Formulation and Characterization of Solid Lipid Nanoparticles Loaded with Troxerutin
Abstract
:1. Introduction
2. Methodology
2.1. Chemicals and Materials
2.2. Preparation of the TXR-SLNs
2.3. Characterization
2.3.1. Estimation of Particle Size, Polydispersity, and Zeta Potential
2.3.2. Imaging by Transmission Electron Microscopy (TEM)
2.3.3. Determination of the Entrapment Efficiency (EE)
2.3.4. Differential Scanning Calorimetry (DSC) Analysis
2.3.5. Fourier Transform Infrared (FTIR) Analysis
2.3.6. Quantification of the Drug Release from the TXR-SLNs
2.3.7. Stability Studies
3. Results
3.1. Drug Entrapment Efficiency (EE)
3.2. Measurement of Particle Size, Polydispersity Index (PDI), and Zeta Potential
3.3. Transmission Electron Microscopy (TEM) Analysis
3.4. Fourier Transform Infrared Spectroscopy (FTIR)
3.5. Differential Scanning Calorimetry (DSC)
3.6. Drug Release Study
3.7. TXR Release Kinetic Study
3.8. Stability Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697716/ (accessed on 24 September 2022). [CrossRef]
- Abbaszadeh, F.; Fakhri, S.; Khan, H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol. Res. 2020, 160, 105069. Available online: https://pubmed.ncbi.nlm.nih.gov/32652198/ (accessed on 25 September 2022). [CrossRef]
- Kozłowska, A.; Szostak-Wegierek, D. Flavonoids—Food sources and health benefits. Rocz. Panstw. Zakl. Hig. 2014, 65, 79–85. Available online: https://pubmed.ncbi.nlm.nih.gov/25272572/ (accessed on 24 September 2022). [PubMed]
- Ghorbani, A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother. 2017, 96, 305–312. Available online: https://pubmed.ncbi.nlm.nih.gov/29017142/ (accessed on 25 September 2022). [CrossRef] [PubMed]
- Mahmoud, A.M.; Hernández Bautista, R.J.; Sandhu, M.A.; Hussein, O.E. Beneficial Effects of Citrus Flavonoids on Cardiovascular and Metabolic Health. Oxidative Med. Cell. Longev. 2019, 2019, 5484138. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431442/ (accessed on 6 August 2022). [CrossRef] [PubMed]
- El-Shiekh, R.A.; Abdelmohsen, U.R.; Ashour, H.M.; Ashour, R.M. Novel Antiviral and Antibacterial Activities of Hibiscus schizopetalus. Antibiotics 2020, 9, 756. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692239/ (accessed on 6 August 2022). [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071196/ (accessed on 6 August 2022). [CrossRef]
- Hussain, G.; Zhang, L.; Rasul, A.; Anwar, H.; Sohail, M.U.; Razzaq, A.; Aziz, N.; Shabbir, A.; Ali, M.; Sun, T. Role of Plant-Derived Flavonoids and Their Mechanism in Attenuation of Alzheimer’s and Parkinson’s Diseases: An Update of Recent Data. Mol. A J. Synth. Chem. Nat. Prod. Chem. 2018, 23, 814. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017497/ (accessed on 6 August 2022). [CrossRef]
- de Andrade, R.B.T.; Diniz, T.C.; Pinto, T.C.C.; de Oliveira, R.G.; e Silva, M.G.; de Lavor, É.M.; Fernandes, A.W.C.; de Oliveira, A.P.; de Almeida, F.P.R.; da Silva, A.A.M.; et al. Flavonoids as Therapeutic Agents in Alzheimer’s and Parkinson’s Diseases: A Systematic Review of Preclinical Evidence. Oxidative Med. Cell. Longev. 2018, 2018, 7043213. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971291/ (accessed on 6 August 2022). [CrossRef]
- Rajpoot, K. Solid Lipid Nanoparticles: A Promising Nanomaterial in Drug Delivery. Curr. Pharm. Des. 2019, 25, 3943–3959. Available online: https://pubmed.ncbi.nlm.nih.gov/31481000/ (accessed on 13 July 2022). [CrossRef]
