DRAG: A Novel Method for Automatic Geological Boundary Recognition in Shale Strata Using Multi-Well Log Curves
Abstract
:1. Introduction
2. The Proposed Method
2.1. Data Preprocessing
2.2. Sample Balance Treatment
2.3. Layering Recognition
3. Result Calibration
4. Result and Discussion
4.1. Targeted Stratigraphic Formations and Sub-Divisions
4.2. Experimental Data
4.3. Experimental Results and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
DRAG | a novel deep belief forest-based automatic layering recognition method for logging curves |
DBF | Deep belief forest |
PCA | Principal component analysis |
GAN | Generative adversarial network |
FCNN | Fully convolutional neural network |
RNN | Recurrent neural network |
LSTM | Long short-term memory |
C-LSTM | Convolutional long short-term memory |
GRU | Gated recurrent unit neural networks |
BPNN | Backpropagation neural network |
The normalized score of the c principal component of the i sample | |
The score of the c principal component of sample i | |
The maximum score of the c principal component | |
The minimum score of the c principal component | |
The proportion of the c principal component in sample i | |
The information entropy of the c principal component | |
The weight of the c principal component | |
The weight of the f principal component | |
The comprehensive score of principal components based on information entropy | |
The amplitude | |
The frequency | |
The actual log curve | |
The generated log curve | |
Predicted confidence threshold of layer t | |
The cross-validation error rate of layer t | |
α | Hyperparameter for indicating the cross-verification error rate |
The prediction confidence of of the sample | |
The classification category of the stratum | |
The final classification result | |
Yn | The stratigraphic classification result of the surrounding well |
GR | Gamma ray |
AC | Acoustic transit time |
DEN | Bulk density |
Rt | Deep resistivity |
MAE | Mean absolute error |
RMSE | Root mean square error |
R2 | Coefficient of determination |
References
- Karimi, A.M.; Sadeghnejad, S.; Rezghi, M. Well-to-well correlation and identifying lithological boundaries by principal component analysis of well-logs. Comput. Geosci. 2021, 157, 104942. [Google Scholar] [CrossRef]
- Zaitouny, A.; Small, M.; Hill, J.; Emelyanova, I.; Ben Clennell, M. Fast automatic detection of geological boundaries from multivariate log data using recurrence. Comput. Geosci. 2020, 135, 104362. [Google Scholar] [CrossRef]
- Partovi, S.M.A.; Sadeghnejad, S. Geological boundary detection from well-logs: An efficient approach based on pattern recognition. J. Pet. Sci. Eng. 2019, 176, 444–455. [Google Scholar] [CrossRef]
- Behdad, A. A step toward the practical stratigraphic automatic correlation of well logs using continuous wavelet transform and dynamic time warping technique. J. Appl. Geophys. 2019, 167, 26–32. [Google Scholar] [CrossRef]
- Liu, L.-L.; Wang, Y. Quantification of stratigraphic boundary uncertainty from limited boreholes and its effect on slope stability analysis. Eng. Geol. 2022, 306, 106770. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, F.; Liu, J.; Wang, X.; Chen, Q.; Zhao, L.; Tian, L.; Wang, Y. A method for identifying the thin layer using the wavelet transform of density logging data. J. Pet. Sci. Eng. 2018, 160, 433–441. [Google Scholar] [CrossRef]
