electronics: A comprehensive review of materials, devices, and applications. Small 2018, 14, 1703034. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Kyung, K.U.; Park, I.; Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Dong, K.; Peng, X.; Wang, Z.L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2019, 32, 1902549. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.; Chen, P.N.; He, S.S.; Sun, X.M.; Peng, H.S. Smart Electronic Textiles. Angew. Chem. Int. Ed. 2016, 55, 6140–6169. [Google Scholar] [CrossRef]
- Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W.; et al. Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 2020, 32, 1901958. [Google Scholar] [CrossRef]
- Pu, X.; Li, L.; Liu, M.; Jiang, C.; Du, C.; Zhao, Z.; Hu, W.; Wang, Z.L. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 2016, 28, 98–105. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J.H.; Pang, C.; Son, S.; Kim, J.H.; Jang, Y.H.; Kim, D.E.; et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 2015, 27, 2433–2439. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Y.; Zhang, N.; Zou, H.; Liu, R.; Tao, C.; Fan, X.; Wang, Z.L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138. [Google Scholar] [CrossRef]
- Wen, Z.; Yeh, M.H.; Guo, H.; Wang, J.; Zi, Y.; Xu, W.; Deng, J.; Zhu, L.; Wang, X.; Hu, C.; et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2016, 2, e1600097. [Google Scholar] [CrossRef]
- Ren, J.; Wang, C.; Zhang, X.; Carey, T.; Chen, K.; Yin, Y.; Torrisi, F. Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 2017, 111, 622–630. [Google Scholar] [CrossRef]
- Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.C.; Song, A.Y.; Catrysse, P.B.; Liu, C.; Peng, Y.; Xie, J.; Fan, S.; Cui, Y. Radiative human body cooling by nanoporous polyethylene textile. Science 2016, 353, 1019–1023. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yan, C.; Liu, Z.; Fu, X.; Peng, L.M.; Hu, Y.; Zheng, Z. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 2016, 28, 10267–10274. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H.D.; Choi, J.W.; Han, S.M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714. [Google Scholar] [CrossRef]
- Cherenack, K.; Van Pieterson, L. Smart textiles: Challenges and opportunities? J. Appl. Phys. 2012, 112, 091301. [Google Scholar] [CrossRef]
- Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. All-Graphene Core-Sheath Microfibers for All-Solid-State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles. Adv. Mater. 2013, 25, 2326–2331. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, J.S.; Noh, J.; Lee, I.; Kim, H.J.; Choi, S.; Seo, J.; Jeon, S.; Kim, T.S.; Lee, J.Y.; et al. Wearable textile battery rechargeable by solar energy. Nano Lett. 2013, 13, 5753–5761. [Google Scholar] [CrossRef]
- Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001. [Google Scholar] [CrossRef]
- Lee, J.A.; Shin, M.K.; Kim, S.H.; Cho, H.U.; Spinks, G.M.; Wallace, G.G.; Lima, M.D.; Lepró, X.; Kozlov, M.E.; Baughman, R.H.; et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 2013, 4, 1970. [Google Scholar] [CrossRef]
