A Review on Antimicrobial Packaging for Extending the Shelf Life of Food
Abstract
:1. Introduction
2. The Basic Concept of Antimicrobial Packaging
3. Antimicrobial Substances/Agents in Food Packaging
4. Constructing/Developing an Antimicrobial Packaging
5. Types of Antimicrobial Packaging Systems
5.1. Sachets or Pads Containing Volatile Antimicrobial Agents inside Packages
5.2. Polymers with Intrinsic Antimicrobial Properties
5.3. Antimicrobial Coating or Adsorption on Polymer Surfaces
- The active coating should adhere to the film substrate efficiently and be inert for direct food contact;
- The concentration of the released active agent should be controlled to ensure effective antimicrobial action;
- The final active coated structure should be suitable for the specific food product, which implies that the produced material must have the same qualities as traditional passive packaging.
5.4. Direct Incorporation of Antimicrobial Agents into Polymers
5.5. Antimicrobial Immobilization of Polymers through Ion or Covalent Bonds
6. Antimicrobial Packaging Effectiveness/Applications
6.1. Antimicrobial Packaging for Fresh and Minimally Processed Fruits and Vegetables
- Antimicrobial sachets: sachets containing volatile antimicrobial agents enclosed in the packaging;
- Antimicrobial films: the inclusion of volatile or nonvolatile antimicrobial chemicals into packaging film composition;
- Antimicrobial edible coatings: directly applying antimicrobial edible coatings or films to the food surface.
6.2. Antimicrobial Packaging for Meat Products
6.3. Antimicrobial Packaging for Dairy Products
7. Antimicrobial Packaging Regulatory Status
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ambaw, A.; Fadiji, T.; Opara, U.L. Thermo-Mechanical Analysis in the Fresh Fruit Cold Chain: A Review on Recent Advances. Foods 2021, 10, 1357. [Google Scholar] [CrossRef] [PubMed]
- Brockgreitens, J.; Abbas, A. Responsive food packaging: Recent progress and technological prospects. Compr. Rev. Food Sci. Food Saf. 2016, 15, 3–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.H.; Patel, D.; Kim, J.E.; Min, S.C. Retardation of Listeria monocytogenes growth in mozzarella cheese using antimicrobial sachets containing rosemary oil and thyme oil. J. Food Sci. 2014, 79, E2272–E2278. [Google Scholar] [CrossRef] [PubMed]
- Fadiji, T.; Berry, T.M.; Coetzee, C.J.; Opara, U.L. Mechanical design and performance testing of corrugated paperboard packaging for the postharvest handling of horticultural produce. Biosyst. Eng. 2018, 171, 220–244. [Google Scholar] [CrossRef]
- Samanta, K.K.; Basak, S.; Chattopadhyay, S.K. Potentials of fibrous and nonfibrous materials in biodegradable packaging. In Environmental Footprints of Packaging; Springer: Singapore, 2016; pp. 75–113. [Google Scholar]
- Mangaraj, S.; Yadav, A.; Bal, L.M.; Dash, S.K.; Mahanti, N.K. Application of biodegradable polymers in food packaging industry: A comprehensive review. J. Packag. Technol. Res. 2019, 3, 77–96. [Google Scholar] [CrossRef]
- Restuccia, D.; Spizzirri, U.G.; Parisi, O.I.; Cirillo, G.; Curcio, M.; Iemma, F.; Picci, N. New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 2010, 21, 1425–1435. [Google Scholar] [CrossRef]
- Marsh, K.; Bugusu, B. Food packaging—Roles, materials, and environmental issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef]
- Farber, J.M. Microbiological aspects of modified-atmosphere packaging technology-a review. J. Food Prot. 1991, 54, 58–70. [Google Scholar] [CrossRef]
- Vasile, C.; Baican, M. Progresses in food packaging, food quality, and safety—Controlled-release antioxidant and/or antimicrobial packaging. Molecules 2021, 26, 1263. [Google Scholar] [CrossRef]
- Opara, U.L.; Fadiji, T. Compression damage susceptibility of apple fruit packed inside ventilated corrugated paperboard package. Sci. Hortic. 2018, 227, 154–161. [Google Scholar] [CrossRef]
- Defraeye, T.; Cronje, P.; Berry, T.; Opara, U.L.; East, A.; Hertog, M.; Verboven, P.; Nicolai, B. Towards integrated performance evaluation of future packaging for fresh produce in the cold chain. Trends Food Sci. Technol. 2015, 44, 201–225. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L. Structural design of corrugated boxes for horticultural produce: A review. Biosyst. Eng. 2014, 125, 128–140. [Google Scholar] [CrossRef]
- Ju, J.; Chen, X.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Yao, W. Application of essential oil as a sustained release preparation in food packaging. Trends Food Sci. Technol. 2019, 92, 22–32. [Google Scholar] [CrossRef]
- Sofi, S.A.; Singh, J.; Rafiq, S.; Ashraf, U.; Dar, B.N.; Nayik, G.A. A comprehensive review on antimicrobial packaging and its use in food packaging. Curr. Nutr. Food Sci. 2018, 14, 305–312. [Google Scholar] [CrossRef]
- Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S.W. Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J. Food Sci. 2003, 68, 408–420. [Google Scholar] [CrossRef] [Green Version]
- Yousuf, B.; Qadri, O.S.; Srivastava, A.K. Antimicrobial packaging: Basic concepts and applications in fresh and fresh-cut fruits and vegetables. In Innovative Packaging of Fruits and Vegetables: Strategies for Safety and Quality Maintenance; Apple Academic Press Inc.: Oakville, ON, Canada, 2018; pp. 136–155. [Google Scholar]
- La Storia, A.; Ferrocino, I.; Torrieri, E.; Di Monaco, R.; Mauriello, G.; Villani, F.; Ercolini, D. A combination of modified atmosphere and antimicrobial packaging to extend the shelf-life of beefsteaks stored at chill temperature. Int. J. Food Microbiol. 2012, 158, 186–194. [Google Scholar] [CrossRef]
- Han, J.W.; Ruiz-Garcia, L.; Qian, J.P.; Yang, X.T. Food packaging: A comprehensive review and future trends. Compr. Rev. Food Sci. Food Saf. 2018, 17, 860–877. [Google Scholar] [CrossRef] [Green Version]
- Anwar, R.W.; Warsiki, E. The comparison of antimicrobial packaging properties with different applications incorporation method of active material. IOP Conf. Ser. Earth Environ. Sci. 2018, 141, 012002. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.V.P.; Suneetha, J.; Kumari, B.A. Active packaging systems in food packaging for enhanced shelf life. J. Pharmacogn. Phytochem. 2018, 7, 2044–2046. [Google Scholar]
- Jideani, V.A.; Vogt, K. Antimicrobial packaging for extending the shelf life of bread—A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1313–1324. [Google Scholar] [CrossRef]
- Prasad, P.; Kochhar, A. Active packaging in food industry: A review. J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 1–7. [Google Scholar] [CrossRef]
- Quintavalla, S.; Vicini, L. Antimicrobial food packaging in meat industry. Meat Sci. 2002, 62, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active packaging applications for food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commission Regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with food. Off. J. Eur. Union 2009, 135, 1–11. [Google Scholar]
- Vilela, C.; Kurek, M.; Hayouka, Z.; Röcker, B.; Yildirim, S.; Antunes, M.D.C.; Freire, C.S. A concise guide to active agents for active food packaging. Trends Food Sci. Technol. 2018, 80, 212–222. [Google Scholar] [CrossRef]
- Bastarrachea, L.J.; Wong, D.E.; Roman, M.J.; Lin, Z.; Goddard, J.M. Active packaging coatings. Coatings 2015, 5, 771–791. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial food packaging: Potential and pitfalls. Front. Microbiol. 2015, 6, 611. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Alam, T.; Talwar, N. Recent advances in active packaging of agri-food products: A review. J. Postharvest Technol. 2019, 7, 33–62. [Google Scholar]
- Pérez-Santaescolástica, C.; Munekata, P.E.; Feng, X.; Liu, Y.; Bastianello Campagnol, P.C.; Lorenzo, J.M. Active edible coatings and films with Mediterranean herbs to improve food shelf-life. Crit. Rev. Food Sci. Nutr. 2022, 62, 2391–2403. [Google Scholar] [CrossRef]
- Mellinas, C.; Valdés, A.; Ramos, M.; Burgos, N.; Garrigos, M.D.C.; Jiménez, A. Active edible films: Current state and future trends. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Ye, R. Edible active packaging for food application: Materials and technology. In Biopackaging; Masuelli, M.A., Ed.; Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2017; pp. 1–19. [Google Scholar]
- Sanches-Silva, A.; Costa, D.; Albuquerque, T.G.; Buonocore, G.G.; Ramos, F.; Castilho, M.C.; Costa, H.S. Trends in the use of natural antioxidants in active food packaging: A review. Food Addit. Contam. Part A 2014, 31, 374–395. [Google Scholar] [CrossRef]
- Majid, I.; Nayik, G.A.; Dar, S.M.; Nanda, V. Novel food packaging technologies: Innovations and future prospective. J. Saudi Soc. Agric. Sci. 2018, 17, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Lin, H.; Zou, L.; Brody, A.L.; Li, Z.; Qazi, I.M.; Lv, L. A comprehensive review on the application of active packaging technologies to muscle foods. Food Control 2017, 82, 163–178. [Google Scholar] [CrossRef]
- Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Kovačević, D.B.; Pateiro, M.; Lorenzo, J.M. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.; Liu, D.; Zhang, X.; Yin, Z.; Ismail, B.B.; Ye, X.; Guo, M. A review of active packaging in bakery products: Applications and future trends. Trends Food Sci. Technol. 2021, 114, 459–471. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Z.; Hu, L.; Li, G.; Yao, Q.; Hu, Y. Pectin-based active packaging: A critical review on preparation, physical properties and novel application in food preservation. Trends Food Sci. Technol. 2021, 118, 167–178. [Google Scholar] [CrossRef]
- Dhanasekar, M.; Jenefer, V.; Nambiar, R.B.; Babu, S.G.; Selvam, S.P.; Neppolian, B.; Bhat, S.V. Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their PVA based polymer nanocomposite films. Mater. Res. Bull. 2018, 97, 238–243. [Google Scholar] [CrossRef]
- Mangalassary, S. Antimicrobial food packaging to enhance food safety: Current developments and future challenges. Food Process. Technol. 2012, 3, 100. [Google Scholar] [CrossRef] [Green Version]
- Giannakourou, M.C.; Tsironi, T.N. Application of Processing and Packaging Hurdles for Fresh-Cut Fruits and Vegetables Preservation. Foods 2021, 10, 830. [Google Scholar] [CrossRef]
- Appendini, P.; Hotchkiss, J.H. Review of antimicrobial food packaging. Innov. Food Sci. Emerg. Technol. 2002, 3, 113–126. [Google Scholar] [CrossRef]
- Zanetti, M.; Carniel, T.K.; Dalcanton, F.; dos Anjos, R.S.; Riella, H.G.; de Araújo, P.H.; de Oliveira, D.; Fiori, M.A. Use of encapsulated natural compounds as antimicrobial additives in food packaging: A brief review. Trends Food Sci. Technol. 2018, 81, 51–60. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Andrade, M.; Sanches-Silva, A. Application of encapsulated essential oils as antimicrobial agents in food packaging. Curr. Opin. Food Sci. 2017, 14, 78–84. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Hashemi, S.M.B.; Limbo, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food Bioprod. Process. 2018, 111, 1–19. [Google Scholar] [CrossRef]
- Sung, S.Y.; Sin, L.T.; Tee, T.T.; Bee, S.T.; Rahmat, A.R.; Rahman, W.A.W.A.; Vikhraman, M. Antimicrobial agents for food packaging applications. Trends Food Sci. Technol. 2013, 33, 110–123. [Google Scholar] [CrossRef]
- Muriel-Galet, V.; Cerisuelo, J.P.; López-Carballo, G.; Aucejo, S.; Gavara, R.; Hernández-Muñoz, P. Evaluation of EVOH-coated PP films with oregano essential oil and citral to improve the shelf-life of packaged salad. Food Control 2013, 30, 137–143. [Google Scholar] [CrossRef]
- Atef, M.; Rezaei, M.; Behrooz, R. Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil. Food Hydrocoll. 2015, 45, 150–157. [Google Scholar] [CrossRef]
- Nostro, A.; Scaffaro, R.; D’Arrigo, M.; Botta, L.; Filocamo, A.; Marino, A.; Bisignano, G. Development and characterization of essential oil component-based polymer films: A potential approach to reduce bacterial biofilm. Appl. Microbiol. Biotechnol. 2013, 97, 9515–9523. [Google Scholar] [CrossRef]
- Ramos, M.; Jiménez, A.; Peltzer, M.; Garrigós, M.C. Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J. Food Eng. 2012, 109, 513–519. [Google Scholar] [CrossRef]
- Remedio, L.N.; dos Santos, J.W.S.; Maciel, V.B.V.; Yoshida, C.M.P.; de Carvalho, R.A. Characterization of active chitosan films as a vehicle of potassium sorbate or nisin antimicrobial agents. Food Hydrocoll. 2019, 87, 830–838. [Google Scholar] [CrossRef]
- Sung, S.Y.; Sin, L.T.; Tee, T.T.; Bee, S.T.; Rahmat, A.R. Effects of Allium sativum essence oil as antimicrobial agent for food packaging plastic film. Innov. Food Sci. Emerg. Technol. 2014, 26, 406–414. [Google Scholar] [CrossRef]
- Mahmud, J.; Khan, R.A. Characterization of natural antimicrobials in food system. Adv. Microbiol. 2018, 8, 894. [Google Scholar] [CrossRef] [Green Version]
- Arshad, M.S.; Batool, S.A. Natural antimicrobials, their sources and food safety. In Food Additives; Karunaratne, D.N., Pamunuwa, G., Eds.; IntechOpen: London, UK, 2017; pp. 87–102. [Google Scholar]
- Garcia-Fuentes, A.R.; Wirtz, S.; Vos, E.; Verhagen, H. Short review of sulphites as food additives. Eur. J. Nutr. Food Saf. 2015, 5, 113–120. [Google Scholar] [CrossRef]
- Kuorwel, K.K.; Cran, M.J.; Sonneveld, K.; Miltz, J.; Bigger, S.W. Essential oils and their principal constituents as antimicrobial agents for synthetic packaging films. J. Food Sci. 2011, 76, R164–R177. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Hanušová, K.; Dobiáš, J.; Klaudisová, K. Effect of packaging films releasing antimicrobial agents on stability of food products. Czech J. Food Sci 2009, 27, 347–349. [Google Scholar] [CrossRef] [Green Version]
- Fullerton, M.; Khatiwada, J.; Johnson, J.U.; Davis, S.; Williams, L.L. Determination of antimicrobial activity of sorrel (Hibiscus sabdariffa) on Esherichia coli O157: H7 isolated from food, veterinary, and clinical samples. J. Med. Food 2011, 14, 950–956. [Google Scholar] [CrossRef] [Green Version]
- Khaldi, N.; Seifuddin, F.T.; Turner, G.; Haft, D.; Nierman, W.C.; Wolfe, K.H.; Fedorova, N.D. SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet. Biol. 2010, 47, 736–741. [Google Scholar] [CrossRef] [Green Version]
- Saeed, F.; Afzaal, M.; Tufail, T.; Ahmad, A. Use of Natural Antimicrobial Agents: A Safe Preservation Approach. Intechopen 2019, 17, 1–18. [Google Scholar]
- Bocquet, L.; Sahpaz, S.; Rivière, C. An overview of the antimicrobial properties of hop. In Natural Antimicrobial Agents; Mérillon, J.M., Rivière, C., Eds.; Series Sustainable Development and Biodiversity; Springer International Publishing AG: Cham, Switzerland, 2018; Volume 19, pp. 31–54. [Google Scholar]
- Del Nobile, M.A.; Lucera, A.; Costa, C.; Conte, A. Food applications of natural antimicrobial compounds. Front. Microbiol. 2012, 3, 287. [Google Scholar]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol. 2008, 124, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Godwin, P.; Jin, Y.; Xiao, H. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Adv. Ind. Eng. Polym. Res. 2020, 3, 27–35. [Google Scholar] [CrossRef]
- Do Evangelho, J.A.; da Silva Dannenberg, G.; Biduski, B.; El Halal, S.L.M.; Kringel, D.H.; Gularte, M.A.; Fiorentini, A.M.; da Rosa Zavareze, E. Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. Carbohydr. Polym. 2019, 222, 114981. [Google Scholar] [CrossRef]
- Jha, P. Effect of plasticizer and antimicrobial agents on functional properties of bionanocomposite films based on corn starch-chitosan for food packaging applications. Int. J. Biol. Macromol. 2020, 160, 571–582. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, X.; Wang, D.; Fang, C.; Zhang, W.; Wang, C.; Huang, Z. Lysozyme-based composite membranes and their potential application for active packaging. Food Biosci. 2021, 42, 101078. [Google Scholar] [CrossRef]
- Radfar, R.; Hosseini, H.; Farhoodi, M.; Ghasemi, I.; Średnicka-Tober, D.; Shamloo, E.; Khaneghah, A.M. Optimization of antibacterial and mechanical properties of an active LDPE/starch/nanoclay nanocomposite film incorporated with date palm seed extract using D-optimal mixture design approach. Int. J. Biol. Macromol. 2020, 158, 790–799. [Google Scholar] [CrossRef]
- Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A review of the synthesis and applications of polymer–nanoclay composites. Appl. Sci. 2018, 8, 1696. [Google Scholar] [CrossRef] [Green Version]
- Cesur, S.; Köroğlu, C.; Yalçın, H.T. Antimicrobial and biodegradable food packaging applications of polycaprolactone/organo nanoclay/chitosan polymeric composite films. J. Vinyl Addit. Technol. 2018, 24, 376–387. [Google Scholar] [CrossRef]
- Sedlarik, V. Antimicrobial modifications of polymers. In Biodegradation-Life of Science; InTech: Hampshire, UK, 2013; pp. 187–204. [Google Scholar]
- Del Nobile, M.A.; Conte, A.; Buonocore, G.G.; Incoronato, A.L.; Massaro, A.; Panza, O. Active packaging by extrusion processing of recyclable and biodegradable polymers. J. Food Eng. 2009, 93, 1–6. [Google Scholar] [CrossRef]
- Gherardi, R.; Becerril, R.; Nerin, C.; Bosetti, O. Development of a multilayer antimicrobial packaging material for tomato puree using an innovative technology. LWT-Food Sci. Technol. 2016, 72, 361–367. [Google Scholar] [CrossRef]
- Lei, J.; Yang, L.; Zhan, Y.; Wang, Y.; Ye, T.; Li, Y.; Li, B. Plasma treated polyethylene terephthalate/polypropylene films assembled with chitosan and various preservatives for antimicrobial food packaging. Colloids Surf. B: Biointerfaces 2014, 114, 60–66. [Google Scholar] [CrossRef]
- Abarca, R.L.; Rodríguez, F.J.; Guarda, A.; Galotto, M.J.; Bruna, J.E. Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem. 2016, 196, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Kayaci, F.; Sen, H.S.; Durgun, E.; Uyar, T. Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol. Food Res. Int. 2014, 62, 424–431. [Google Scholar] [CrossRef]