- Dobróka, M.; Szabó, N.P. Interval inversion of well-logging data for automatic determination of formation boundaries by using a float-encoded genetic algorithm. J. Pet. Sci. Eng. 2012, 86–87, 144–152. [Google Scholar] [CrossRef]
- Omeragic, D.; Polyakov, V.; Shetty, S.; Brot, B.; Habashy, T.; Mahesh, A.; Friedel, T.; Denichou, J. Integration of well logs and reservoir geomodels for formation evaluation in high-angle and horizontal wells. In Proceedings of the SPWLA 52nd Annual Logging Sym-Posium, Colorado Springs, CO, USA, 14–18 May 2011; OnePetro: Richardson, TX, USA, 2011. [Google Scholar]
- Maiti, S.; Tiwari, R. Automatic detection of lithologic boundaries using the Walsh transform: A case study from the KTB borehole. Comput. Geosci. 2005, 31, 949–955. [Google Scholar] [CrossRef]
- Luthi, S.M.; Bryant, I.D. Well-log correlation using a back-propagation neural network. J. Int. Assoc. Math. Geol. 1997, 29, 413–425. [Google Scholar] [CrossRef]
- Delfiner, P.; Peyret, O.; Serra, O. Automatic determination of lithology from well logs. SPE Form. Eval. 1987, 2, 303–310. [Google Scholar] [CrossRef]
- Shaw, B.R.; Cubitt, J.M. Stratigraphic correlation of well logs: An automated approach. In Geomathematical and Petro-Physical Studies in Sedimentology; Elsevier: Amsterdam, The Netherlands, 1979; pp. 127–148. [Google Scholar]
- Silversides, K.L.; Melkumyan, A.; Wyman, D.A.; Hatherly, P.J.; Nettleton, E. Detection of geological structure using gamma logs for autonomous mining. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1577–1582. [Google Scholar] [CrossRef]
- Reading, A.M.; Gallagher, K. Transdimensional change-point modeling as a tool to investigate uncertainty in applied ge-ophysical inference: An example using borehole geophysical logs. Geophysics 2013, 78, WB89–WB99. [Google Scholar] [CrossRef]
- Sen, D.; Texas A&M University; Ong, C.; Kainkaryam, S.; Sharma, A.; Houston, T. Automatic detection of anomalous density measurements due to wellbore cave-in. Petrophysics 2020, 61, 434–449. [Google Scholar] [CrossRef]
- Gill, D.; Shomrony, A.; Fligelman, H. Numerical zonation of log suites and logfacies recognition by multivariate clustering. Aapg. Bull. 1993, 77, 1781–1791. [Google Scholar]
- Smith, J.H. A method for calculating pseudo sonics from e-logs in a clastic geologic setting. Gcags Trans. 2007, 57, 675–678. [Google Scholar]
- Merembayev, T.; Yunussov, R.; Yedilkhan, A. Machine learning algorithms for classification geology data from well logging. In Proceedings of the 2018 14th International Conference on Electronics Computer and Computation (ICECCO), Kaskelen, Kazakhstan, 29 November–1 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 206–212. [Google Scholar]
- Partovi, S.M.A.; Sadeghnejad, S. Reservoir rock characterization using wavelet transform and fractal dimension. Iran. J. Chem. Chem. Eng. 2018, 37, 223–233. [Google Scholar]
