Terminal Integral Synergetic Control for Wind Turbine at Region II Using a Two-Mass Model
Abstract
:1. Introduction
- The integral-based macro-variable is employed for designing the synergetic control schemes to enhance MPE from wind at region II whilst reducing control input and drive train oscillations.
- A terminal synergetic manifold has been considered to improve the finite-time convergence rate. By utilizing these control strategies, the MPE can be improved with a minimum control input. Additionally, this terminal-based integral manifold has achieved better performance than other controllers.
- A 600 kW FAST simulator is used to test the effectiveness of the proposed controllers. Moreover, various wind spectral models, such as Kaimal, Von Karman, Smooth-Terrain, and NWTCUP, with different turbulent intensities (10% and 20%) and mean wind speeds (7m/s, 8m/s and 8.5m/s), are examined for each controller.
- Finally, the overall performance of the proposed controllers was evaluated based on the 24 different wind speed profiles, and an extensive comparative analysis has been presented.
2. Wind Turbine Modeling
Description of the Model
3. Problem Formulation
Effective Wind Speed Estimator
4. Nonlinear Controllers
4.1. Integral Synergetic Controller
4.2. Terminal Integral Synergetic Controller
4.3. Modified Integral Synergetic Control
4.4. Terminal Modified Integral Synergetic Control
4.5. Stability Analysis
5. Validation Results
5.1. Description about CART WT and FAST Model
5.2. FAST Model Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kaldellis, J.; Apostolou, D. Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart. Renew. Energy 2017, 108, 72–84. [Google Scholar] [CrossRef]
- Ahmed, S.D.; Al-Ismail, F.S.M.; Shafiullah, M.; Al-Sulaiman, F.A.; El-Amin, I.M. Grid Integration Challenges of Wind Energy: A Review. IEEE Access 2020, 8, 10857–10878. [Google Scholar] [CrossRef]
- Global Wind Energy Council. GWEC Global Wind Report 2022; Brussels, Belgium. 2022. Available online: https://gwec.net/global-wind-energy-council/what-is-gwec/ (accessed on 1 January 2023).
- Ofualagba, G.; Ubeku, E.U. Wind energy conversion system- wind turbine modeling. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Rajendran, S.; Diaz, M.; Cárdenas, R.; Espina, E.; Contreras, E.; Rodriguez, J. A Review of Generators and Power Converters for Multi-MW Wind Energy Conversion Systems. Processes 2022, 10, 2302. [Google Scholar] [CrossRef]
- Shourangiz-Haghighi, A.; Diazd, M.; Zhang, Y.; Li, J.; Yuan, Y.; Faraji, R.; Ding, L.; Guerrero, J.M. Developing More Efficient Wind Turbines: A Survey of Control Challenges and Opportunities. IEEE Ind. Electron. Mag. 2020, 14, 53–64. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, X. An Overview on Fault Diagnosis, Prognosis and Resilient Control for Wind Turbine Systems. Processes 2021, 9, 300. [Google Scholar] [CrossRef]
- Bossanyi, E.A. The design of closed loop controllers for wind turbines. Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol. 2000, 3, 149–163. [Google Scholar]
- Hand, M.M.; Balas, M.J. Non-Linear and Linear Model Based Controller Design for Variable-Speed Wind Turbines; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 1999.