- Patiño Vidal, C.; López de Dicastillo, C.; Rodríguez-Mercado, F.; Guarda, A.; Galotto, M.J.; Muñoz-Shugulí, C. Electrospinning and cyclodextrin inclusion complexes: An emerging technological combination for developing novel active food packaging materials. Crit. Rev. Food Sci. Nutr. 2022, 62, 5495–5510. [Google Scholar] [CrossRef] [PubMed]
- Al-Nasiri, G.; Cran, M.J.; Smallridge, A.J.; Bigger, S.W. Optimisation of β-cyclodextrin inclusion complexes with natural antimicrobial agents: Thymol, carvacrol and linalool. J. Microencapsul. 2018, 35, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.; Domingues, F.C.; Nerín, C. Control microbial growth on fresh chicken meat using pinosylvin inclusion complexes based packaging absorbent pads. LWT-Food Sci. Technol. 2018, 89, 148–154. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; De Lacey, A.L.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P. Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 2010, 27, 889–896. [Google Scholar] [CrossRef]
- Shen, X.L.; Wu, J.M.; Chen, Y.; Zhao, G. Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocoll. 2010, 24, 285–290. [Google Scholar] [CrossRef]
- Huang, W.; Xu, H.; Xue, Y.; Huang, R.; Deng, H.; Pan, S. Layer-by-layer immobilization of lysozyme–chitosan–organic rectorite composites on electrospun nanofibrous mats for pork preservation. Food Res. Int. 2012, 48, 784–791. [Google Scholar] [CrossRef]
- Treviño-Garza, M.Z.; García, S.; del Socorro Flores-González, M.; Arévalo-Niño, K. Edible active coatings based on pectin, pullulan, and chitosan increase quality and shelf life of strawberries (Fragaria ananassa). J. Food Sci. 2015, 80, M1823–M1830. [Google Scholar] [CrossRef]
- Soysal, Ç.; Bozkurt, H.; Dirican, E.; Güçlü, M.; Bozhüyük, E.D.; Uslu, A.E.; Kaya, S. Effect of antimicrobial packaging on physicochemical and microbial quality of chicken drumsticks. Food Control 2015, 54, 294–299. [Google Scholar] [CrossRef]
- Moreno, O.; Atarés, L.; Chiralt, A.; Cruz-Romero, M.C.; Kerry, J. Starch-gelatin antimicrobial packaging materials to extend the shelf life of chicken breast fillets. LWT-Food Sci. Technol. 2018, 97, 483–490. [Google Scholar] [CrossRef]
- Da Rocha Neto, A.C.; Beaudry, R.; Maraschin, M.; Di Piero, R.M.; Almenar, E. Double-bottom antimicrobial packaging for apple shelf-life extension. Food Chem. 2019, 279, 379–388. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, S.; Warner, R.D.; Fang, Z. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control 2020, 114, 107226. [Google Scholar] [CrossRef]
- Hemmatkhah, F.; Zeynali, F.; Almasi, H. Encapsulated cumin seed essential oil-loaded active papers: Characterization and evaluation of the effect on quality attributes of beef hamburger. Food Bioprocess Technol. 2020, 13, 533–547. [Google Scholar] [CrossRef]
- Han, J.H. Antimicrobial food packaging. Nov. Food Packag. Tech. 2003, 8, 50–70. [Google Scholar]
- Irkin, R.; Esmer, O.K. Novel food packaging systems with natural antimicrobial agents. J. Food Sci. Technol. 2015, 52, 6095–6111. [Google Scholar] [CrossRef]
- Huang, T.; Qian, Y.; Wei, J.; Zhou, C. Polymeric antimicrobial food packaging and its applications. Polymers 2019, 11, 560. [Google Scholar] [CrossRef] [Green Version]
- Tunç, S.; Duman, O. Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT-Food Sci. Technol. 2011, 44, 465–472. [Google Scholar] [CrossRef]
- Contreras, C.B.; Charles, G.; Toselli, R.; Strumia, M.C. Antimicrobial active packaging. In Biopackaging; Masuelli, M.A., Ed.; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2018; pp. 36–58. [Google Scholar]
- Otoni, C.G.; Espitia, P.J.; Avena-Bustillos, R.J.; McHugh, T.H. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Res. Int. 2016, 83, 60–73. [Google Scholar] [CrossRef]
- Karam, L.; Jama, C.; Dhulster, P.; Chihib, N.E. Study of surface interactions between peptides, materials and bacteria for setting up antimicrobial surfaces and active food packaging. J. Mater. Environ. Sci. 2013, 4, 798–821. [Google Scholar]
- Haghighi-Manesh, S.; Azizi, M.H. Active packaging systems with emphasis on its applications in dairy products. J. Food Process Eng. 2017, 40, e12542. [Google Scholar] [CrossRef]
- Gaikwad, K.K.; Singh, S.; Ajji, A. Moisture absorbers for food packaging applications. Environ. Chem. Lett. 2019, 17, 609–628. [Google Scholar] [CrossRef]
- Ghosh, T.; Katiyar, V. Advanced Packaging Technology for Improved Delivery of Edible Packaged Products. In Nanotechnology in Edible Food Packaging; Springer: Singapore, 2021; pp. 351–369. [Google Scholar]
- Roohinejad, S.; Khaneghah, A.M.; Greiner, R.; Barba, F.J.; Koubaa, M.; de Souza Sant’Ana, A.; Bekhit, A.E.D.A. New developments in meat packaging and meat products. In Advances in Meat Processing Technology; CRC Press: London, UK, 2017; pp. 521–553. [Google Scholar]
- Lee, D. S Carbon dioxide absorbers for food packaging applications. Trends Food Sci. Technol. 2016, 57, 146–155. [Google Scholar] [CrossRef]
- Mane, K.A. A review on active packaging: An innovation in food packaging. Int. J. Environ. Agric. Biotechnol. 2016, 1, 238566. [Google Scholar] [CrossRef]
- Hempel, A.W.; O’Sullivan, M.G.; Papkovsky, D.B.; Kerry, J.P. Use of smart packaging technologies for monitoring and extending the shelf-life quality of modified atmosphere packaged (MAP) bread: Application of intelligent oxygen sensors and active ethanol emitters. Eur. Food Res. Technol. 2013, 237, 117–124. [Google Scholar] [CrossRef]
- Bhat, S.N.; Bhat, S.V. Technological innovations in modern food packaging systems: Active packaging. EC Nutr. 2019, 14, 01–06. [Google Scholar]
- Lee, Y.; Burgess, G.; Rubino, M.; Auras, R. Reaction and diffusion of chlorine dioxide gas under dark and light conditions at different temperatures. J. Food Eng. 2015, 144, 20–28. [Google Scholar] [CrossRef]
- Aday, M.S.; Caner, C. The applications of ‘active packaging and chlorine dioxide for extended shelf life of fresh strawberries. Packag. Technol. Sci. 2011, 24, 123–136. [Google Scholar] [CrossRef]
- Trinetta, V.; Morgan, M.; Linton, R. Chlorine dioxide for microbial decontamination of food. In Microbial Decontamination in the Food Industry; Woodhead Publishing: Cambridge, UK, 2012; pp. 533–562. [Google Scholar]
- Ray, S.; Jin, T.; Fan, X.; Liu, L.; Yam, K.L. Development of chlorine dioxide releasing film and its application in decontaminating fresh produce. J. Food Sci. 2013, 78, M276–M284. [Google Scholar] [CrossRef]
- Pereira de Abreu, D.A.; Cruz, J.M.; Paseiro Losada, P. Active and intelligent packaging for the food industry. Food Rev. Int. 2012, 28, 146–187. [Google Scholar] [CrossRef]
- Sivakanthan, S.; Rajendran, S.; Gamage, A.; Madhujith, T.; Mani, S. Antioxidant and antimicrobial applications of biopolymers: A review. Food Res. Int. 2020, 136, 109327. [Google Scholar] [CrossRef]
- Sayed, S.; Jardine, M.A. Antimicrobial biopolymers. In Advanced Functional Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 493–533. [Google Scholar]
- Santos, M.R.; Fonseca, A.C.; Mendonça, P.V.; Branco, R.; Serra, A.C.; Morais, P.V.; Coelho, J.F. Recent developments in antimicrobial polymers: A review. Materials 2016, 9, 599. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Qian, J.; Ding, F. Emerging chitosan-based films for food packaging applications. J. Agric. Food Chem. 2018, 66, 395–413. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Fagioli, L.; Campana, R.; Lam, J.K.; Baffone, W.; Palmieri, G.F.; Bonacucina, G. Chitosan-based nanosystems and their exploited antimicrobial activity. Eur. J. Pharm. Sci. 2018, 117, 8–20. [Google Scholar] [CrossRef]
- Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol. 2020, 97, 196–209. [Google Scholar] [CrossRef]
- Silberbauer, A.; Schmid, M. Packaging concepts for ready-to-eat food: Recent progress. J. Packag. Technol. Res. 2017, 1, 113–126. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmad, M.; Ikram, S. Chitosan: A natural antimicrobial agent-a review. J. Appl. Chem. 2014, 3, 493–503. [Google Scholar]
- Verlee, A.; Mincke, S.; Stevens, C.V. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym. 2017, 164, 268–283. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Rhim, J.W. Chitosan-based biodegradable functional films for food packaging applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, H.; Sun, Q. Preparation of crosslinked active bilayer film based on chitosan and alginate for regulating ascorbate-glutathione cycle of postharvest cherry tomato (Lycopersicon esculentum). Int. J. Biol. Macromol. 2019, 130, 584–594. [Google Scholar] [CrossRef]
- Carbone, M.; Donia, D.T.; Sabbatella, G.; Antiochia, R. Silver nanoparticles in polymeric matrices for fresh food packaging. J. King Saud Univ. -Sci. 2016, 28, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Kumar, S.; Bulchandini, B.; Taneja, S.; Banyal, S. Green synthesis of silver nanoparticles and their antimicrobial activity against gram-positive and gram-negative bacteria. Int. J. Biotechnol. Bioeng. Res. 2013, 4, 711–714. [Google Scholar]
