Experiment and Simulation Research on Rock Damage Mechanism in Tooth Indentation
Abstract
:1. Introduction
2. Experiment on Tooth Indentation
2.1. Preparation of Indenters
2.2. Preparation and Testing of Rock Samples
2.3. Experiment Equipment and Experiment Method
3. Experimental Analyses on the Fracture Mechanism of Indentation
3.1. Load-Displacement Relationship in Single Tooth Indentation
3.2. Fracture Characteristics on Rock Surface
3.3. Damage Characteristics in the Rock
3.4. Discussion of the Experiment Results
4. Numerical Simulations on the Tooth Indentation
4.1. Constitutive Model of Rock Material
4.2. Simulation Method and Process
4.3. Analysis on the Strain of Rock
4.4. Rock Damage between Adjacent Indenting Pits
4.5. Discussion on the Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, X.H.; Liu, W.J. Rock-breaking Process and Rock Degradation of Rock under Wedge-tooth Penetrating. J. China Univ. Pet. (Ed. Nat. Sci.) 2017, 41, 90–95. [Google Scholar]
- Niu, S.W.; Zheng, H.; Yang, Y.; Chen, L. Experimental study on the rock-breaking mechanism of disc-like hybrid bit. J. Pet. Sci. Eng. 2018, 161, 541–550. [Google Scholar] [CrossRef]
- Chen, L.H.; Labuz, J.F. Indentation of rock by wedge shaped tools. Int. J. Rock Mech. Min. Sci. 2006, 43, 1023–1033. [Google Scholar] [CrossRef]
- Hood, M.C.; Roxborough, F.F. Rock breakage: Mechanical. In SME Mining Engineering Handbook; Society for Mining, Metallurgy & Exploration: Englewood, CO, USA, 1992; Volume 1, pp. 680–721. [Google Scholar]
- Yin, L.J.; Gong, Q.M.; Ma, H.S.; Zhao, J.; Zhao, X.B. Use of indentation tests to study the influence of confining stress on rock fragmentation by a TBM cutter. Int. J. Rock Mech. Min. Sci. 2014, 72, 261–276. [Google Scholar] [CrossRef]
- Liu, H.Y.; Kou, S.Q.; Lindqvist, P.A. Numerical Studies on Bit-Rock Fragmentation Mechanisms. Int. J. Geomech. 2008, 8, 45–67. [Google Scholar] [CrossRef]
- Liu, H.Y.; Kou, S.Q.; Lindqvist, P.A.; Tang, C.A. Numerical simulation of the rock fragmentation process induced by indenters. Int. J. Rock Mech. Min. Sci. 2002, 39, 491–505. [Google Scholar] [CrossRef]
- Kou, S.Q.; Liu, H.Y.; Lindqvist, P.A.; Tang, C.A. Rock fragmentation mechanisms induced by a drill bit. Int. J. Rock Mech. Min. Sci. 2004, 41, 527–532. [Google Scholar] [CrossRef]
- Souissi, S.; Miled, K.; Hamdi, E.; Sellami, H. Numerical modeling of rock damage during indentation process with reference to hard rock drilling. Int. J. Geomech. 2017, 17, 04017002. [Google Scholar] [CrossRef]
- Saksala, T.; Fourmeau, M.; Kane, P.A.; Hokka, M. 3D finite elements modelling of percussive rock drilling: Estimation of rate of penetration based on multiple impact simulations with a commercial drill bit. Comput. Geotech. 2018, 99, 55–63. [Google Scholar] [CrossRef]
- Saksala, T.; Gomon, D.; Hokka, M.; Kuokkala, V.T. Numerical and experimental study of percussive drilling with a triple-button bit on Kuru granite. Int. J. Impact Eng. 2014, 72, 56–66. [Google Scholar] [CrossRef]
- Shariati, H.; Saadati, M.; Bouterf, A.; Weeddfelt, K.; Larsson, P.L.; Hild, F. On the Inelastic Mechanical Behavior of Granite: Study Based on Quasi-oedometric and Indentation Tests. Rock Mech. Rock Eng. 2019, 52, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Saadati, M.; Forquin, P.; Weddfelt, K.; Larsson, P.L.; Hild, F. Granite rock fragmentation at percussive drilling-experimental and numerical investigation. Int. J. Numer. Anal. Methods Geomech. 2013, 38, 828–843. [Google Scholar] [CrossRef]
- Zhang, F.; Huang, H.; Vajdova, V. Discrete element modeling of sphere indentation in rocks. In Proceedings of the 45th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 26–29 June 2011. [Google Scholar]
- Shi, X.C.; Meng, Y.; Li, G.; Li, J.; Zhao, X. The influence of load speed on the rock-breaking process of single tooth indenting. Pet. Drill. Tech. 2010, 38, 3. [Google Scholar]
- Maurer, W.C. Bit-tooth penetration under simulated borehole conditions. JPT 1965, 17, 1433–1442. [Google Scholar] [CrossRef]
- Qi, L.; Liu, Q.; Pan, Y.; Peng, X.; Demg, P.; Huang, K. Experimental study on rock indentation using infrared thermography and acoustic emission techniques. J. Geophys. Eng. 2018, 15, 1864–1877. [Google Scholar]
- Buljak, V.; Cocchetti, G.; Cornaggia, A.; Maier, G. Assessment of residual stresses and mechanical characterization of materials by “hole drilling” and indentation tests combined and by inverse analysis. Mech. Res. Commun. 2015, 68, 18–24. [Google Scholar] [CrossRef]