- Wang, K.; Meng, Q.; Zhang, Y.; Wei, Z.; Miao, M. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 2013, 25, 1494–1498. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Cai, X.; Wu, H.; Lv, Z.; Hou, S.; Peng, M.; Yu, X.; Zou, D. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 2012, 24, 5713–5718. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, Y.; Zhong, Q.; Hu, Q.; Hu, B.; Wang, Z.L.; Zhou, J. Fiber-based generator for wearable electronics and mobile medication. ACS Nano 2014, 8, 6273–6280. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, R.; Sun, J.; Gao, L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371. [Google Scholar] [CrossRef]
- Seyedin, S.; Razal, J.M.; Innis, P.C.; Jeiranikhameneh, A.; Beirne, S.; Wallace, G.G. Knitted strain sensor textiles of highly conductive all-polymeric fibers. ACS Appl. Mater. Interfaces 2015, 7, 21150–21158. [Google Scholar] [CrossRef]
- Liu, M.; Pu, X.; Jiang, C.; Liu, T.; Huang, X.; Chen, L.; Du, C.; Sun, J.; Hu, W.; Wang, Z.L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017, 29, 1703700. [Google Scholar] [CrossRef]
- Ryu, S.; Lee, P.; Chou, J.B.; Xu, R.; Zhao, R.; Hart, A.J.; Kim, S.G. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 2015, 9, 5929–5936. [Google Scholar] [CrossRef]
- Shen, L.; Fang, D.; Tang, Y.; Tong, X. Research status and development trend of intelligent clothing materials. Shanghai Text. Sci. Technol. 2016, 44, 36. [Google Scholar]
- Peng, Y.; Gao, W.; Sun, F. Design of wool yarn artificial muscles of double-helix structure and application of moisture-sensing smart textiles. J. Xi’an Polytech. Univ. 2022, 36, 8–13. [Google Scholar]
- Zhou, H.; Zhu, X.; Zhang, X. Design of intelligent and comfortable-shaping orthopedic garments. Shanghai Text. Sci. Technol. 2022, 50, 49–52. [Google Scholar]
- Wang, J.; Deng, H.; Liu, B.; Hu, A.; Liang, J.; Fan, L.; Zheng, X.; Wang, T.; Lei, J. Systematic Evaluation of Research Progress on Natural Language. J. Med. Internet Res. 2020, 22, e16816. [Google Scholar] [CrossRef]
- Vervust, T.; Buyle, G.; Bossuyt, F.; Vanfleteren, J. Integration of stretchable and washable electronic modules for smart textile applications. J. Text. Inst. 2012, 103, 1127–1138. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, B.; Sun, J. Application of functional textile material innovation to intelligent clothing development. J. Xi’an Polytech. Univ. 2019, 33, 129–135. [Google Scholar]
- Sun, J.; Huang, Y.; Fu, C.; Wang, Z.; Huang, Y.; Zhu, M.; Zhi, C.; Hu, H. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 2016, 27, 230–237. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X.; Liu, B.; Chen, D.; Tong, Y.; Shen, G. Flexible Energy-Storage Devices: Design Consideration and Recent Progress. Adv. Mater. 2014, 26, 4763–4782. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, C.; Wang, Y.; Lan, J.; Chen, S. Research progress of MXene-modified textiles in the field of flexible strain sensing. Basic Sci. J. Text. Univ. 2022, 35, 48–60. [Google Scholar]
- Xu, Z.; Zhao, Y.; Wang, H.; Zhou, H.; Qin, C.; Wang, X.; Lin, T. Fluorine-Free Superhydrophobic Coatings with pH-Induced Wettability Transition for Controllable Oil-Water Separation. ACS Appl. Mater. Interfaces 2016, 8, 5661–5667. [Google Scholar] [CrossRef]
- Farooq, M.; Iqbal, T.; Vazquez, P.; Farid, N.; Thampi, S.; Wijns, W.; Shahzad, A. Thin-Film Flexible Wireless Pressure Sensor for Continuous Pressure Monitoring in Medical Applications. Sensors 2020, 20, 6653. [Google Scholar] [CrossRef]
