Drying Kinetics, Physicochemical and Thermal Analysis of Onion Puree Dried Using a Refractance Window Dryer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Drying of Onion Puree
2.3. Drying Kinetics and Drying Models
2.4. Effective Moisture Diffusivity
2.5. Artificial Neural Network (ANN) Modelling
2.6. Physicochemical Quality Analysis
2.6.1. Color Characteristics
2.6.2. Hygroscopicity (Absorbed Moisture per 100 g Dry Solids)
2.6.3. Pyruvic Acid Content (µmol/g dw) (PAC)
2.6.4. Total Phenolic Content (mg Gallic Acid Equivalent (GAE)/100 g dw) (TPC)
2.6.5. Total Flavonoid Content (mg Quercetin Equivalent (QE)/100 g dw) (TFC)
2.6.6. Antioxidant Capacity (%) (AC)
2.7. Thermal Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Drying Kinetics and Drying Models
3.2. Effective Moisture Diffusivity
3.3. ANN Modelling
3.4. Comparison between the Best Drying Model and ANN Model
3.5. Physicochemical Quality Analysis
3.5.1. Color Characteristics
3.5.2. Hygroscopicity
3.5.3. Pyruvic Acid Content (PAC)
3.5.4. Total Phenolic Content (TPC)
3.5.5. Total Flavonoid Content (TFC)
3.5.6. Antioxidant Capacity (%) (AC) by DPPH Assay
3.6. Thermal Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.-X.; Lin, F.-J.; Li, H.; Li, H.-B.; Wu, D.-T.; Geng, F.; Ma, W.; Wang, Y.; Miao, B.-H.; Gan, R.-Y. Recent Advances in Bioactive Compounds, Health Functions, and Safety Concerns of Onion (Allium cepa L.). Front. Nutr. 2021, 8, 669805. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Singh, S.K. Drying Characteristics of Onion-a Review. Progress. Agric. 2013, 13, 163–169. [Google Scholar]
- Sasongko, S.B.; Hadiyanto, H.; Djaeni, M.; Perdanianti, A.M.; Utari, F.D. Effects of Drying Temperature and Relative Humidity on the Quality of Dried Onion Slice. Heliyon 2020, 6, e04338. [Google Scholar] [CrossRef] [PubMed]
- Taheri-Garavand, A.; Mumivand, H.; Fatahi, S.; Nasiri, A.; Omid, M. Modeling the Kinetics of Essential Oil Content and Main Constituents of Mint (Mentha aquatica L.) Leaves during Thin-Layer Drying Process Using Response Surface Methodology. J. Food Process. Preserv. 2021, 45, e15515. [Google Scholar] [CrossRef]
- Marrelli, M.; Amodeo, V.; Statti, G.; Conforti, F. Biological Properties and Bioactive Components of Allium Cepa L.: Focus on Potential Benefits in the Treatment of Obesity and Related Comorbidities. Molecules 2019, 24, 119. [Google Scholar] [CrossRef] [Green Version]
- Kaur, P.; Zalpouri, R.; Singh, M.; Verma, S. Process Optimization for Dehydration of Shelled Peas by Osmosis and Three-Stage Convective Drying for Enhanced Quality. J. Food Process. Preserv. 2020, 44, e14983. [Google Scholar] [CrossRef]
- Mitra, J.; Shrivastava, S.L.; Rao, P.S. Onion Dehydration: A Review. J. Food Sci. Technol. 2012, 49, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Abul-Fadl, M.M.; Ghanem, T.H. Effect of Refractance-Window (RW) Drying Method on Quality Criteria of Produced Tomato Powder as Compared to the Convection Drying Method. World Appl. Sci. J. 2011, 15, 953–965. [Google Scholar]
- Zalpouri, R.; Kaur, P.; Kaur, A.; Sidhu, G.K. Comparative Analysis of Optimized Physiochemical Parameters of Dried Potato Flakes Obtained by Refractive and Convective Drying Techniques. J. Food Process. Preserv. 2021, 45, e15077. [Google Scholar] [CrossRef]
- Kaur, D.; Singh, M.; Zalpouri, R.; Singh, I. Osmotic Dehydration of Fruits Using Unconventional Natural Sweeteners and Non-thermal-assisted Technologies: A Review. J. Food Process. Preserv. 2022, e16890. [Google Scholar] [CrossRef]
- Zalpouri, R.; Singh, M.; Kaur, P.; Singh, S. Refractance Window Drying–a Revisit on Energy Consumption and Quality of Dried Bio-Origin Products. Food Eng. Rev. 2022, 14, 257–270. [Google Scholar] [CrossRef]
- Raghavi, L.M.; Moses, J.A.; Anandharamakrishnan, C. Refractance Window Drying of Foods: A Review. J. Food Eng. 2018, 222, 267–275. [Google Scholar] [CrossRef]
- Shende, D.; Datta, A.K. Refractance Window Drying of Fruits and Vegetables: A Review. J. Sci. Food Agric. 2019, 99, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Baeghbali, V.; Niakousari, M. A Review on Mechanism, Quality Preservation and Energy Efficiency in Refractance Window Drying: A Conductive Hydro-Drying Technique. J. Nutr. Food Res. Technol. 2018, 1, 50–54. [Google Scholar] [CrossRef]