- Hansen, M.H.; Hansen, A.; Larsen, T.J.; Øye, S.; Sørensen, P.; Fuglsang, P. Control Design for a Pitch-Regulated, Variable Speed Wind Turbine. Risoe National Laboratory: Roskilde, Denmark, 2005. [Google Scholar]
- Beltran, B.; Ahmed-Ali, T.; Benbouzid, M.E.H. Sliding Mode Power Control of Variable-Speed Wind Energy Conversion Systems. IEEE Trans. Energy Convers. 2008, 23, 551–558. [Google Scholar] [CrossRef] [Green Version]
- Evangelista, C.; Puleston, P.; Valenciaga, F. Wind turbine efficiency optimization. Comparative study of controllers based on second order sliding modes. Int. J. Hydrogen Energy 2010, 35, 5934–5939. [Google Scholar] [CrossRef]
- Evangelista, C.; Puleston, P.; Valenciaga, F.; Fridman, L.M. Lyapunov-Designed Super-Twisting Sliding Mode Control for Wind Energy Conversion Optimization. IEEE Trans. Ind. Electron. 2013, 60, 538–545. [Google Scholar] [CrossRef]
- Boukhezzar, B.; Siguerdidjane, H. Nonlinear Control of a Variable-Speed Wind Turbine Using a Two-Mass Model. IEEE Trans. Energy Convers. 2011, 26, 149–162. [Google Scholar] [CrossRef]
- Boukhezzar, B.; Siguerdidjane, H. Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Convers. Manag. 2009, 50, 885–892. [Google Scholar] [CrossRef]
- Mérida, J.; Aguilar, L.T.; Dávila, J. Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization. Renew. Energy 2014, 71, 715–728. [Google Scholar] [CrossRef]
- Saravanakumar, R.; Jena, D. Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine. Int. J. Electr. Power Energy Syst. 2015, 69, 421–429. [Google Scholar] [CrossRef]
- Chen, Z.; Yin, M.; Zhou, L.; Xia, Y.; Liu, J.; Zou, Y. Variable parameter nonlinear control for maximum power point tracking considering mitigation of drive-train load. IEEE/CAA J. Autom. Sin. 2017, 4, 252–259. [Google Scholar] [CrossRef]
- Ruz, M.L.; Garrido, J.; Fragoso, S.; Vazquez, F. Improvement of Small Wind Turbine Control in the Transition Region. Processes 2020, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Zhu, Z.; Xiong, Y.; Shao, J. Integral Sliding Mode Control for Maximum Power Point Tracking in DFIG Based Floating Offshore Wind Turbine and Power to Gas. Processes 2021, 9, 1016. [Google Scholar] [CrossRef]
- Rajendran, S.; Diaz, M.; Chavez, H.; Cruchaga, M.; Castillo, E. Terminal Synergetic Control for Variable Speed Wind Turbine Using a Two Mass Model. In Proceedings of the 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Online, 6–9 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Mayilsamy, G.; Natesan, B.; Joo, Y.H.; Lee, S.R. Fast Terminal Synergetic Control of PMVG-Based Wind Energy Conversion System for Enhancing the Power Extraction Efficiency. Energies 2022, 15, 2774. [Google Scholar] [CrossRef]
- Abolvafaei, M.; Ganjefar, S. Maximum power extraction from a wind turbine using second-order fast terminal sliding mode control. Renew. Energy 2019, 139, 1437–1446. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Liu, Y. Implementation of Maximum Power Point Tracking Based on Variable Speed Forecasting for Wind Energy Systems. Processes 2019, 7, 158. [Google Scholar] [CrossRef] [Green Version]
- Abolvafaei, M.; Ganjefar, S. Two novel approaches to capture the maximum power from variable speed wind turbines using optimal fractional high-order fast terminal sliding mode control. Eur. J. Control 2021, 60, 78–94. [Google Scholar] [CrossRef]
- Saravanakumar, R.; Jain, A. Design of Complementary Sliding Mode Control for Variable Speed Wind Turbine. In Proceedings of the 2018 8th International Conference on Power and Energy Systems (ICPES), Colombo, Sri Lanka, 21–22 December 2018; pp. 171–175. [Google Scholar] [CrossRef]
- Chehaidia, S.E.; Kherfane, H.; Cherif, H.; Boukhezzar, B.; Kadi, L.; Chojaa, H.; Abderrezak, A. Robust Nonlinear Terminal Integral Sliding Mode Torque Control for Wind Turbines Considering Uncertainties. IFAC-PapersOnLine 2022, 55, 228–233. [Google Scholar] [CrossRef]
- Sami, I.; Ullah, S.; Amin, S.U.; Al-Durra, A.; Ullah, N.; Ro, J.S. Convergence Enhancement of Super-Twisting Sliding Mode Control Using Artificial Neural Network for DFIG-Based Wind Energy Conversion Systems. IEEE Access 2022, 10, 97625–97641. [Google Scholar] [CrossRef]
- Periyanayagam, A.R.; Joo, Y. Integral sliding mode control for increasing maximum power extraction efficiency of variable-speed wind energy system. Int. J. Electr. Power Energy Syst. 2022, 139, 107958. [Google Scholar] [CrossRef]
- Yesudhas, A.A.; Joo, Y.H.; Lee, S.R. Reference model adaptive control scheme on PMVG-based wecs for MPPT under a real wind speed. Energies 2022, 15, 3091. [Google Scholar] [CrossRef]
- Buhl, M.L. WT_Perf user’s Guide; National Renewable Energy Laboratory: Golden, CO, USA, 2004; p. 4.