- Espitia, P.J.P.; Otoni, C.G.; Soares, N.F.F. Zinc oxide nanoparticles for food packaging applications. In Antimicrobial Food Packaging; Barros-Velázquez, J., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 425–431. [Google Scholar]
- Espitia, P.J.P.; Soares, N.D.F.F.; Botti, L.C.M.; Melo, N.R.D.; Pereira, O.L.; Silva, W.A.D. Assessment of the efficiency of essential oils in the preservation of postharvest papaya in an antimicrobial packaging system. Braz. J. Food Technol. 2012, 15, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Wang, Z.; Kadouh, H.; Zhou, K. The antimicrobial, mechanical, physical and structural properties of chitosan-gallic acid films. LWT-Food Sci. Technol. 2014, 57, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Genskowsky, E.; Puente, L.A.; Pérez-Álvarez, J.A.; Fernandez-Lopez, J.; Muñoz, L.A.; Viuda-Martos, M. Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT-Food Sci. Technol. 2015, 64, 1057–1062. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Vitchayakitti, W. Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll. 2016, 61, 695–702. [Google Scholar] [CrossRef]
- Abdollahi, M.; Rezaei, M.; Farzi, G. Improvement of active chitosan film properties with rosemary essential oil for food packaging. Int. J. Food Sci. Technol. 2012, 47, 847–853. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, Y.; Duan, S.; Li, C.; Hu, B.; Liu, A.; Wu, W. Preparation and characterization of chitosan films with three kinds of molecular weight for food packaging. Int. J. Biol. Macromol. 2020, 155, 249–259. [Google Scholar] [CrossRef]
- Li, C.; Pei, J.; Zhu, S.; Song, Y.; Xiong, X.; Xue, F. Development of Chitosan/Peptide Films: Physical, Antibacterial and Antioxidant Properties. Coatings 2020, 10, 1193. [Google Scholar] [CrossRef]
- Cuevas-Acuña, D.A.; Plascencia-Jatomea, M.; Santacruz-Ortega, H.D.C.; Torres-Arreola, W.; Ezquerra-Brauer, J.M. Development of chitosan/squid skin gelatin hydrolysate films: Structural, physical, antioxidant, and antifungal properties. Coatings 2021, 11, 1088. [Google Scholar] [CrossRef]
- Musella, E.; Ouazzani, I.C.E.; Mendes, A.R.; Rovera, C.; Farris, S.; Mena, C.; Teixeira, P.; Poças, F. Preparation and Characterization of Bioactive Chitosan-Based Films Incorporated with Olive Leaves Extract for Food Packaging Applications. Coatings 2021, 11, 1339. [Google Scholar] [CrossRef]
- Youssef, A.M.; Abou-Yousef, H.; El-Sayed, S.M.; Kamel, S. Mechanical and antibacterial properties of novel high-performance chitosan/nanocomposite films. Int. J. Biol. Macromol. 2015, 76, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshi, R.; Negi, Y.S. Effect of varying filler concentration on zinc oxide nanoparticle embedded chitosan films as potential food packaging material. J. Polym. Environ. 2017, 25, 1087–1098. [Google Scholar] [CrossRef]
- Mohamed, N.; Madian, N.G. Evaluation of the mechanical, physical and antimicrobial properties of chitosan thin films doped with greenly synthesized silver nanoparticles. Mater. Today Commun. 2020, 25, 101372. [Google Scholar] [CrossRef]
- Yadav, S.; Mehrotra, G.K.; Dutta, P.K. Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chem. 2021, 334, 127605. [Google Scholar] [CrossRef] [PubMed]
- Gasti, T.; Dixit, S.; Hiremani, V.D.; Chougale, R.B.; Masti, S.P.; Vootla, S.K.; Mudigoudra, B.S. Chitosan/pullulan-based films incorporated with clove essential oil loaded chitosan-ZnO hybrid nanoparticles for active food packaging. Carbohydr. Polym. 2022, 277, 118866. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, X.; Huang, H.; Liu, A.; Liu, H.; Abid, N.; Ming, L. Chitosan/zein films incorporated with essential oil nanoparticles and nanoemulsions: Similarities and differences. Int. J. Biol. Macromol. 2022, 208, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, H.M.; Abutalib, M.M.; Rajeh, A.; Mannaa, M.A.; Nur, O.; Abdelrazek, E.M. Effect of the Fe2O3/TiO2 nanoparticles on the structural, mechanical, electrical properties and antibacterial activity of the biodegradable chitosan/polyvinyl alcohol blend for food packaging. J. Polym. Environ. 2022, 30, 3865–3874. [Google Scholar] [CrossRef]
- Bhat, V.G.; Narasagoudr, S.S.; Masti, S.P.; Chougale, R.B.; Vantamuri, A.B.; Kasai, D. Development and evaluation of Moringa extract incorporated Chitosan/Guar gum/Poly (vinyl alcohol) active films for food packaging applications. Int. J. Biol. Macromol. 2022, 200, 50–60. [Google Scholar] [CrossRef]
- Surendhiran, D.; Roy, V.C.; Park, J.S.; Chun, B.S. Fabrication of chitosan-based food packaging film impregnated with turmeric essential oil (TEO)-loaded magnetic-silica nanocomposites for surimi preservation. Int. J. Biol. Macromol. 2022, 203, 650–660. [Google Scholar] [CrossRef]
- Santos, J.C.; Sousa, R.C.; Otoni, C.G.; Moraes, A.R.; Souza, V.G.; Medeiros, E.A.; Soares, N.F. Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innov. Food Sci. Emerg. Technol. 2018, 48, 179–194. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, Y.; Yuan, L.; Yong, H.; Liu, J. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll. 2019, 96, 102–111. [Google Scholar] [CrossRef]
- Salari, M.; Khiabani, M.S.; Mokarram, R.R.; Ghanbarzadeh, B.; Kafil, H.S. Development and evaluation of chitosan-based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll. 2018, 84, 414–423. [Google Scholar] [CrossRef]
- Koosha, M.; Hamedi, S. Intelligent Chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties. Prog. Org. Coat. 2019, 127, 338–347. [Google Scholar] [CrossRef]
- Indumathi, M.P.; Rajarajeswari, G.R. Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. Int. J. Biol. Macromol. 2019, 124, 163–174. [Google Scholar]
- Al-Naamani, L.; Dobretsov, S.; Dutta, J. Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov. Food Sci. Emerg. Technol. 2016, 38, 231–237. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Xiong, H.M. Photoluminescent ZnO nanoparticles and their biological applications. Materials 2015, 8, 3101–3127. [Google Scholar] [CrossRef]
- Emamifar, A. Applications of Antimicrobial Polymer Nanocomposites in Food Packaging. In Advances in Nanocomposite Technology; Hashim, A., Ed.; InTech: Rijeka, Croatia, 2011; pp. 299–318. [Google Scholar]
- Bastarrachea, L.; Dhawan, S.; Sablani, S.S. Engineering properties of polymeric-based antimicrobial films for food packaging: A review. Food Eng. Rev. 2011, 3, 79–93. [Google Scholar] [CrossRef]
- López-Carballo, G.; Gómez-Estaca, J.; Catalá, R.; Hernández-Muñoz, P.; Gavara, R. Active antimicrobial food and beverage packaging. In Emerging Food Packaging Technologies; Yam, K.L., Lee, D.S., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2012; pp. 27–54. [Google Scholar]
- Hauser, C.; Wunderlich, J. Antimicrobial packaging films with a sorbic acid based coating. Procedia Food Sci. 2011, 1, 197–202. [Google Scholar] [CrossRef]
- Shetty, K.K.; Dwelle, R.B. Disease and sprout control in individually film wrapped potatoes. Am. Potato J. 1990, 67, 705–718. [Google Scholar] [CrossRef]
- Fu, Y.; Dudley, E.G. Antimicrobial-coated films as food packaging: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3404–3437. [Google Scholar] [CrossRef] [PubMed]
- Torlak, E.; Nizamlioğlu, M. Antimicrobial effectiveness of chitosan-essential oil coated plastic films against foodborne pathogens. J. Plast. Film Sheeting 2011, 27, 235–248. [Google Scholar] [CrossRef]
- Torlak, E.; Sert, D. Antibacterial effectiveness of chitosan–propolis coated polypropylene films against foodborne pathogens. Int. J. Biol. Macromol. 2013, 60, 52–55. [Google Scholar] [CrossRef] [PubMed]
- La Storia, A.; Mauriello, G.; Villani, F.; Ercolini, D. Coating-activation and antimicrobial efficacy of different polyethylene films with a nisin-based solution. Food Bioprocess Technol. 2013, 6, 2770–2779. [Google Scholar] [CrossRef]
- Guo, M.; Jin, T.Z.; Yang, R. Antimicrobial polylactic acid packaging films against Listeria and Salmonella in culture medium and on ready-to-eat meat. Food Bioprocess Technol. 2014, 7, 3293–3307. [Google Scholar] [CrossRef]
- Honarvar, Z.; Farhoodi, M.; Khani, M.R.; Mohammadi, A.; Shokri, B.; Ferdowsi, R.; Shojaee-Aliabadi, S. Application of cold plasma to develop carboxymethyl cellulose-coated polypropylene films containing essential oil. Carbohydr. Polym. 2017, 176, 1–10. [Google Scholar] [CrossRef]
- Mulla, M.; Ahmed, J.; Al-Attar, H.; Castro-Aguirre, E.; Arfat, Y.A.; Auras, R. Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control 2017, 73, 663–671. [Google Scholar] [CrossRef]
- Fasihnia, S.H.; Peighambardoust, S.H.; Peighambardoust, S.J.; Oromiehie, A. Development of novel active polypropylene based packaging films containing different concentrations of sorbic acid. Food Packag. Shelf Life 2018, 18, 87–94. [Google Scholar] [CrossRef]