- Belozerov, B.; Bukhanov, N.; Egorov, D.; Zakirov, A.; Osmonalieva, O.; Golitsyna, M.; Reshytko, A.; Semenikhin, A.; Shindin, E.; Lipets, V. Automatic well log analysis across priobskoe field using machine learning methods. In Proceedings of the SPE Russian Petroleum Technology Conference, Moscow, Russia, 15–17 October 2018; OnePetro: Richardson, TX, USA, 2018. [Google Scholar]
- Partovi, S.M.A.; Sadeghnejad, S. Fractal parameters and well-logs investigation using automated well-to-well correlation. Comput. Geosci. 2017, 103, 59–69. [Google Scholar] [CrossRef]
- Gulbrandsen, M.L.; Cordua, K.S.; Bach, T.; Hansen, T.M. Smart Interpretation–automatic geological interpretations based on supervised statistical models. Comput. Geosci. 2017, 21, 427–440. [Google Scholar] [CrossRef]
- Gonzalez, A.; Kanyan, L.; Heidari, Z. Integrated multi-physics workflow for automatic rock classification and formation evaluation using multi-scale image analysis and conventional well logs. In Proceedings of the SPWLA 60th Annual Logging Symposium, The Woodlands, TX, USA, 15–19 June 2019. [Google Scholar] [CrossRef]
- Loginov, G.; Petrov, A. Automatic detection of geoelectric boundaries according to lateral logging sounding data by applying a deep convolutional neural network. Russ. Geol. Geophys. 2019, 60, 1319–1325. [Google Scholar] [CrossRef]
- Lapkovsky, V.; Istomin, A.; Kontorovich, V.; Berdov, V. Correlation of well logs as a multidimensional optimization problem. Russ. Geol. Geophys. 2015, 56, 487–492. [Google Scholar] [CrossRef]
- Gardner, G.H.F.; Gardner, L.W.; Gregory, A.R. Formation velocity and density-the diagnostic basics for stratigraphic traps. Geophysics 1974, 39, 770–780. [Google Scholar] [CrossRef]
- Castagna, J.P.; Batzle, M.L.; Eastwood, R.L. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 1985, 50, 571–581. [Google Scholar] [CrossRef]
- Zhang, D.; Yuntian, C.; Jin, M. Synthetic well logs generation via Recurrent Neural Networks. Pet. Explor. Dev. 2018, 45, 629–639. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, J.; Wang, X.; Wang, J.; Liao, W. Acoustic log reconstruction based on bidirectional Gated Recurrent Unit (GRU) neural network. Prog. Geophys. 2022, 37, 357–366. [Google Scholar]
- Wood, D.A. Carbonate/siliciclastic lithofacies classification aided by well-log derivative, volatility and sequence boundary attributes combined with machine learning. Earth Sci. Inform. 2022, 15, 1699–1721. [Google Scholar] [CrossRef]
- Anvari, K.; Mousavi, A.; Sayadi, A.R.; Sellers, E.; Salmi, E.F. Automatic detection of rock boundaries using a hybrid recurrence quantification analysis and machine learning techniques. Bull. Eng. Geol. Environ. 2022, 81, 398. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, C.; Li, X. Machine learning of geological details from borehole logs for development of high-resolution subsurface geological cross-section and geotechnical analysis. Georisk: Assess. Manag. Risk Eng. Syst. Geohazards 2021, 16, 2–20. [Google Scholar] [CrossRef]
- Tözün, K.A.; Özyavaş, A. Automatic detection of geological lineaments in central Turkey based on test image analysis using satellite data. Adv. Space Res. 2022, 69, 3283–3300. [Google Scholar] [CrossRef]