- Shu, L.; Zhang, W.; Huang, C.; Huang, G.; Su, G. Troxerutin Protects Against Myocardial Ischemia/Reperfusion Injury Via Pi3k/Akt Pathway in Rats. Cell Physiol. Biochem. 2017, 44, 1939–1948. Available online: https://pubmed.ncbi.nlm.nih.gov/29241161/ (accessed on 12 July 2022). [CrossRef] [PubMed]
- Yu, Z.P.; Yu, H.Q.; Li, J.; Li, C.; Hua, X.; Sheng, X.S. Troxerutin attenuates oxygen-glucose deprivation and reoxygenation-induced oxidative stress and inflammation by enhancing the PI3K/AKT/HIF-1α signaling pathway in H9C2 cardiomyocytes. Mol. Med. Rep. 2020, 22, 1351–1361. Available online: https://pubmed.ncbi.nlm.nih.gov/32626962/ (accessed on 24 September 2022). [CrossRef] [PubMed]
- Xin, X.; Zhang, M.; Li, X.; Lai, F.; Zhao, G. Biocatalytic synthesis of acylated derivatives of troxerutin: Their bioavailability and antioxidant properties in vitro. Microb. Cell Fact. 2018, 17, 130. Available online: https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-018-0976-x (accessed on 24 September 2022). [CrossRef] [PubMed]
- Zamanian, M.; Bazmandegan, G.; Sureda, A.; Sobarzo-Sanchez, E.; Yousefi-Manesh, H.; Shirooie, S. The Protective Roles and Molecular Mechanisms of Troxerutin (Vitamin P4) for the Treatment of Chronic Diseases: A Mechanistic Review. Curr. Neuropharmacol. 2021, 19, 97. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903491/ (accessed on 24 September 2022). [CrossRef]
- Shan, Q.; Zheng, G.; Han, X.; Wen, X.; Wang, S.; Li, M.; Zhuang, J.; Zhang, Z.F.; Hu, B.; Zhang, Y.; et al. Troxerutin Protects Kidney Tissue against BDE-47-Induced Inflammatory Damage through CXCR4-TXNIP/NLRP3 Signaling. Oxid. Med. Cell. Longev. 2018, 2018, 9865495. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932985/ (accessed on 24 September 2022). [CrossRef]
- Shan, Q.; Zhuang, J.; Zheng, G.; Zhang, Z.; Zhang, Y.; Lu, J.; Zheng, Y. Troxerutin Reduces Kidney Damage against BDE-47-Induced Apoptosis via Inhibiting NOX2 Activity and Increasing Nrf2 Activity. Oxid. Med. Cell. Longev. 2017, 2017, 6034692. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5661100/ (accessed on 24 September 2022). [CrossRef]
- Zhang, Z.F.; Shao-Hua, F.A.N.; Zheng, Y.L.; Jun, L.U.; Dong-Mei, W.U.; Shan, Q.U.N.; Hu, B. Troxerutin protects the mouse liver against oxidative stress-mediated injury induced by D-galactose. J. Agric. Food Chem. 2009, 57, 7731–7736. Available online: https://pubmed.ncbi.nlm.nih.gov/19722705/ (accessed on 24 September 2022). [CrossRef]
- Zhang, Z.F.; Zhang, Y.Q.; Fan, S.H.; Zhuang, J.; Zheng, Y.L.; Lu, J.; Wu, D.M.; Shan, Q.; Hu, B. Troxerutin protects against 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47)-induced liver inflammation by attenuating oxidative stress-mediated NAD+-depletion. J. Hazard. Mater. 2015, 283, 98–109. Available online: https://pubmed.ncbi.nlm.nih.gov/25262482/ (accessed on 24 September 2022). [CrossRef]
- Casili, G.; Lanza, M.; Campolo, M.; Messina, S.; Scuderi, S.; Ardizzone, A.; Filippone, A.; Paterniti, I.; Cuzzocrea, S.; Esposito, E. Therapeutic potential of flavonoids in the treatment of chronic venous insufficiency. Vasc. Pharmacol. 2021, 137, 106825. Available online: https://www.sciencedirect.com/science/article/abs/pii/S153718912030330X?via%3Dihub (accessed on 24 September 2022). [CrossRef]
- Boisseau, M.R.; Taccoen, A.; Garreau, C.; Vergnes, C.; Roudaut, M.F.; Garreau-Gomez, B. Fibrinolysis and Hemorheology in Chronic Venous Insufficiency: A Double Blind Study of Troxerutin Efficiency-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/7593149/ (accessed on 24 September 2022).