- Afroj, S.; Tan, S.; Abdelkader, A.M.; Novoselov, K.S.; Karim, N. Highly Conductive, Scalable, and Machine Washable Graphene-Based E-Textiles for Multifunctional Wearable Electronic Applications. Adv. Funct. Mater. 2020, 30, 2000293. [Google Scholar] [CrossRef]
- Qi, H.; Lu, J.; Lu, Z. Status and development trend of women’s health smart wearable devices. Knitt. Ind. 2020, 1, 55–58. [Google Scholar]
- Wang, A.; Xu, J.; Ma, D. Equipment sportswear: New category development and product design. Knitt. Ind. 2021, 9, 61–65. [Google Scholar]
Ranking | Number of Essay | Centrality | Ranking | Number of Essay |
---|---|---|---|---|
Country | Number | Country | Value | |
1 | China | 909 | United States | 0.24 |
2 | United States | 338 | China | 0.21 |
3 | Korea | 246 | Italy | 0.19 |
4 | England | 187 | Germany | 0.15 |
5 | Australia | 105 | England | 0.12 |
WOS Database | ||
---|---|---|
Scientific Research Institution | Frequency | |
1 | Donghua University | 143 |
2 | Chinese Academy of Sciences | 124 |
3 | Hong Kong Polytechnic University | 86 |
4 | Jiangnan University | 74 |
5 | Qingdao University | 67 |
6 | University of Boras | 53 |
7 | Soochow University | 46 |
8 | University of Chinese Academy of Sciences | 45 |
9 | University of Manchester | 40 |
10 | Georgia Institute of Technology | 31 |
WOS Database | ||
---|---|---|
Volume of Literature/Articles | Author Group | Number of People |
35 | Li, Yi, Liu Zekun, Zheng Zijian et al. | 43 |
23 | Wang, Zhong Lin, Dong Kai, Zhang Yang, Liu Mengmeng, Hu Weiguo et al. | 48 |
20 | Qu, Lijun, Tian, Mingwei, Zhang Xueji, Zhao Hongtao, Liu Xuqing et al. | 25 |
18 | Chen, Jun, Chen Guorui, Zhou Yihao, Yang Jin, Liu Jun, Zhao Xun et al. | 33 |
15 | Zheng, Zijian, Gao Yuan, Huang Qiyao, Hu Hong, Xie Chuan et al. | 33 |
14 | Zhu Meifang, Chen Yanhua, Yang Shenyuan, Ramakrishna Seeram et al. | 29 |
Journal | Count | IF (2021) | Quartile in Category (2021) | H-Index |
---|---|---|---|---|
ADV MATER | 1332 | 4.18 | Q1 | 447 |
ACS APPL MATER INTER | 1195 | 1.48 | Q2 | 169 |
ADV FUNCT MATER | 1058 | 2.66 | Q1 | 269 |
ACS NANO | 969 | 2.51 | Q1 | 310 |
NAT COMMUN | 761 | 3.13 | Q1 | 248 |
SCIENCE | 743 | 10.15 | Q1 | 1058 |
SENSORS-BASEL | 712 | 0.9 | Q3 | 132 |
NANO LETT | 672 | 1.95 | Q1 | 430 |
SCI REP-UK | 670 | 1.05 | Q3 | 149 |
TEXT RES J | 661 | 0.64 | Q3 | 74 |
Rank | Title | References | Author | Year | Citation |
---|---|---|---|---|---|
1 | Wearable Electronics and Smart Textiles: A Critical Review | [20] | Stoppa M | 2014 | 143 |
2 | Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications | [21] | Zeng W | 2014 | 77 |
3 | Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence | [24] | Dong K | 2020 | 73 |
4 | Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications | [22] | Heo JS | 2018 | 70 |
5 | Smart Electronic Textiles | [25] | Weng W | 2016 | 67 |
6 | Smart Textile-Integrated Microelectronic Systems for Wearable Applications | [26] | Shi JD | 2020 | 67 |
7 | Wearable Self-Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators | [27] | Pu X | 2016 | 56 |
8 | Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics | [28] | Lee J | 2015 | 56 |
9 | Micro-cable structured textile for simultaneously harvesting solar and mechanical energy | [29] | Chen J | 2016 | 52 |
10 | Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review | [23] | Amjadi M | 2016 | 52 |