- Shi, Z.; Zhou, T.; Guo, W.; Liang, P.; Cheng, F. Quantitative Paleogeographic Mapping and Sedimentary Microfacies Divi-sion in a Deep-water Marine Shale Shelf: Case study of Wufeng-Longmaxi shale, southern Sichuan Basin, China. Acta Sedimentol. Sin. 2022, 40, 1728–1744. [Google Scholar]
- Hongyan, W.; Zhensheng, S.; Shasha, S.; Leifu, Z.; Aarnes, I. Characterization and genesis of deep shale reservoirs in the first Member of the Silurian Longmaxi Formation in southern Sichuan Basin and its periphery. Oil Gas Geol. 2021, 42, 66–75. [Google Scholar]
- Shi, Z.; Dong, D.; Wang, H.; Sun, S.; Wu, J. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: A case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China. Pet. Explor. Dev. 2020, 47, 888–900. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Z.; Zhao, Q.; Liu, D.; Sun, S.; Guo, W.; Liang, F.; Lin, C.; Wang, X. Stratigraphic framework of the Wufeng-Longmaxi shale in and around the Sichuan Basin, China: Implications for targeting shale gas. Energy Geosci. 2020, 1, 124–133. [Google Scholar] [CrossRef]
- Girolami, M.; Mischak, H.; Krebs, R. Analysis of complex, multidimensional datasets. Drug Discov. Today Technol. 2006, 3, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Karamizadeh, S.; Abdullah, S.M.; Manaf, A.A.; Zamani, M.; Hooman, A. An overview of principal component analysis. J. Signal Inf. Process. 2013, 4, 173. [Google Scholar] [CrossRef]
- Gonog, L.; Zhou, Y. A review: Generative adversarial networks. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 505–510. [Google Scholar]
- Aggarwal, A.; Mittal, M.; Battineni, G. Generative adversarial network: An overview of theory and applications. Int. J. Inf. Manag. Data Insights 2021, 1, 100004. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. arXiv 2014, arXiv:1406.2661. [Google Scholar]
- Chen, K.; Chen, H.; Zhou, C.; Huang, Y.; Qi, X.; Shen, R.; Liu, F.; Zuo, M.; Zou, X.; Wang, J.; et al. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Res. 2019, 171, 115454. [Google Scholar] [CrossRef]
- Shewalkar, A.; Nyavanandi, D.; Ludwig, S.A. Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU. J. Artif. Intell. Soft Comput. Res. 2019, 9, 235–245. [Google Scholar] [CrossRef]
- Rajeswari, S.; Suthendran, K. C5.0: Advanced Decision Tree (ADT) classification model for agricultural data analysis on cloud. Comput. Electron. Agric. 2019, 156, 530–539. [Google Scholar] [CrossRef]
- Zhou, Z.-H.; Feng, J. Deep Forest: Towards an Alternative to Deep Neural Networks. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, VIC, Australia, 19–25 August 2017; pp. 3553–3559. [Google Scholar]
- Canziani, A.; Paszke, A.; Culurciello, E. An analysis of deep neural network models for practical applications. arXiv 2016, arXiv:1605.07678 2016. [Google Scholar]
- Loh, W.-Y.; Eltinge, J.; Cho, M.J.; Li, Y. Classification and regression trees and forests for incomplete data from sample surveys. Stat. Sin. 2018, 29, 431–453. [Google Scholar] [CrossRef]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 7354–7363. [Google Scholar]
- Fedus, W.; Goodfellow, I.; Dai, A.M. Maskgan: Better text generation via filling in the_. arXiv 2018, arXiv:1801.07736 2018. [Google Scholar]
- Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training gans. Adv. Neural Inf. Process. Syst. 2016, 29. [Google Scholar]