- Cui, X.; Zhang, M.; Guan, X.; Yin, L.; Sun, Y.; Fawcett, J.P.; Gu, J. LC-MS-MS determination of troxerutin in plasma and its application to a pharmacokinetic study. Chromatographia 2011, 73, 165–169. [Google Scholar] [CrossRef]
- Troxerutin European Pharmacopoeia (EP) Reference Standard 7085-55-4. Available online: https://www.sigmaaldrich.com/SA/en/product/sial/y0000497?gclid=Cj0KCQjw1bqZBhDXARIsANTjCPLdKv45ZWE_h113biIEYAxhGAbl9AT0PMG9zg97_ThJBWSwAKd-ZrUaApiDEALw_wcB&gclsrc=aw.ds (accessed on 24 September 2022).
- Najahi-Missaoui, W.; Arnold, R.D.; Cummings, B.S. Safe Nanoparticles: Are We There Yet? Int. J. Mol. Sci. 2020, 22, 385. Available online: https://pubmed.ncbi.nlm.nih.gov/33396561/ (accessed on 24 September 2022). [CrossRef] [PubMed]
- Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020, 25, 2193. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248934/ (accessed on 6 August 2022). [CrossRef] [PubMed]
- Montoto, S.S.; Muraca, G.; Ruiz, M.E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020, 7, 319. Available online: https://pubmed.ncbi.nlm.nih.gov/33195435/ (accessed on 24 September 2022).
- Souto, E.B.; Doktorovová, S. Chapter 6—Solid lipid nanoparticle formulations pharmacokinetic and biopharmaceutical aspects in drug delivery. Methods Enzym. 2009, 464, 105–129. Available online: https://pubmed.ncbi.nlm.nih.gov/19903552/ (accessed on 6 August 2022).
- Tan, M.E.; He, C.H.; Jiang, W.; Zeng, C.; Yu, N.; Huang, W.; Gao, Z.G.; Xing, J.G. Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia–reperfusion injury in rats. Int. J. Nanomed. 2017, 12, 3253–3265. Available online: https://www.dovepress.com/development-of-solid-lipid-nanoparticles-containing-total-flavonoid-ex-peer-reviewed-fulltext-article-IJN (accessed on 24 September 2022).
- Zhao, T.; Wu, W.; Sui, L.; Huang, Q.; Nan, Y.; Liu, J.; Ai, K. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact. Mater. 2022, 7, 47–72. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377441/ (accessed on 24 September 2022). [CrossRef]
- Rostami, E.; Kashanian, S.; Azandaryani, A.H.; Faramarzi, H.; Dolatabadi, J.E.; Omidfar, K. Drug targeting using solid lipid nanoparticles. Chem. Phys. Lipids. 2014, 181, 56–61. Available online: https://pubmed.ncbi.nlm.nih.gov/24717692/ (accessed on 24 September 2022). [CrossRef]
- Subbaraj, G.K.; Elangovan, H.; Chandramouli, P.; Yasam, S.K.; Chandrasekaran, K.; Kulanthaivel, L.; Pandi, S.; Subramanian, S. Antiangiogenic Potential of Troxerutin and Chitosan Loaded Troxerutin on Chorioallantoic Membrane Model. Biomed. Res. Int. 2023, 2023, 5956154. Available online: https://pubmed.ncbi.nlm.nih.gov/37260851/ (accessed on 24 September 2022). [CrossRef]
- Saranya, T.; Kavithaa, K.; Paulpandi, M.; Ramya, S.; Winster, S.H.; Mani, G.; Dhayalan, S.; Balachandar, V.; Narayanasamy, A. The creation of selenium nanoparticles decorated with troxerutin and their ability to adapt to the tumour microenvironment have therapeutic implications for triple-negative breast cancer. New J. Chem. 2023, 47, 4565–4576. Available online: https://pubs.rsc.org/en/content/articlelanding/2004/yg/d2nj05671b/unauth (accessed on 1 October 2023). [CrossRef]
- Zeng, C.; Jiang, W.; Tan, M.; Xing, J.; He, C. Improved Oral Bioavailability of Total Flavonoids of Dracocephalum moldavica via Composite Phospholipid Liposomes: Preparation, in-vitro Drug Release and Pharmacokinetics in Rats. Pharmacogn. Mag. 2016, 12, 313–318. Available online: https://pubmed.ncbi.nlm.nih.gov/27867275/ (accessed on 1 October 2023).