- Kolarova Raskova, Z.; Stahel, P.; Sedlarikova, J.; Musilova, L.; Stupavska, M.; Lehocky, M. The effect of plasma pretreatment and cross-linking degree on the physical and antimicrobial properties of nisin-coated PVA films. Materials 2018, 11, 1451. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Li, P.; Wei, Z.; Wang, J.; Wang, H.; Wang, Z. Antimicrobial activity of nisin-coated polylactic acid film facilitated by cold plasma treatment. J. Appl. Polym. Sci. 2018, 135, 46844. [Google Scholar] [CrossRef]
- Munteanu, B.S.; Sacarescu, L.; Vasiliu, A.L.; Hitruc, G.E.; Pricope, G.M.; Sivertsvik, M.; Vasile, C. Antioxidant/antibacterial electrospun nanocoatings applied onto PLA films. Materials 2018, 11, 1973. [Google Scholar] [CrossRef] [PubMed]
- Valerini, D.; Tammaro, L.; Di Benedetto, F.; Vigliotta, G.; Capodieci, L.; Terzi, R.; Rizzo, A. Aluminium-doped zinc oxide coatings on polylactic acid films for antimicrobial food packaging. Thin Solid Film. 2018, 645, 187–192. [Google Scholar] [CrossRef]
- Degli Esposti, M.; Toselli, M.; Sabia, C.; Messi, P.; de Niederhäusern, S.; Bondi, M.; Iseppi, R. Effectiveness of polymeric coated films containing bacteriocin-producer living bacteria for Listeria monocytogenes control under simulated cold chain break. Food Microbiol. 2018, 76, 173–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Xie, Y.; Jin, J.; Liu, H.; Zhang, H. Development and Application of an Active Plastic Multilayer Film by Coating a Plantaricin BM-1 for Chilled Meat Preservation. J. Food Sci. 2019, 84, 1864–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldevraj, R.M.; Jagadish, R.S. Incorporation of chemical antimicrobial agents into polymeric films for food packaging. In Multifunctional and Nanoreinforced Polymers for Food Packaging; Lagarón, J.-M., Ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 368–420. [Google Scholar]
- Rocha, M.; Ferreira, F.A.; Souza, M.M.; Prentice, C. Antimicrobial films: A review. Microb. Pathog. Strateg. Combat. Sci. Technol. Educ. 2013, 1, 23–31. [Google Scholar]
- López, O.V.; Giannuzzi, L.; Zaritzky, N.E.; García, M.A. Potassium sorbate controlled release from corn starch films. Mater. Sci. Eng. 2013, 33, 1583–1591. [Google Scholar] [CrossRef]
- Barzegar, H.; Azizi, M.H.; Barzegar, M.; Hamidi-Esfahani, Z. Effect of potassium sorbate on antimicrobial and physical properties of starch–clay nanocomposite films. Carbohydr. Polym. 2014, 110, 26–31. [Google Scholar] [CrossRef]
- Kuplennik, N.; Tchoudakov, R.; Zelas, Z.B.B.; Sadovski, A.; Fishman, A.; Narkis, M. Antimicrobial packaging based on linear low-density polyethylene compounded with potassium sorbate. LWT-Food Sci. Technol. 2015, 62, 278–286. [Google Scholar] [CrossRef]
- Fasihnia, S.H.; Peighambardoust, S.H.; Peighambardoust, S.J.; Oromiehie, A.; Soltanzadeh, M.; Pateiro, M.; Lorenzo, J.M. Properties and application of multifunctional composite polypropylene-based films incorporating a combination of BHT, BHA and sorbic acid in extending donut shelf-life. Molecules 2020, 25, 5197. [Google Scholar] [CrossRef]
- Oliveira, C.D.M.; Gomes, B.D.O.; Batista, A.F.; Mikcha, J.M.; Yamashita, F.; Scapim, M.R.; Bergamasco, R.D.C. Development of sorbic acid microcapsules and application in starch-poly (butylene adipate co-terephthalate) films. J. Food Process. Preserv. 2021, 45, e15459. [Google Scholar] [CrossRef]
- Imran, M.; Klouj, A.; Revol-Junelles, A.M.; Desobry, S. Controlled release of nisin from HPMC, sodium caseinate, poly-lactic acid and chitosan for active packaging applications. J. Food Eng. 2014, 143, 178–185. [Google Scholar] [CrossRef]
- Zehetmeyer, G.; Meira, S.M.M.; Scheibel, J.M.; de Oliveira, R.V.B.; Brandelli, A.; Soares, R.M.D. Influence of melt processing on biodegradable nisin-PBAT films intended for active food packaging applications. J. Appl. Polym. Sci. 2016, 133, 1–10. [Google Scholar] [CrossRef]
- Lopresti, F.; Botta, L.; La Carrubba, V.; Di Pasquale, L.; Settanni, L.; Gaglio, R. Combining carvacrol and nisin in biodegradable films for antibacterial packaging applications. Int. J. Biol. Macromol. 2021, 193, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Rhim, J.W. Preparation of antibacterial poly (lactide)/poly (butylene adipate-co-terephthalate) composite films incorporated with grapefruit seed extract. Int. J. Biol. Macromol. 2018, 120, 846–852. [Google Scholar] [CrossRef]
- Shankar, S.; Wang, L.F.; Rhim, J.W. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Mater. Sci. Eng. 2018, 93, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Mizielińska, M.; Kowalska, U.; Jarosz, M.; Sumińska, P.; Landercy, N.; Duquesne, E. The effect of UV aging on antimicrobial and mechanical properties of PLA films with incorporated zinc oxide nanoparticles. Int. J. Environ. Res. Public Health 2018, 15, 794. [Google Scholar] [CrossRef] [Green Version]
- Perez Espitia, P.J.; de Fátima Ferreira Soares, N.; dos Reis Coimbra, J.S.; de Andrade, N.J.; Souza Cruz, R.; Alves Medeiros, E.A. Bioactive peptides: Synthesis, properties, and applications in the packaging and preservation of food. Compr. Rev. Food Sci. Food Saf. 2012, 11, 187–204. [Google Scholar] [CrossRef]
- Vasile, C. Polymeric nanocomposites and nanocoatings for food packaging: A review. Materials 2018, 11, 1834. [Google Scholar] [CrossRef] [Green Version]
- Bastarrachea, L.J. Antimicrobial polypropylene with ε-poly (lysine): Effectiveness under UV-A light and food storage applications. LWT 2019, 102, 276–283. [Google Scholar] [CrossRef]
- Doshna, N.A.; Herskovitz, J.E.; Redfearn, H.N.; Goddard, J.M. Antimicrobial Active Packaging Prepared by Reactive Extrusion of ε-Poly l-lysine with Polypropylene. ACS Food Sci. Technol. 2021, 2, 391–399. [Google Scholar] [CrossRef]
- Jung, J.; Zhao, Y. Antimicrobial packaging for fresh and minimally processed fruits and vegetables. In Antimicrobial Food Packaging; Barros-Velázquez, J., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 243–256. [Google Scholar]
- Pérez-Gago, M.B.; Palou, L. Antimicrobial packaging for fresh and fresh-cut fruits and vegetables. In Fresh-Cut Fruits and Vegetables: Technology, Physiology, and Safety; Pareek, S., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 403–452. [Google Scholar]
- Alves Medeiros, E.A.; Ferreira Soares, N.D.F.; Sales Polito, T.D.O.; De Sousa, M.M.; Pereira Silva, D.F. Antimicrobial sachets post-harvest mango fruits. Rev. Bras. De Frutic. 2011, 33, 363–370. [Google Scholar]
- Ayala-Zavala, J.F.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; Leyva, J.M.; Ortega-Ramírez, L.A.; Carrazco-Lugo, D.K.; Miranda, M.R.A. Pectin–cinnamon leaf oil coatings add antioxidant and antibacterial properties to fresh-cut peach. Flavour Fragr. J. 2013, 28, 39–45. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Soares, N.D.F.F.; dos Reis Coimbra, J.S.; de Andrade, N.J.; Cruz, R.S.; Medeiros, E.A.A. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 2012, 5, 1447–1464. [Google Scholar] [CrossRef]
- Wattananawinrat, K.; Threepopnatkul, P.; Kulsetthanchalee, C. Morphological and thermal properties of LDPE/EVA blended films and development of antimicrobial activity in food packaging film. Energy Procedia 2014, 56, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Salmieri, S.; Islam, F.; Khan, R.A.; Hossain, F.M.; Ibrahim, H.M.; Miao, C.; Hamad, W.Y.; Lacroix, M. Antimicrobial nanocomposite films made of poly (lactic acid)–cellulose nanocrystals (PLA–CNC) in food applications—Part B: Effect of oregano essential oil release on the inactivation of Listeria monocytogenes in mixed vegetables. Cellulose 2014, 21, 4271–4285. [Google Scholar] [CrossRef]
- Shemesh, R.; Krepker, M.; Nitzan, N.; Vaxman, A.; Segal, E. Active packaging containing encapsulated carvacrol for control of postharvest decay. Postharvest Biol. Technol. 2016, 118, 175–182. [Google Scholar] [CrossRef]
- Chang, Y.; Choi, I.; Cho, A.R.; Han, J. Reduction of Dickeya chrysanthemi on fresh-cut iceberg lettuce using antimicrobial sachet containing microencapsulated oregano essential oil. LWT-Food Sci. Technol. 2017, 82, 361–368. [Google Scholar] [CrossRef]
- Kwon, S.J.; Chang, Y.; Han, J. Oregano essential oil-based natural antimicrobial packaging film to inactivate Salmonella enterica and yeasts/molds in the atmosphere surrounding cherry tomatoes. Food Microbiol. 2017, 65, 114–121. [Google Scholar] [CrossRef]
- Sangsuwan, J.; Sutthasupa, S. Effect of chitosan and alginate beads incorporated with lavender, clove essential oils, and vanillin against Botrytis cinerea and their application in fresh table grapes packaging system. Packag. Technol. Sci. 2019, 32, 595–605. [Google Scholar] [CrossRef]
- Shapi’i, R.A.; Othman, S.H.; Nordin, N.; Basha, R.K.; Naim, M.N. Antimicrobial properties of starch films incorporated with chitosan nanoparticles: In vitro and in vivo evaluation. Carbohydr. Polym. 2020, 230, 115602. [Google Scholar] [CrossRef]
- Motlagh, N.V.; Aliabadi, M.; Rahmani, E.; Ghorbanpour, S. The Effect of Nano-Silver Packaging on Quality Maintenance of Fresh Strawberry. Int. J. Nutr. Food Eng. 2020, 14, 123–128. [Google Scholar]