- Goodfellow, I.J. On distinguishability criteria for estimating generative models. arXiv 2014, arXiv:1412.6515 2014. [Google Scholar]
- Zhang, C.; Zuo, R. Recognition of multivariate geochemical anomalies associated with mineralization using an improved generative adversarial network. Ore Geol. Rev. 2021, 136, 104264. [Google Scholar] [CrossRef]
- Liu, M.; Li, W.; Jervis, M.; Nivlet, P. 3D seismic facies classification using convolutional neural network and semi-supervised generative adversarial network. In SEG Technical Program Expanded Abstracts 2019; Society of Exploration Geophysicists: Houston, TX, USA, 2019. [Google Scholar] [CrossRef]
- Fu, R.; Chen, J.; Zeng, S.; Zhuang, Y.; Sudjianto, A. Time Series Simulation by Conditional Generative Adversarial Net. arXiv 2019, arXiv:1904.11419. [Google Scholar] [CrossRef]
- Jo, H.; Santos, J.E.; Pyrcz, M.J. Rule-Based Models with Generative Adversarial Networks: A Deepwater Lobe. In Proceedings of the Deep Learning Example, 2019 AAPG Annual Convention and Exhibition, San Antonio, TX, USA, 15–20 September 2019. [Google Scholar]
- Nakayama, J.Y.; Ho, J.; Cartwright, E.; Simpson, R.; Hertzberg, V.S. Predictors of progression through the cascade of care to a cure for hepatitis C patients using decision trees and random forests. Comput. Biol. Med. 2021, 134, 104461. [Google Scholar] [CrossRef]
- Ko, B.C.; Kim, S.; Jung, M. Energy-efficient pupil tracking method and device based on simplification of cascade regression forest. Sensors 2021, 20, 5141. [Google Scholar]
- Johnson, S.L.; Henshaw, D.; Downing, G.; Wondzell, S.; Schulze, M.; Kennedy, A.; Cohn, G.; Schmidt, S.A.; Jones, J.A. Long-term hydrology and aquatic biogeochemistry data from H. J. Andrews Experimental Forest, Cascade Mountains, Oregon. Hydrol Process 2021, 35, e14187. [Google Scholar]
- Zheng, L.; Bao, Q.; Weng, S.; Tao, J.; Zhang, D.; Huang, L.; Zhao, J. Determination of adulteration in wheat flour using multi-grained cascade forest-related models coupled with the fusion information of hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 270, 120813. [Google Scholar] [CrossRef]
- Shao, M.; Zou, Y. Multi-spectral cloud detection based on a multi-dimensional and multi-grained dense cascade forest. J. Appl. Remote Sens. 2021, 15, 028507. [Google Scholar] [CrossRef]
- Li, D.; Liu, Z.; Armaghani, D.J.; Xiao, P.; Zhou, J. Novel Ensemble Tree Solution for Rockburst Prediction Using Deep Forest. Mathematics 2022, 10, 787. [Google Scholar] [CrossRef]
- Runxuan, W.; Croft, R.A.C.; Patrick, S. Deep forest: Neural network reconstruction of intergalactic medium temperature. Mon. Not. R. Astron. Soc. 2022, 515, 1568–1579. [Google Scholar]
- Zhang, J.; Song, H. Multi-Feature Fusion for Weak Target Detection on Sea-Surface Based on FAR Controllable Deep Forest Model. Remote Sens. 2021, 13, 812. [Google Scholar] [CrossRef]
Well | Layer | Artificial Geological Boundary Identified Results | Proposed Method | GRU | BPNN | Random Forest | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Top Depth (m) | Bottom Depth (m) | Top Depth (m) | Bottom Depth (m) | Top Depth (m) | Bottom Depth (m) | Top Depth (m) | Bottom Depth (m) | Top Depth (m) | Bottom Depth (m) | ||