- Janakiraman, A.K.; Sumathi, B.; Mohamed Saleem, T.; Ramkanth, S.; Odaya Kumar, P.; Venkatachalam, G. Design and evaluation of Carvedilol nanocrystals sustained release tablets. J. App. Pharm. Sci. 2017, 7, 61–68. [Google Scholar]
- Kumar, V.V.; Chandrasekar, D.; Ramakrishna, S.; Kishan, V.; Rao, Y.M.; Diwan, P.V. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: Influence of wax and glyceride lipids on plasma pharmacokinetics. Int. J. Pharm. 2006, 335, 167–175. Available online: https://europepmc.org/article/med/17161566 (accessed on 28 December 2022). [CrossRef] [PubMed]
- Teeranachaideekul, V.; Souto, E.; Müller, R.; Junyaprasert, V.B. Physicochemical characterization and in vitro release studies of ascorbyl palmitate-loaded semi-solid nanostructured lipid carriers (NLC gels). J. Microencapsul. 2008, 25, 111–120. Available online: https://pubmed.ncbi.nlm.nih.gov/18246489/ (accessed on 19 April 2023). [CrossRef] [PubMed]
- Hwang, K.M.; Byun, W.; Cho, C.H.; Park, E.S. Preparation and optimization of glyceryl behenate-based highly porous pellets containing cilostazol. Pharm. Dev. Technol. 2016, 23, 540–551. Available online: https://www.tandfonline.com/doi/abs/10.1080/10837450.2016.1245743 (accessed on 19 April 2023). [CrossRef] [PubMed]
- Le, N.T.T.; Cao, V.D.; Nguyen, T.N.Q.; Le, T.T.H.; Tran, T.T.; Thi, T.T.H. Soy Lecithin-Derived Liposomal Delivery Systems: Surface Modification and Current Applications. Int. J. Mol. Sci. 2019, 20, 4706. Available online: https://pubmed.ncbi.nlm.nih.gov/31547569/ (accessed on 19 April 2023). [CrossRef] [PubMed]
- Genç, L. Preparation and characterization of nocodazole-loaded solid lipid nanoparticles. Pharm. Dev. Technol. 2013, 19, 671–676. Available online: https://www.tandfonline.com/doi/abs/10.3109/10837450.2013.819017 (accessed on 19 April 2023). [CrossRef]
- Kumar, A.J.; Ramkanth, S.; Lakshmana, S.P.; Gopal, V. Enhancement of saturation solubility and in vitro dissolution of carvedilol nanoparticles by high pressure homogenization technique. Int. J. Curr. Pharm. Rev. Res. 2015, 6, 269–273. [Google Scholar]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh, F.D.; Javanmard, R.; Dokhani, A.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. Available online: https://pubmed.ncbi.nlm.nih.gov/29783687/ (accessed on 2 April 2023). [CrossRef]
- Surface Area to Volume Ratio in Nanoparticles|Winner Science. Available online: https://winnerscience.com/surface-area-to-volume-ratio-in-nanoparticles/ (accessed on 10 May 2023).
- The Effect of Rice Bran Wax on Physicochemical Properties of Curcuminoid-Loaded Solid Lipid Nanoparticles. Available online: https://www.researchgate.net/publication/305432628_The_effect_of_rice_bran_wax_on_physicochemical_properties_of_curcuminoidloaded_solid_lipid_nanoparticles#pf3 (accessed on 2 April 2023).