- Perdana, M.I.; Ruamcharoen, J.; Panphon, S.; Leelakriangsak, M. Antimicrobial activity and physical properties of starch/chitosan film incorporated with lemongrass essential oil and its application. LWT-Food Sci. Technol. 2021, 141, 110934. [Google Scholar] [CrossRef]
- Cenci-Goga, B.T.; Iulietto, M.F.; Sechi, P.; Borgogni, E.; Karama, M.; Grispoldi, L. New Trends in Meat Packaging. Microbiol. Res. 2020, 11, 56–67. [Google Scholar] [CrossRef]
- Kargozari, M.; Hamedi, H. Incorporation of essential oils (EOs) and nanoparticles (NPs) into active packaging systems in meat and meat products: A review. Food Health 2019, 2, 16–30. [Google Scholar]
- Bader, R.; Becila, S.; Ruiz, P.; Djeghim, F.; Sanah, I.; Boudjellal, A.; Leroy, S. Physicochemical and microbiological characteristics of El-Guedid from meat of different animal species. Meat Sci. 2021, 171, 108277. [Google Scholar] [CrossRef] [PubMed]
- Muhialdin, B.J.; Kadum, H.; Fathallah, S.; Hussin, A.S.M. Metabolomics profiling and antibacterial activity of fermented ginger paste extends the shelf life of chicken meat. LWT-Food Sci. Technol. 2020, 132, 109897. [Google Scholar] [CrossRef]
- Talebi, F.; Misaghi, A.; Khanjari, A.; Kamkar, A.; Gandomi, H.; Rezaeigolestani, M. Incorporation of spice essential oils into poly-lactic acid film matrix with the aim of extending microbiological and sensorial shelf life of ground beef. LWT-Food Sci. Technol. 2018, 96, 482–490. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Punbusayakul, N.; Lee, D.S. Antimicrobial packaging for meat products. In Antimicrobial Food Packaging, 1st ed.; Barros-Velázquez, J., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 229–241. [Google Scholar]
- Fang, Z.; Zhao, Y.; Warner, R.D.; Johnson, S.K. Active and intelligent packaging in meat industry. Trends Food Sci. Technol. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- McMillin, K.W. Advancements in meat packaging. Meat Sci. 2017, 132, 153–162. [Google Scholar] [CrossRef]
- Prabhu, R.; Devaraju, A. Developing an antimicrobial packaging to improve the shelf life of meat using silver zeolite coating on BOPP film. Mater. Today: Proc. 2018, 5, 14553–14559. [Google Scholar] [CrossRef]
- Barcenilla, C.; Ducic, M.; López, M.; Prieto, M.; Álvarez-Ordóñez, A. Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Sci. 2022, 183, 108661. [Google Scholar] [CrossRef] [PubMed]
- Trbojevich, R.A.; Khare, S.; Lim, J.H.; Watanabe, F.; Gokulan, K.; Krohmaly, K.; Williams, K. Assessment of silver release and biocidal capacity from silver nanocomposite food packaging materials. Food Chem. Toxicol. 2020, 145, 111728. [Google Scholar] [CrossRef] [PubMed]
- Azlin-Hasim, S.; Cruz-Romero, M.C.; Ghoshal, T.; Morris, M.A.; Cummins, E.; Kerry, J.P. Application of silver nanodots for potential use in antimicrobial packaging applications. Innov. Food Sci. Emerg. Technol. 2015, 27, 136–143. [Google Scholar] [CrossRef]
- Deus, D.; Kehrenberg, C.; Schaudien, D.; Klein, G.; Krischek, C. Effect of a nano-silver coating on the quality of fresh turkey meat during storage after modified atmosphere or vacuum packaging. Poult. Sci. 2017, 96, 449–457. [Google Scholar] [CrossRef]
- Kuuliala, L.; Pippuri, T.; Hultman, J.; Auvinen, S.M.; Kolppo, K.; Nieminen, T.; Jääskeläinen, E. Preparation and antimicrobial characterization of silver-containing packaging materials for meat. Food Packag. Shelf Life 2015, 6, 53–60. [Google Scholar] [CrossRef]
- Pabast, M.; Shariatifar, N.; Beikzadeh, S.; Jahed, G. Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control 2018, 91, 185–192. [Google Scholar] [CrossRef]
- Tabatabaee Bafroee, A.S.; Khanjari, A.; Teimourifard, R.; Yarmahmoudi, F. Development of a novel active packaging film to retain quality and prolong the shelf life of fresh minced lamb meat. J. Food Process. Preserv. 2020, 44, e14880. [Google Scholar] [CrossRef]
- Esmaeili, H.; Cheraghi, N.; Khanjari, A.; Rezaeigolestani, M.; Basti, A.A.; Kamkar, A.; Aghaee, E.M. Incorporation of nanoencapsulated garlic essential oil into edible films: A novel approach for extending shelf life of vacuum-packed sausages. Meat Sci. 2020, 166, 108135. [Google Scholar] [CrossRef]
- Syahida, S.N.; Ismail-Fitry, M.R.; Ainun, Z.M.A.; Hanani, Z.N. Effects of gelatin/palm wax/lemongrass essential oil (GPL)-coated Kraft paper on the quality and shelf life of ground beef stored at 4 °C. Food Packag. Shelf Life 2021, 28, 100640. [Google Scholar] [CrossRef]
- Owusu-Kwarteng, J.; Akabanda, F.; Agyei, D.; Jespersen, L. Microbial safety of milk production and fermented dairy products in Africa. Microorganisms 2020, 8, 752. [Google Scholar] [CrossRef]
- Fernández, M.; Hudson, J.A.; Korpela, R.; de los Reyes-Gavilán, C.G. Impact on human health of microorganisms present in fermented dairy products: An overview. BioMed Res. Int. 2015, 2015, 412714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirza Alizadeh, A.; Masoomian, M.; Shakooie, M.; Zabihzadeh Khajavi, M.; Farhoodi, M. Trends and applications of intelligent packaging in dairy products: A review. Crit. Rev. Food Sci. Nutr. 2021, 62, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Karaman, A.D.; Özer, B.; Pascall, M.A.; Alvarez, V. Recent advances in dairy packaging. Food Rev. Int. 2015, 31, 295–318. [Google Scholar] [CrossRef]
- Ünalan, İ.U.; Arcan, I.; Korel, F.; Yemenicioğlu, A. Application of active zein-based films with controlled release properties to control Listeria monocytogenes growth and lipid oxidation in fresh Kashar cheese. Innov. Food Sci. Emerg. Technol. 2013, 20, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Nithya, V.; Murthy, P.S.K.; Halami, P.M. Development and application of active films for food packaging using antibacterial peptide of B acillus licheniformis Me1. J. Appl. Microbiol. 2013, 115, 475–483. [Google Scholar] [CrossRef]
- Han, J.H. A review of food packaging technologies and innovations. In Innovations in Food Packaging; Academic Press: Cambridge, MA, USA, 2014; pp. 3–12. [Google Scholar]
- Meira, S.M.M.; Zehetmeyer, G.; Scheibel, J.M.; Werner, J.O.; Brandelli, A. Starch-halloysite nanocomposites containing nisin: Characterization and inhibition of Listeria monocytogenes in soft cheese. LWT-Food Sci. Technol. 2016, 68, 226–234. [Google Scholar] [CrossRef]
- Ghasemi, S.; Javadi, N.H.S.; Moradi, M.; Khosravi-Darani, K. Application of zein antimicrobial edible film incorporating Zataria multiflora boiss essential oil for preservation of Iranian ultrafiltered Feta cheese. Afr. J. Biotechnol. 2015, 14, 2014–2021. [Google Scholar]
- Peighambardoust, S.H.; Beigmohammadi, F.; Peighambardoust, S.J. Application of organoclay nanoparticle in low-density polyethylene films for packaging of UF cheese. Packag. Technol. Sci. 2016, 29, 355–363. [Google Scholar] [CrossRef]
- Beigmohammadi, F.; Peighambardoust, S.H.; Hesari, J.; Azadmard-Damirchi, S.; Peighambardoust, S.J.; Khosrowshahi, N.K. Antibacterial properties of LDPE nanocomposite films in packaging of UF cheese. LWT-Food Sci. Technol. 2016, 65, 106–111. [Google Scholar] [CrossRef]
- Da Silva Dannenberg, G.; Funck, G.D.; dos Santos Cruxen, C.E.; de Lima Marques, J.; da Silva, W.P.; Fiorentini, Â.M. Essential oil from pink pepper as an antimicrobial component in cellulose acetate film: Potential for application as active packaging for sliced cheese. LWT-Food Sci. Technol. 2017, 81, 314–318. [Google Scholar] [CrossRef]
- Li, W.; Li, L.; Zhang, H.; Yuan, M.; Qin, Y. Evaluation of PLA nanocomposite films on physicochemical and microbiological properties of refrigerated cottage cheese. J. Food Process. Preserv. 2018, 42, e13362. [Google Scholar] [CrossRef]
- Divsalar, E.; Tajik, H.; Moradi, M.; Forough, M.; Lotfi, M.; Kuswandi, B. Characterization of cellulosic paper coated with chitosan-zinc oxide nanocomposite containing nisin and its application in packaging of UF cheese. Int. J. Biol. Macromol. 2018, 109, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, M.; Tajik, H.; Moradi, M.; Forough, M.; Divsalar, E.; Kuswandi, B. Nanostructured chitosan/monolaurin film: Preparation, characterization and antimicrobial activity against Listeria monocytogenes on ultrafiltered white cheese. LWT-Food Sci. Technol. 2018, 92, 576–583. [Google Scholar] [CrossRef]
- Küçük, G.S.; Çelik, Ö.F.; Mazi, B.G.; Türe, H. Evaluation of alginate and zein films as a carrier of natamycin to increase the shelf life of kashar cheese. Packag. Technol. Sci. 2020, 33, 39–48. [Google Scholar] [CrossRef]
- De Moraes, J.O.; Hilton, S.T.; Moraru, C.I. The effect of pulsed light and starch films with antimicrobials on Listeria innocua and the quality of sliced cheddar cheese during refrigerated storage. Food Control 2020, 112, 107134. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Oprea, O.C.; Ficai, A.; Ene, V.L.; Vasile, B.S.; Holban, A.M. Antibacterial Biodegradable Films Based on Alginate with Silver Nanoparticles and Lemongrass Essential Oil–Innovative Packaging for Cheese. Nanomaterials 2021, 11, 2377. [Google Scholar] [CrossRef]