Well A | L14 | 1273.471 | 1302.5 | 1274.058 | 1302.922 | 1273.956 | 1303.367 | 1279.607 | 1303.051 | 1274.081 | 1306.388 |
Well A | L13 | 1302.5 | 1311.652 | 1302.922 | 1311.677 | 1303.367 | 1312.749 | 1303.051 | 1305.885 | 1306.388 | 1313.845 |
Well A | L12 | 1311.652 | 1318.332 | 1311.677 | 1318.997 | 1312.749 | 1321.884 | 1305.885 | 1320.249 | 1313.845 | 1322.706 |
Well A | L11 | 1318.332 | 1320.368 | 1318.997 | 1320.597 | 1321.884 | 1322.138 | 1320.249 | 1322.236 | 1322.706 | 1326.11 |
Well A | W1 | 1320.368 | 1323 | 1320.597 | 1322.555 | 1322.138 | 1328.728 | 1322.236 | 1325.984 | 1326.11 | 1327.87 |
Well B | L14 | 2290.708 | 2321.879 | 2291.004 | 2322.636 | 2290.476 | 2322.676 | 2293.19 | 2325.156 | 2299.947 | 2316.072 |
Well B | L13 | 2321.879 | 2339.537 | 2322.636 | 2339.493 | 2322.676 | 2341.61 | 2325.156 | 2336.799 | 2316.072 | 2345.462 |
Well B | L12 | 2339.537 | 2345.506 | 2339.493 | 2345.201 | 2341.61 | 2343.233 | 2336.799 | 2347.478 | 2345.462 | 2346.248 |
Well B | L11 | 2345.506 | 2348.477 | 2345.201 | 2348.577 | 2343.233 | 2350.572 | 2347.478 | 2344.549 | 2346.248 | 2343.577 |
Well B | W1 | 2348.477 | 2357 | 2348.577 | 2356.591 | 2350.572 | 2354.883 | 2344.549 | 2361.742 | 2343.577 | 2357.78 |
Well C | L14 | 2906.318 | 2940.176 | 2906.81 | 2940.542 | 2908.149 | 2941.566 | 2908.784 | 2944.714 | 2907.024 | 2936.386 |
Well C | L13 | 2940.176 | 2954.237 | 2940.542 | 2953.414 | 2941.566 | 2952.814 | 2944.714 | 2951.976 | 2936.386 | 2957.748 |
Well C | L12 | 2954.237 | 2958.511 | 2953.414 | 2958.871 | 2952.814 | 2958.486 | 2951.976 | 2959.955 | 2957.748 | 2960.499 |
Well C | L11 | 2958.511 | 2959.96 | 2958.871 | 2959.993 | 2958.486 | 2960.405 | 2959.955 | 2964.13 | 2960.499 | 2962.396 |
Well C | W1 | 2959.96 | 2962.808 | 2959.993 | 2961.869 | 2960.405 | 2964.599 | 2964.13 | 2967.738 | 2962.396 | 2965.122 |
Well D | L14 | 2038.45 | 2073.933 | 2038.762 | 2072.952 | 2037.977 | 2069.651 | 2029.618 | 2071.743 | 2028.379 | 2074.321 |
Well D | L13 | 2073.933 | 2092.152 | 2072.952 | 2092.688 | 2069.651 | 2090.59 | 2071.743 | 2094.587 | 2074.321 | 2095.42 |
Well D | L12 | 2092.152 | 2101.53 | 2092.688 | 2100.649 | 2090.59 | 2100.941 | 2094.587 | 2102.906 | 2095.42 | 2102.095 |
Well D | L11 | 2101.53 | 2107.016 | 2100.649 | 2106.53 | 2100.941 | 2103.031 | 2102.906 | 2110.992 | 2102.095 | 2111.828 |
Well D | W1 | 2107.016 | 2111 | 2106.53 | 2111.796 | 2103.031 | 2113.375 | 2110.992 | 2109.787 | 2111.828 | 2108.992 |
Evaluation Index | Proposed Method | GRU | BPNN | Random Forest |
---|---|---|---|---|
MAE | 6.221 | 8.876 | 10.241 | 10.221 |
RMSE | 8.944 | 11.345 | 14.214 | 14.341 |
R2 | 0.932 | 0.911 | 0.834 | 0.831 |
Well | Layer | Artificial Geological Boundary Identified Results | Geological Boundary Identified by 1 Well Correlations after Deep Belief Forest Analysis | Geological Boundary Identified by 2 Well Correlations after Deep Belief Forest Analysis | Geological Boundary Identified by 3 Well Correlations after Deep Belief Forest Analysis | ||||
---|---|---|---|---|---|---|---|---|---|
Top Depth (m) | Bottom Depth (m) | Top Depth (m) | Bottom Depth (m) | Top Depth (m) | Bottom Depth (m) | Top Depth (m) | Bottom Depth (m) | ||