- Satyanarayana, S.D.; Lila, A.S.A.; Moin, A.; Moglad, E.H.; Khafagy, E.S.; Alotaibi, H.F.; Obaidullah, A.J.; Charyulu, R.N. Ocular Delivery of Bimatoprost-Loaded Solid Lipid Nanoparticles for Effective Management of Glaucoma. Pharmaceuticals 2023, 16, 1001. [Google Scholar] [CrossRef]
- Suhaimi, S.H.; Hasham, R.; Rosli, N.A. Akademia Baru Effects of Formulation Parameters on Particle Size and Polydispersity Index of Orthosiphon Stamineus Loaded Nanostructured Lipid Carrier. J. Adv. Res. Appl. Sci. Eng. Technol. 2015, 1, 36–39. [Google Scholar]
- Devaraj, P.; Kumari, P.; Aarti, C.; Renganathan, A. Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. J. Nanotechnol. 2013, 2013, 598328. [Google Scholar] [CrossRef]
- Musielak, E.; Feliczak-Guzik, A.; Nowak, I. Optimization of the Conditions of Solid Lipid Nanoparticles (SLN) Synthesis. Molecules 2022, 27, 2202. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Xing, Q.; Meng, J.; Shang, C. Preparation and Enhanced Oral Bioavailability of Cryptotanshinone-Loaded Solid Lipid Nanoparticles. AAPS PharmSciTech 2010, 11, 582. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902353/ (accessed on 4 April 2023). [CrossRef] [PubMed]
- Singh, S.; Kamal, S.S.; Sharma, A.; Kaur, D.; Katual, M.K.; Kumar, R. Formulation and In-Vitro Evaluation of Solid Lipid Nanoparticles Containing Levosulpiride. Open Nanomed. J. 2017, 4, 17–29. [Google Scholar] [CrossRef]
- Shinde, G.; Shiyani, S.; Shelke, S.; Chouthe, R.; Kulkarni, D.; Marvaniya, K. Enhanced brain targeting efficiency using 5-FU (fluorouracil) lipid–drug conjugated nanoparticles in brain cancer therapy. Prog. Biomater. 2020, 9, 259–275. Available online: https://link.springer.com/article/10.1007/s40204-020-00147-y (accessed on 4 April 2023). [CrossRef] [PubMed]
- Winey, M.; Meehl, J.B.; O’Toole, E.T.; Giddings, T.H. Conventional transmission electron microscopy. Mol. Biol. Cell 2014, 25, 319. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907272/ (accessed on 16 April 2023). [CrossRef] [PubMed]
- Ulusoy, U. A Review of Particle Shape Effects on Material Properties for Various Engineering Applications: From Macro to Nanoscale. Minerals 2023, 13, 91. Available online: https://www.mdpi.com/2075-163X/13/1/91/htm (accessed on 16 April 2023). [CrossRef]
- Pagar, R.R.; Musale, S.R.; Pawar, G.; Kulkarni, D.; Giram, P.S. Comprehensive Review on the Degradation Chemistry and Toxicity Studies of Functional Materials. ACS Biomater. Sci. Eng. 2022, 8, 2161–2195. Available online: https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.1c01304 (accessed on 22 September 2022). [CrossRef]
Formulation | Active Ingredient | Surfactant | Lipid Polymer | |
---|---|---|---|---|
TXR | Tween-80 | Glyceryl Behenate | Soy Lecithin | |
TXR-SLN 1 | 10 mg | 500 μL | 100 mg | 50 mg |
TXR-SLN 2 | 10 mg | 250 μL | 50 mg | 50 mg |
TXR-SLN 3 | 10 mg | 500 μL | 50 mg | 100 mg |
S. No | Formulation Code | Entrapment Efficiency (%) |
---|---|---|
1 | TXR-SLN 1 | 76.02 |
2 | TXR-SLN 2 | 83.62 |