- Chang, S.; Mohammadi Nafchi, A.; Baghaie, H. Development of an active packaging based on polyethylene containing linalool or thymol for mozzarella cheese. Food Sci. Nutr. 2021, 9, 3732–3739. [Google Scholar] [CrossRef]
- Fajardo, P.; Martins, J.T.; Fuciños, C.; Pastrana, L.; Teixeira, J.A.; Vicente, A.A. Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. J. Food Eng. 2010, 101, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Incoronato, A.L.; Conte, A.; Buonocore, G.G.; Del Nobile, M.A. Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. J. Dairy Sci. 2011, 94, 1697–1704. [Google Scholar] [CrossRef] [Green Version]
- Otero, V.; Becerril, R.; Santos, J.A.; Rodríguez-Calleja, J.M.; Nerín, C.; García-López, M.L. Evaluation of two antimicrobial packaging films against Escherichia coli O157: H7 strains in vitro and during storage of a Spanish ripened sheep cheese (Zamorano). Food Control 2014, 42, 296–302. [Google Scholar] [CrossRef]
- Kapetanakou, A.E.; Skandamis, P.N. Applications of active packaging for increasing microbial stability in foods: Natural volatile antimicrobial compounds. Curr. Opin. Food Sci. 2016, 12, 1–12. [Google Scholar] [CrossRef]
Antimicrobial Agent | Utilization Method | Food Product | References |
---|---|---|---|
Sorbates | Combination of antimicrobial agent with low-density polyethylene material | Cheese | [82] |
Potassium Sorbate Chitosan | The starch film incorporated with antimicrobial agents | Sweet potato | [83] |
Lysozyme | Layer by layer, assembled chitosan organic rectorite | Pork | [84] |
Butylated hydroxytoluene | Incorporating the antimicrobial with High-Density Polyethylene (HDPE) | Cereal | [47] |
Sodium benzoate Potassium sorbate | Edible active coatings (EACs) incorporated with antimicrobial agents | Strawberry | [85] |
Nisin Chitosan Potassium sorbate Silver substituted zeolite | Active multilayer bags (Low-Density Polyethylene (LDPE)/polyamide) | Chicken drumsticks | [86] |
Benzoic acid Sodium metabisulphite Tert-butylhydroquinone Etil-N-lauroyl-L-arginine Cinnamon essential oil Oregano essential oil | Incorporating the antimicrobial substance into the adhesive layer | Tomato puree | [75] |
N-α-lauroyl-l-arginine | Casting of oxidized starch gelatin solutions | Chicken fillets | [87] |
ß-Cyclodextrin | Packaging with a double-bottom (with trapped antimicrobial volatile) | Apple | [88] |
Oregano essential oil | Resveratrol nanoemulsion loaded edible pectin coating | Pork loin | [89] |
Encapsulated cumin | Encapsulated cumin seed essential oil-loaded active papers | Beef hamburger | [90] |
Packaging Material (Chitosan + Polymer, Chitosan + Nanomaterial) | Target Microorganism | Antimicrobial Functionality | Reference |
---|---|---|---|
Chitosan + Gallic acid | Two Gram-negative bacteria: E. coli and Salmonella typhimurium, and two Gram-positive bacteria: Bacillus subtilis and Listeria innocua | Gallic acid significantly increased the antimicrobial activities of chitosan films | [126] |
Chitosan + Maqui berry (MB) extracts | L. innocua, Serratia marcescens, Aeromonas hydrophila, Achromobacter denitrificans, Alcaligenes faecalis, Pseudomonas fluorescens, Citrobacter freundii and Shewanella putrefaciens | Pure chitosan film effective against only S. putrefaciens and P. fluorescens Chitosan with MB films were effective against all the bacteria except L. innocua | [127] |
Chitosan film + Propolis extract (PE) | Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli, Pseudomonas aeruginosa, and Salmonella Enteritidis) | Chitosan alone did not show any inhibition against tested bacteria Antimicrobial activity was evident for chitosan + PE | [128] |
Chitosan + Rosemary essential oil (REO) | Listeria monocytogenes, Pseudomonas putida, Streptococcus agalactiae, E. coli, and Lactococcus lactis | Notable inhibitory activity on microorganisms | [129] |
Chitosan + Glycerol | E. coli, S. aureus and A. niger | High content of chitosan film had antimicrobial properties compared with a low chitosan content film Chitosan film with increasing glycerol had no bacteriostatic effect | [130] |
Chitosan + Peptide | E. coli and B. subtilis | All developed films exhibited antibacterial activity No significant improvement in antibacterial activity with the addition of soy or corn peptides | [131] |
Chitosan + Squid gelatin hydrolysates (SGH) | Aspergillus parasiticus | Fungistatic activity of the chitosan films was not significantly improved with the addition of 10% SGH Fungistatic index increased by 34% by adding 20% SGH | [132] |
Chitosan + Olive leaf extract (OLE) | E. coli, L. monocytogenes, and Campylobacter jejuni subsp. jejuni | Chitosan + OLE films have significant antimicrobial activity against L. monocytogenes and C. jejuni but are not evident for E. Coli. | [133] |
Chitosan + AgNPs or Zinc oxide nanoparticles (ZnONPs) | S. aureus, E. coli, Salmonella typhamrium, B. cereus, and Listeria monocyte. | Developed chitosan nanocomposite films showed high antimicrobial activity | [134] |
Chitosan + ZnONPs | Gram-positive bacterium Bacillus subtilis (B. subtilis) and Gram-negative bacterium (E. coli) | Twofold and 1.5-fold increment in the antimicrobial activity was observed for B. subtilis and E. coli, respectively, with increased ZnONPs concentration in the films from 0(w/w) to 2%(w/w) | [135] |
Chitosan + AgNPs | Gram-positive bacteria: S. aureus and pathogenic yeast: Candida albicans (C. albicans) | Developed film significantly inhibited the growth of S. aureus and showed marked antifungal activity against C. albican | [136] |
Chitosan + ZnONPs + Gallic acid | Gram-positive B. subtilis and Gram-negative E. coli | Resultant film was efficient against the microorganisms and has a great potential application for improving the shelf life of food products | [137] |
Chitosan/pullulan (CS/PL) nanocomposite films + clove essential oil (CEO) loaded Chitosan-ZnO hybrid nanoparticles | Pseudomonas aeruginosa (P. aeruginosa), S. aureus, and E. coli | Developed film enhanced antioxidant activity and showed strong antibacterial activity against the target microorganisms | [138] |
Chitosan/Zein films + Mosla chinensis EOs nanoemulsions (NEs) and NPs | P. aeruginosa, B. subtilis, E. coli and S. aureus | Bacterial growth of S. aureus, B. subtilis and E. coli was inhibited in both EO-loaded NP and NE films. | [139] |
Chitosan + polyvinyl alcohol (PVA) + Fe2O3/TiO2 (FeTiO2) NPs | E. coli, S. aureus, A. niger and C. albicans | Nanocomposites films had good antibacterial activity | [140] |
Chitosan + Guar gum + PVA + Moringa extract (ME) | E. coli and S. aureus | PVA and guar gum did not show any antibacterial activity Incorporating ME enhanced the antibacterial activity against S. aureus and E. coli bacteria | [141] |
Chitosan + turmeric essential oil (TEO) + magnetic-silica nanocomposites | Bacillus cereus | TEO exhibited antioxidant and antibacterial activities against Bacillus cereus Chitosan film incorporated with the bionanocomposite had a stronger antibacterial effect against B. cereus than the chitosan film containing only TEO | [142] |
Antimicrobials | Polymer | Target Microorganisms | References |
---|---|---|---|
Potassium sorbate | Starch film | S. aureus, Candida spp., Salmonella spp. and Penicillium spp. | [171] |
Starch–clay nanocomposite | A. niger | [172] | |
Linear low-density polyethylene (LLDPE) | Yeast | [173] | |
Sorbic acid | Polypropylene (PP)-based film | E. coli, S. aureus and A. niger | [162] |
Polypropylene-based composite films | E. coli, S. aureus and A. niger | [174] | |
Starch-poly (butylene adipate co-terephthalate) (PBAT) films | E. coli, S. aureus, Salmonella Typhimurium, Pseudomonas aeruginosa, Aeromonas Hydrophyla, B. cereus and L. innocua | [175] | |
Nisin | Hydroxypropyl methylcellulose (HPMC), chitosan (CTS), sodium caseinate (SC), and polylactic acid (PLA) films | L. monocytogenes and S. aureus | [176] |
Poly (butylene adipate-co-terephthalate) (PBAT) films | L. monocytogenes, S. aureus, Clostridium perfringens, and B. cereus | [177] | |
Mater-Bi (MB)-based film | L. monocytogenes, Salmonella enteritidis, E. coli, and S. aureus. | [178] | |
Poly(lactide) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blend films | E. coli and L. monocytogenes | [179] | |
Zinc oxide nanoparticles | PLA-based nanocomposite films | E. coli and L. monocytogenes | [180] |
PLA-based films | S. aureus, Bacillus atrophaeus, B. cereus, E. coli, and Candida albicans | [181] |
Antimicrobial System | Fruit/Vegetable Products | Target Microorganisms | Findings | References |
---|---|---|---|---|
Essential oil (EO) sachets EOs: oregano and lemon grass EO | Mango | Colletotrichum gloeosporides, Lasiodiplodia theobromae, Xanthomonas campestris pv. mangiferae indica and Alternaria alternate | Presence of EOs did not affect the physicochemical attributes of the produce Active sachets incorporated with EOs reduced the growth of tested fungi Lemongrass was more effective | [188] |