- Kalyan, B.; Murthy, C.; Choudhary, R. Rock indentation indices as criteria in rock excavation technology–A critical review. Procedia Earth Planet. Sci. 2015, 11, 149–158. [Google Scholar] [CrossRef]
- Kahraman, S.; Fener, M.; Kozman, E. Predicting the compressive and tensile strength of rocks from indentation hardness index. J. South. Afr. Inst. Min. Metall. 2012, 112, 331–339. [Google Scholar]
- Haftani, M.; Bohloli, B.; Nouri, A.; Javan, M.; Moosavi, M. Size effect in strength assessment by indentation testing on rock fragments. Int. J. Rock Mech. Min. Sci. 2014, 65, 141–148. [Google Scholar] [CrossRef]
- Tan, Q.; Zhang, K.; Zhou, Z.; Xia, Y. Experiment and simulation on rock cracking under spherical tooth pressing. J. Rock Mech. Geotech. Eng. 2010, 29, 163–169. [Google Scholar]
- Tan, Q.; Li, J.; Xia, Y.; Xu, Z.; Zhu, Y.; Zhang, J. Numerical simulation on rock-breaking process of disc roller. Rock Soil Mech. 2013, 34, 2707–2714. [Google Scholar]
- Zhang, H.; Song, H.; Kang, Y.; Huang, G.; Qu, C. Experimental analysis on deformation evolution and crack propagation of rock under cyclic indentation. Rock Mech. Rock Eng. 2013, 46, 1053–1059. [Google Scholar] [CrossRef]
- Carpinteri, A.; Invernizzi, S. Numerical analysis of the cutting interaction between indenters acting on disordered materials. Int. J. Fract. 2005, 131, 143–154. [Google Scholar] [CrossRef]
- Kou, S.Q.; Huang, Y.; Tan, X.C.; Lindqvist, P.A. Identification of the governing parameters related to rock indentation depth by using similarity analysis. Eng. Geol. 1998, 49, 261–269. [Google Scholar] [CrossRef]
- Kou, S.Q. Some Basic Problems in Rock Breakage by Blasting and by Indentation. Ph.D. Thesis, Luleå Tekniska Universitet, Luleå, Sweden, 1995. [Google Scholar]
- Haeri, H.; Sarfarazi, V.; Fatehi Marji, M. Experimental and numerical investigation of uniaxial compression failure in rock-like specimens with L-shaped nonpersistent cracks. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 45, 2555–2575. [Google Scholar] [CrossRef]
- Xi, D.; Xu, S. Rock Physics and Constitutive Theory; Press USCT: Hefei, China, 2016; pp. 18–24. [Google Scholar]
- Zhang, C. Research on Rock-Breaking Mechanism and Design Theory of the Cross-Cutting PDC Bit. Doctoral dissertation, China University of Petroleum, Beijing, China, 2018; pp. 35–37. [Google Scholar]
- Fei, K.; Zhang, J.W. The application of ABAQUS in geotechnical engineering; China Water & Power Press: Beijing, China, 2013; pp. 61–81. [Google Scholar]
- Zirpoli, A.; Maier, G.; Novati, G.; Garbowski, T. Dilatometric tests combined with computer simulations and parameter identification for in-depth diagnostic analysis of concrete dams. In Life-Cycle Civil Engineering; CRC Press: Boca Raton, FL, USA, 2008; pp. 279–284. [Google Scholar]
- Buljak, V.; Baivier-Romero, S.; Kallel, A. Calibration of Drucker–Prager Cap Constitutive Model for Ceramic Powder Compaction through Inverse Analysis. Materials 2021, 14, 4044. [Google Scholar] [CrossRef] [PubMed]
- Buljak, V.; Cocchetti, G.; Cornaggia, A.; Garbowski, T.; Maier, G.; Novati, G. Materials mechanical characterizations and structural diagnoses by inverse analyses. In Handbook of Damage Mechanics; Voyiadjis, G., Ed.; Springer Nature: New York, NY, USA, 2015; pp. 619–642. [Google Scholar]
Rock Sample | Sandstone | Limestone | |
---|---|---|---|
Uniaxial compressive stress, MPa | 67.548 | 105.951 | |
Elasticity modulus, GPa | 11.54 | 31.20 | |
Poisson ratio | 0.062 | 0.171 | |
Extension strength, MPa | 4.346 | 6.758 | |
Shear strength, MPa | 13.56 | 17.72 | |
Hardness, MPa | 1013.4 | 1523.6 | |
Plasticity coefficient | 2.87 | 1.32 | |
Internal friction angle, ° | 38.03 | 43.62 | |
Drillability coefficient | Cone bit | 5.76 | 6.66 |
PDC bit | 5.48 | 7.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Q.; Yang, Y.; Niu, S.; Chen, L.; Chen, X. Experiment and Simulation Research on Rock Damage Mechanism in Tooth Indentation. Processes 2023, 11, 464. https://doi.org/10.3390/pr11020464
Qi Q, Yang Y, Niu S, Chen L, Chen X. Experiment and Simulation Research on Rock Damage Mechanism in Tooth Indentation. Processes. 2023; 11(2):464. https://doi.org/10.3390/pr11020464
Chicago/Turabian StyleQi, Qingliang, Yingxin Yang, Shiwei Niu, Lian Chen, and Xu Chen. 2023. "Experiment and Simulation Research on Rock Damage Mechanism in Tooth Indentation" Processes 11, no. 2: 464. https://doi.org/10.3390/pr11020464
APA StyleQi, Q., Yang, Y., Niu, S., Chen, L., & Chen, X. (2023). Experiment and Simulation Research on Rock Damage Mechanism in Tooth Indentation. Processes, 11(2), 464. https://doi.org/10.3390/pr11020464