References | Cited References | Year | Strength | Begin | End | 2012–2022 |
---|---|---|---|---|---|---|
Hu LB, 2010, NANO LETT, V10, P708, | [35] | 2010 | 13.37 | 2012 | 2015 | ••••○○○○○○○ |
Cherenack K, 2012, J APPL PHYS, V112, P0 | [36] | 2012 | 18.28 | 2014 | 2017 | ○○••••○○○○○ |
Meng YN, 2013, ADV MATER, V25, P2326 | [37] | 2013 | 12.1 | 2014 | 2018 | ○○•••••○○○○ |
Lee YH, 2013, NANO LETT, V13, P5753 | [38] | 2013 | 9.05 | 2014 | 2018 | ○○○•••••○○○ |
Zeng W, 2014, ADV MATER, V26, P5310 | [21] | 2014 | 25.01 | 2015 | 2019 | ○○○•••••○○○ |
Castano LM, 2014, SMART MATER STRUCT, V23, P0 | [39] | 2014 | 19.37 | 2015 | 2019 | ○○○•••••○○○ |
Kou L, 2014, NAT COMMUN, V5, P0 | [32] | 2014 | 12.82 | 2015 | 2019 | ○○○•••••○○○ |
Lee JA, 2013, NAT COMMUN, V4, P0 | [40] | 2013 | 10.68 | 2015 | 2018 | ○○○••••○○○○ |
Wang K, 2013, ADV MATER, V25, P1494 | [41] | 2013 | 8.44 | 2015 | 2018 | ○○○••••○○○○ |
Fu YP, 2012, ADV MATER, V24, P5713 | [42] | 2012 | 7.83 | 2015 | 2016 | ○○○••○○○○○○ |
Zhong JW, 2014, ACS NANO, V8, P6273 | [43] | 2014 | 7.66 | 2015 | 2017 | ○○○•••○○○○○ |
Stoppa M, 2014, SENSORS-BASEL, V14, P11957 | [20] | 2014 | 48.36 | 2016 | 2019 | ○○○○••••○○○ |
Lee J, 2015, ADV MATER, V27, P2433 | [28] | 2015 | 13.92 | 2017 | 2020 | ○○○○○••••○○ |
Amjadi M, 2014, ACS NANO, V8, P5154 | [44] | 2014 | 9.49 | 2017 | 2019 | ○○○○○•••○○○ |
Wen Z, 2016, SCI ADV, V2, P0 | [30] | 2016 | 8.57 | 2017 | 2019 | ○○○○○•••○○○ |
Pu X, 2016, ADV MATER, V28, P98 | [27] | 2016 | 8.53 | 2017 | 2019 | ○○○○○•••○○○ |
Weng W, 2016, ANGEW CHEM INT EDIT, V55, P6140 | [25] | 2016 | 8.2 | 2017 | 2019 | ○○○○○•••○○○ |
Cheng Y, 2015, ADV MATER, V27, P7365 | [45] | 2015 | 9.37 | 2018 | 2020 | ○○○○○○•••○○ |
Seyedin S, 2015, ACSAPPL MATER INTER, V7, P21150 | [46] | 2015 | 8.15 | 2018 | 2020 | ○○○○○○•••○○ |
Ren JS, 2017, CARBON, V111, P622 | [31] | 2017 | 7.48 | 2018 | 2019 | ○○○○○○••○○○ |
Liu MM, 2017, ADV MATER, V29, P0 | [47] | 2017 | 8.83 | 2019 | 2020 | ○○○○○○○••○○ |
Ryu S, 2015, ACS NANO, V9, P5929 | [48] | 2015 | 8.1 | 2019 | 2020 | ○○○○○○○••○○ |
Hsu PC, 2016, SCIENCE, V353, P1019 | [33] | 2016 | 11.2 | 2020 | 2022 | ○○○○○○○○••• |
Zhao ZZ, 2016, ADV MATER, V28, P10267 | [34] | 2016 | 7.75 | 2020 | 2022 | ○○○○○○○○••• |
Shi JD, 2020, ADV MATER, V32, P0 | [26] | 2020 | 7.69 | 2020 | 2022 | ○○○○○○○○••• |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Liu, C.; Zhang, J.; Wang, A. Systematic Evaluation of Research Progress in the Textile Field over the Past 10 Years: Bibliometric Study on Smart Textiles and Clothing. Processes 2023, 11, 2797. https://doi.org/10.3390/pr11092797
Wang T, Liu C, Zhang J, Wang A. Systematic Evaluation of Research Progress in the Textile Field over the Past 10 Years: Bibliometric Study on Smart Textiles and Clothing. Processes. 2023; 11(9):2797. https://doi.org/10.3390/pr11092797
Chicago/Turabian StyleWang, Ting, Changqing Liu, Jun Zhang, and Aosi Wang. 2023. "Systematic Evaluation of Research Progress in the Textile Field over the Past 10 Years: Bibliometric Study on Smart Textiles and Clothing" Processes 11, no. 9: 2797. https://doi.org/10.3390/pr11092797
APA StyleWang, T., Liu, C., Zhang, J., & Wang, A. (2023). Systematic Evaluation of Research Progress in the Textile Field over the Past 10 Years: Bibliometric Study on Smart Textiles and Clothing. Processes, 11(9), 2797. https://doi.org/10.3390/pr11092797