Edible pectin film enriched with the essential oil from cinnamon leaves (CLO) | Fresh-cut peach | Salmonella enterica subsp. enterica serovar Choleraesuis, L. monocytogenes, E. coli, and S. aureus | Developed film decreased bacteria growth Antibacterial-enriched pectin film performed best at a CLO concentration of 36.1 g/L | [189] |
Essential oil (EO) sachets EOs: oregano, cinnamon, and lemon grass EO | Papaya | Alternaria alternata, Fusarium semitectum, Lasiodiplodia theobromae and Rhizopus stolonifer | Reduction in the growth of microorganisms was observed Cinnamon sachet had the most significant reduction in microorganisms at the end of storage | [190] |
Ethylene-vinyl acetate (EVA) blended with Low-density polyethylene (LDPE), incorporating EOs EOs: clove leaf oil (CL), sweet basil oil (SB) and cinnamon bark oil (CB) | Fresh-cut tomatoes | E. coli (Gram-negative bacteria) and S. aureus (Gram-positive bacteria) | Best performance was shown with blended film incorporated with CB Quality was preserved in blended films that incorporated EOs compared to films without EO | [191] |
Poly(lactic acid)–cellulose nanocrystals (PLA–CNC)–oregano films | Mixed vegetables | L. monocytogenes | Strong antimicrobial potential of PLA–CNC–oregano films was evident | [192] |
Polyamide incorporated with carvacrol essential oil | Cherry tomatoes Lychee Grapes | Alternaria alternata, B. cinerea, Penicillium digitatum, Penicillium expansum, and A. niger | Reduced decay development on various fresh produce (cherry tomato, lychee, and grape) packed in active bags Developed film exhibited excellent antifungal properties | [193] |
Polyvinyl alcohol encapsulated with oregano EO | Fresh-cut lettuce | Dickeya chrysanthemi, molds and yeasts (MY), and total mesophilic aerobic bacteria (MAB) | Texture and color were not affected Substantial growth inhibitory effects against MY and total MAB | [194] |
Polyvinyl alcohol (PVA) film incorporated with oregano essential oil | Tomatoes | Salmonella enterica, total molds and yeasts (MY), and mesophilic aerobic bacteria (MAB) | Quality of the packed produce was preserved | [195] |
Essential oil (EO) sachets Chitosan/alginate beads containing EOs and vanillin EOs: clove and lavender | Grapes | Botrytis cinerea | Chitosan/alginate beads emitting clove EO maintained produce quality | [196] |
Starch film incorporated with chitosan nanoparticles (CNP) | Cherry tomatoes | B. cereus, S. aureus, E coli and Salmonella typhimurium | CNP concentration influenced the antimicrobial activity of the starch/CNP films CNP suppressed Gram-positive bacteria more effectively than Gram-negative bacteria Extended shelf life of packed cherry tomatoes in developed films | [197] |
Low-density polyethylene (LDPE) with silver nanoparticles (AgNPs) | Strawberry | Molds and yeasts (MY), and E. coli | Nano-silver packages improved the storage life and maintained fruit quality | [198] |
Starch-based composite films incorporated with lemongrass essential oil | Chillies | E. coli, B. cereus, S. aureus, Salmonella typhimurium, A. niger, Mucor ruber and Candida albicans | Lemongrass essential oil was effective in microbial growth inhibition Developed film proved efficient for chili preservation | [199] |
Antimicrobial Agent | Product | Aim | References |
---|---|---|---|
Lysozyme | Pork | Determination of the antibacterial properties of the composite mats and the product’s lysozyme activity | [82] |
Nisin Chitosan Potassium sorbate Silver substituted zeolite (AgZeo) | Chicken drumsticks | Evaluating the effectiveness of several antimicrobial agents on the product’s microbiological characteristics | [85] |
N-α-lauroyl-l-arginine ethyl ester monohydrochloride (LAE) | Chicken fillets | Evaluate the efficacy of antimicrobial starch-gelatin films containing LAE | [87] |
Nano-encapsulated Satureja khuzestanica essential oils (SKEO) | Lamb meat | Assessment of chitosan coatings incorporated with SKEO | [214] |
Mentha piperita EO (MPO) Bunium percicum EO (BPO) nanocellulose (NC), | Ground beef | Produce active PLA films incorporated with different concentrations of BPO, MPO, and cellulose nanofibers Assess antibacterial and sensory effects on ground beef | [204] |
Encapsulated cumin | Beef hamburger | Studying the impact of active paper on the microbiological and physical qualities of beef hamburger | [90] |
Nanochitosan Polylophium involucratum essential oil (PEO) | Lamb meat | Evaluated the effects on the chemical, microbial, and sensory characteristics of minced lamb | [215] |
Garlic EO (GEO) | Sausages | Develop active edible films (based on whey protein (WP) or chitosan (CH)) incorporated with GEO or nanoencapsulated GEO (NGEO) Assess antimicrobial effects in packed sausages | [216] |
Gelatin/palm wax/lemongrass essential oil (GPL) | Ground beef | Determine the effectiveness of the GPL-coated Kraft paper in maintaining the quality of ground beef | [217] |
Cheese Types | Description | References |
---|---|---|
Saloio cheese | Whey protein isolate coating as a carrier of lactic acid, natamycin, or chitooligosaccharides Edible coating containing natamycin and lactic acid was selected as the best option for cheese | [50] |
Kashar cheese | Zein and zein–wax coating with lysozyme, catechin, and gallic acid. Lysozyme-based film prevented the growth of L. monocytogens | [222] |
Cheddar cheese | Low-density polyethylene (LDPE) and cellulose films coated with peptide of Bacillus licheniformis Me1 Proven biopreservative efficiency of the activated films in limiting pathogen development | [223] |
Mozzarella cheese | Sachets from microcellular foam starch containing rosemary oil and thyme oil Volatile oils also showed inhibitory effects on the growth of lactic acid bacteria (LAB) and total aerobic bacteria (TAB). | [224] |
Minas Frescal cheese | Starch/halloysite/nisin nanocomposite films Inhibited L. monocytogenes, S. aureus, and Clostridium perfringens Excellent barrier for preventing cheese contamination | [225] |
Feta cheese | Zein-based edible films incorporated with Zataria multiflora boiss essential oil (EO) Inclusion of EO reduced the count of viable Salmonella enteritidis, L. monocytogenes, E. coli, and S. aureus | [226] |
Ultra-filtrated (UF) cheese | Organoclay nanoparticles incorporated into LDPE films Developed packaging able to maintain UF cheese quality without toxicity | [227] |
Ultra-filtrated (UF) cheese | LDPE films incorporated with silver (Ag), copper oxide (CuO), and zinc oxide (ZnO) nanoparticles Optimum antibacterial effect with LDPE films containing Cu-ZnO and with no Ag nanoparticles | [228] |
Mozzarella cheese | Cellulose acetate films incorporated with pink pepper EO Films reduced the microbiological growth in cheese | [229] |
Yunnan cottage cheese | Poly(lactic acid) (PLA) film incorporated with titanium dioxide (TiO2) or Ag nanoparticles Prolonged cheese shelf life | [230] |
Ultra-filtrated (UF) cheese | Cellulosic paper coated with chitosan-zinc oxide nanocomposite containing nisin Presence of L. monocytogenes in cheese was significantly reduced by nisin-containing films | [231] |
Ultrafiltered white cheese | Cellulose–chitosan (CC) films containing monolaurin (ML) 0.5 and 1% ML into CC films reduced L. monocytogenes on cheese by 2.4–2.3 log | [232] |
Kashar cheese | Alginate and zein films containing natamycin Natamycin concentration increased the antifungal activities of the films | [233] |
Sliced cheddar cheese | Starch films containing sodium benzoate (ASF-SB), citric acid (ASF-CA), and both (ASF-CASB) Effective in reducing L. innocua on cheddar cheese surface | [234] |
Telemea cheese | Alginate films with silver nanoparticles and lemongrass EO Films exhibited strong antibacterial activity against B. cereus, S. aureus, E. coli, and Salmonella Typhi | [235] |
Mozzarella cheese | Polyethylene (PE) films containing linalool or thymol Increase in the concentration of active agents increased the antimicrobial activities of the films against E. coli, S. aureus, L. innocua, and Saccharomyces cervicea Increased shelf life of cheese | [236] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fadiji, T.; Rashvand, M.; Daramola, M.O.; Iwarere, S.A. A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes 2023, 11, 590. https://doi.org/10.3390/pr11020590
Fadiji T, Rashvand M, Daramola MO, Iwarere SA. A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes. 2023; 11(2):590. https://doi.org/10.3390/pr11020590
Chicago/Turabian StyleFadiji, Tobi, Mahdi Rashvand, Michael O. Daramola, and Samuel A. Iwarere. 2023. "A Review on Antimicrobial Packaging for Extending the Shelf Life of Food" Processes 11, no. 2: 590. https://doi.org/10.3390/pr11020590
APA StyleFadiji, T., Rashvand, M., Daramola, M. O., & Iwarere, S. A. (2023). A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes, 11(2), 590. https://doi.org/10.3390/pr11020590