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Stavrakakis, G.; Kariniotakis, G. A general simulation algorithm for the accurate assessment of isolated diesel-wind turbines systems interaction. I. A general multimachine power system model. IEEE Trans. Energy Convers. 1995, 10, 577–583. [Google Scholar] [CrossRef]
- Leithead, W.; Rogers, M. Drive-train characteristics of constant speed HAWT’s: Part I–Representation by simple dynamic models. Wind. Eng. 1996, 20, 149–174. [Google Scholar]
- Leithead, W.; Rogers, M. Drive-train characteristics of constant speed HAWT’s: Part II–Simple characterisation of dynamics. Wind Eng. 1996, 20, 175–201. [Google Scholar]
- Muyeen, S.; Ali, M.H.; Takahashi, R.; Murata, T.; Tamura, J.; Tomaki, Y.; Sakahara, A.; Sasano, E. Comparative study on transient stability analysis of wind turbine generator system using different drive train models. IET Renew. Power Gener. 2007, 1, 131–141. [Google Scholar] [CrossRef]
- Melicio, R.; Mendes, V.; Catalao, J. Harmonic assessment of variable-speed wind turbines considering a converter control malfunction. IET Renew. Power Gener. 2010, 4, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Ramtharan, G.; Jenkins, N.; Anaya-Lara, O.; Bossanyi, E. Influence of rotor structural dynamics representations on the electrical transient performance of FSIG and DFIG wind turbines. Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol. 2007, 10, 293–301. [Google Scholar] [CrossRef]
- Fingersh, L.J.; Johnson, K. Controls Advanced Research Turbine (CART) Commissioning and Baseline Data Collection; Technical Report; National Renewable Energy Lab.: Golden, CO, USA, 2002.
- Manjock, A. Design Codes FAST and ADAMS® for Load Calculations of Onshore Wind Turbines; Technical Report; Rep. 72042; Germanischer Loyd WindEnergie GmbH: Hamburg, Germany, 2005. [Google Scholar]
SC [21] | TSC [21] | Int TSC [21] | ISC | TISC | MISC | TMISC | |
---|---|---|---|---|---|---|---|
%) | 75.7 | 76.95 | 76.08 | 72.43 | 72.39 | 74.04 | 75.07 |
%) | 86.56 | 85.59 | 86.12 | 81.26 | 82.11 | 85.09 | 85.89 |
std () kNm | 0.4741 | 0.3294 | 0.2589 | 0.3022 | 0.2707 | 0.2084 | 0.1913 |
max () kNm | 3.101 | 2.3048 | 2.1052 | 1.7629 | 1.7537 | 1.7001 | 1.7352 |
std ()kNm | 39.474 | 26.641 | 18.72 | 14.636 | 13.304 | 9.0864 | 8.558 |
max () kNm | 212.2 | 160.25 | 134.44 | 105.92 | 106.11 | 97.103 | 96.309 |
Mean () kW | 108.58 | 109.78 | 108.71 | 103.85 | 103.83 | 106.33 | 107.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajendran, S.; Jena, D.; Diaz, M.; Rodríguez, J. Terminal Integral Synergetic Control for Wind Turbine at Region II Using a Two-Mass Model. Processes 2023, 11, 616. https://doi.org/10.3390/pr11020616
Rajendran S, Jena D, Diaz M, Rodríguez J. Terminal Integral Synergetic Control for Wind Turbine at Region II Using a Two-Mass Model. Processes. 2023; 11(2):616. https://doi.org/10.3390/pr11020616
Chicago/Turabian StyleRajendran, Saravanakumar, Debashisha Jena, Matias Diaz, and José Rodríguez. 2023. "Terminal Integral Synergetic Control for Wind Turbine at Region II Using a Two-Mass Model" Processes 11, no. 2: 616. https://doi.org/10.3390/pr11020616
APA StyleRajendran, S., Jena, D., Diaz, M., & Rodríguez, J. (2023). Terminal Integral Synergetic Control for Wind Turbine at Region II Using a Two-Mass Model. Processes, 11(2), 616. https://doi.org/10.3390/pr11020616