Well A | L14 | 1273.471 | 1302.5 | 1281.022 | 1303.228 | 1274.81 | 1301.915 | 1274.058 | 1302.922 |
Well A | L13 | 1302.5 | 1311.652 | 1303.228 | 1313.349 | 1301.915 | 1314.614 | 1302.922 | 1311.677 |
Well A | L12 | 1311.652 | 1318.332 | 1313.349 | 1316.012 | 1314.614 | 1322.201 | 1311.677 | 1318.997 |
Well A | L11 | 1318.332 | 1320.368 | 1316.012 | 1321.495 | 1322.201 | 1323.094 | 1318.997 | 1320.597 |
Well A | W1 | 1320.368 | 1323 | 1321.495 | 1323.728 | 1323.094 | 1325.261 | 1320.597 | 1322.555 |
Well B | L14 | 2290.708 | 2321.879 | 2293.171 | 2320.868 | 2292.322 | 2322.993 | 2291.004 | 2322.636 |
Well B | L13 | 2321.879 | 2339.537 | 2320.868 | 2342.894 | 2322.993 | 2342.893 | 2322.636 | 2339.493 |
Well B | L12 | 2339.537 | 2345.506 | 2342.894 | 2348.412 | 2342.893 | 2345.719 | 2339.493 | 2345.201 |
Well B | L11 | 2345.506 | 2348.477 | 2348.412 | 2353.043 | 2345.719 | 2346.372 | 2345.201 | 2348.577 |
Well B | W1 | 2348.477 | 2357 | 2353.043 | 2355.871 | 2346.372 | 2357.055 | 2348.577 | 2356.591 |
Well C | L14 | 2906.318 | 2940.176 | 2898.726 | 2940.402 | 2905.641 | 2940.223 | 2906.81 | 2940.542 |
Well C | L13 | 2940.176 | 2954.237 | 2940.402 | 2952.837 | 2940.223 | 2956.697 | 2940.542 | 2953.414 |
Well C | L12 | 2954.237 | 2958.511 | 2952.837 | 2962.61 | 2956.697 | 2957.353 | 2953.414 | 2958.871 |
Well C | L11 | 2958.511 | 2959.96 | 2962.61 | 2957.152 | 2957.353 | 2963.454 | 2958.871 | 2959.993 |
Well C | W1 | 2959.96 | 2962.808 | 2957.152 | 2965.154 | 2963.454 | 2965.094 | 2959.993 | 2961.869 |
Well D | L14 | 2038.45 | 2073.933 | 2038.838 | 2073.495 | 2039.604 | 2071.56 | 2038.762 | 2072.952 |
Well D | L13 | 2073.933 | 2092.152 | 2073.495 | 2094.361 | 2071.56 | 2094.322 | 2072.952 | 2092.688 |
Well D | L12 | 2092.152 | 2101.53 | 2094.361 | 2098.649 | 2094.322 | 2102.831 | 2092.688 | 2100.649 |
Well D | L11 | 2101.53 | 2107.016 | 2098.649 | 2108.308 | 2102.831 | 2103.168 | 2100.649 | 2106.53 |
Well D | W1 | 2107.016 | 2111 | 2108.308 | 2109.049 | 2103.168 | 2111.777 | 2106.53 | 2111.796 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Zhu, Q.; Zhu, H.; Zhao, Q.; Shi, Z.; Zhao, S.; Zhang, C.; Wang, S. DRAG: A Novel Method for Automatic Geological Boundary Recognition in Shale Strata Using Multi-Well Log Curves. Processes 2023, 11, 2998. https://doi.org/10.3390/pr11102998
Zhou T, Zhu Q, Zhu H, Zhao Q, Shi Z, Zhao S, Zhang C, Wang S. DRAG: A Novel Method for Automatic Geological Boundary Recognition in Shale Strata Using Multi-Well Log Curves. Processes. 2023; 11(10):2998. https://doi.org/10.3390/pr11102998
Chicago/Turabian StyleZhou, Tianqi, Qingzhong Zhu, Hangyi Zhu, Qun Zhao, Zhensheng Shi, Shengxian Zhao, Chenglin Zhang, and Shanyu Wang. 2023. "DRAG: A Novel Method for Automatic Geological Boundary Recognition in Shale Strata Using Multi-Well Log Curves" Processes 11, no. 10: 2998. https://doi.org/10.3390/pr11102998
APA StyleZhou, T., Zhu, Q., Zhu, H., Zhao, Q., Shi, Z., Zhao, S., Zhang, C., & Wang, S. (2023). DRAG: A Novel Method for Automatic Geological Boundary Recognition in Shale Strata Using Multi-Well Log Curves. Processes, 11(10), 2998. https://doi.org/10.3390/pr11102998