3 | TXR-SLN 3 | 77.06 |
S. No | Formulation | Particle Size (nm) | Polydispersity Index (PDI) | Zeta Potential (mV) |
---|---|---|---|---|
1 | TXR-SLN 1 | 349.9 ± 7.67 | 0.387 ± 0.06 | 14.9 ± 4.87 |
2 | TXR-SLN 2 | 140.5 ± 1.02 | 0.218 ± 0.01 | 28.6 ± 8.71 |
3 | TXR-SLN 3 | 152.5 ± 2.35 | 0.350 ± 0.02 | 12.6 ± 4.52 |
Time | % Cumulative Drug Released ± SD (n = 3) | |||
---|---|---|---|---|
TXR-SLN 1 | TXR-SLN 2 | TXR-SLN 3 | F-TXR | |
0 min | 0 | 0 | 0 | 0 |
30 min | 9.36 ± 0.14 | 9.36 ± 0.83 | 9.36 ± 0.97 | 9.05 ± 0.64 |
1 h | 16.46 ± 0.48 | 16.46 ± 0.93 | 18.45 ± 0.88 | 20.38 ± 0.37 |
2 h | 21.65 ± 0.92 | 37.43 ± 0.47 | 25.05 ± 0.17 | 62.86 ± 0.29 |
4 h | 29.17 ± 0.77 | 51.38 ± 0.84 | 35.19 ± 0.44 | 98.36 ± 0.47 |
8 h | 36.47 ± 0.46 | 65.71 ± 0.64 | 46.02 ± 0.65 | -- |
12 h | 45.72 ± 0.13 | 75.45 ± 0.54 | 57.95 ± 0.66 | -- |
24 h | 56.33 ± 0.67 | 82.47 ± 0.16 | 66.51 ± 0.89 | -- |
Zero-Order | First-Order | Higuchi | Korsmeyer–Peppas | |
---|---|---|---|---|
R2 | R2 | R2 | R2 | N |
0.6993 | 0.8714 | 0.916 | 0.567 | 0.95 |
S. No | Formulation | Particle Size (nm) | Polydispersity Index (PDI) | Zeta Potential (mV) |
---|---|---|---|---|
1 | TXR-SLN 1 | 360.9 ± 6.10 | 0.391 ±0.05 | 16 ±3.48 |
2 | TXR-SLN 2 | 151 ± 2.03 | 0.221 ± 0.03 | 28.4 ± 5.32 |
3 | TXR-SLN 3 | 155.5 ± 2.05 | 0.356 ± 0.03 | 14.5 ± 4.31 |
S. No | Formulation | Particle Size (nm) | Polydispersity Index (PDI) | Zeta Potential (mV) |
---|---|---|---|---|
1 | TXR-SLN 1 | 382 ± 5.23 | 0.392 ±0.02 | 14 ±2.13 |
2 | TXR-SLN 2 | 154 ± 3.01 | 0.221 ± 0.02 | 28.2 ± 3.21 |
3 | TXR-SLN 3 | 162.5 ± 2.03 | 0.371 ± 0.04 | 13.1 ± 3.11 |
S. No | Formulation Code | Entrapment Efficiency (%) |
---|---|---|
1 | TXR-SLN 1 | 71.23619 |
2 | TXR-SLN 2 | 77.54231 |
3 | TXR-SLN 3 | 73.23486 |
S. No | Formulation Code | Entrapment Efficiency (%) |
---|---|---|
1 | TXR-SLN 1 | 54.36215 |
2 | TXR-SLN 2 | 71.32457 |
3 | TXR-SLN 3 | 45.23615 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamous, Y.F.; Altwaijry, N.A.; Saleem, M.T.S.; Alrayes, A.F.; Albishi, S.M.; Almeshari, M.A. Formulation and Characterization of Solid Lipid Nanoparticles Loaded with Troxerutin. Processes 2023, 11, 3039. https://doi.org/10.3390/pr11103039
Jamous YF, Altwaijry NA, Saleem MTS, Alrayes AF, Albishi SM, Almeshari MA. Formulation and Characterization of Solid Lipid Nanoparticles Loaded with Troxerutin. Processes. 2023; 11(10):3039. https://doi.org/10.3390/pr11103039
Chicago/Turabian StyleJamous, Yahya F., Najla A. Altwaijry, Mohamed T. S. Saleem, Aljoharah F. Alrayes, Sara M. Albishi, and Mashael A. Almeshari. 2023. "Formulation and Characterization of Solid Lipid Nanoparticles Loaded with Troxerutin" Processes 11, no. 10: 3039. https://doi.org/10.3390/pr11103039
APA StyleJamous, Y. F., Altwaijry, N. A., Saleem, M. T. S., Alrayes, A. F., Albishi, S. M., & Almeshari, M. A. (2023). Formulation and Characterization of Solid Lipid Nanoparticles Loaded with Troxerutin. Processes, 11(10), 3039. https://doi.org/10.3390/pr11103039