- Zalpouri, R.; Kaur, P.; Kaur, A. Influence of Developed Refractance Based Drying Method on Physical Parameter of Potato Flakes. Int. J. Chem. Stud. 2020, 8, 2833–2838. [Google Scholar] [CrossRef]
- Abbasid, A.; Niakousari, M.; Ali, S.; Ardekani, Y. The Advantages of the Refractance Window Method of Dehydrating Fresh Tomato Slices and the Relevant Characteristics Thereof. J. Apllied Environ. Biol. Sci. 2015, 4, 6–13. [Google Scholar]
- Duarte-Correa, Y.; Vargas-Carmona, M.I.; Vásquez-Restrepo, A.; Rosas, I.D.R.; Martínez, N.P. Native Potato (Solanum phureja) Powder by Refractance Window Drying: A Promising Way for Potato Processing. J. Food Process. Eng. 2021, 44, e13819. [Google Scholar] [CrossRef]
- Singh, S.N.; Suthar, S.H.; Jena, S.; Shrivastava, A.; Sharma, V.K.; Suthar, H.G. Comparative Studies on Chromatic Properties for Refractance Window, Hot Air Tray and Solar Tunnel Drying of Carrot (Daucus carota subsp. Sativus) Puree. Pharma. Innov. J. 2022, 11, 17–25. [Google Scholar]
- Shrivastav, S.; Ganorkar, P.M.; Prajapati, K.M.; Patel, D.B. Drying Kinetics, Heat Quantities, and Physiochemical Characteristics of Strawberry Puree by Refractance Window Drying System. J. Food Process. Eng. 2021, 44, e13776. [Google Scholar] [CrossRef]
- Padhi, S.; Dwivedi, M. Physico-Chemical, Structural, Functional and Powder Flow Properties of Unripe Green Banana Flour after the Application of Refractance Window Drying. Future Foods 2022, 5, 100101. [Google Scholar] [CrossRef]
- Asiimwe, A.; Kigozi, J.B.; Baidhe, E.; Muyonga, J.H. Optimization of Refractance Window Drying Conditions for Passion Fruit Puree. LWT 2022, 154, 112742. [Google Scholar] [CrossRef]
- Nansereko, S.; Muyonga, J.; Byaruhanga, Y.B. Optimization of Drying Conditions for Jackfruit Pulp Using Refractance Window Drying Technology. Food Sci. Nutr. 2021, 10, 1333–1343. [Google Scholar] [CrossRef]
- Simsek, M.; Süfer, Ö. Effect of Pretreatments on Refractance Window Drying, Color Kinetics and Bioactive Properties of White Sweet Cherries (Prunus avium L. Stark Gold). J. Food Process. Preserv. 2021, 45, e15895. [Google Scholar] [CrossRef]
- Rurush, E.; Alvarado, M.; Palacios, P.; Flores, Y.; Rojas, M.L.; Miano, A.C. Drying Kinetics of Blueberry Pulp and Mass Transfer Parameters: Effect of Hot Air and Refractance Window Drying at Different Temperatures. J. Food Eng. 2022, 320, 110929. [Google Scholar] [CrossRef]
- Sonkar, C.; Immanuel, G. Refractance Window Drying: Influence of Drying Parameters on Drying Characteristics and Quality Attributes of Orange Pestil. Emerg. Life Sci. Res. 2022, 8, 214–221. [Google Scholar] [CrossRef]
- Jafari, S.M.; Azizi, D.; Mirzaei, H.; Dehnad, D. Comparing Quality Characteristics of Oven-Dried and Refractance Window-Dried Kiwifruits. J. Food Process. Preserv. 2016, 40, 362–372. [Google Scholar] [CrossRef]
- Nguyen, T.-V.-L.; Ngo, P.-T.; Huynh, T.-T.-N.; Vo, P.-N.-T.; Hoang, T.-N.-A.; Nguyen, P.-B.-D. Refractance Window Drying of Mango Pulp (Mangifera indica): Impact of Hydrocolloids on Drying Characteristics and Color Parameters. AIP Conf. Proc. 2022, 2610, 060022. [Google Scholar]
- Kumar, M.; Madhumita, M.; Srivastava, B.; Prabhakar, P.K. Mathematical Modeling and Simulation of Refractance Window Drying of Mango Pulp for Moisture, Temperature, and Heat Flux Distribution. J. Food Process. Eng. 2022, 45, e14090. [Google Scholar] [CrossRef]
- Delfiya, D.S.A.; Prashob, K.; Murali, S.; Alfiya, P.V.; Samuel, M.P.; Pandiselvam, R. Drying Kinetics of Food Materials in Infrared Radiation Drying: A Review. J. Food Process. Eng. 2022, 45, e13810. [Google Scholar] [CrossRef]
- Jain, D.; Pathare, P.B. Selection and Evaluation of Thin Layer Drying Models for Infrared Radiative and Convective Drying of Onion Slices. Biosyst. Eng. 2004, 89, 289–296. [Google Scholar] [CrossRef]
- Mota, C.L.; Luciano, C.; Dias, A.; Barroca, M.J.; Guiné, R.P.F. Convective Drying of Onion: Kinetics and Nutritional Evaluation. Food Bioprod. Process. 2010, 88, 115–123. [Google Scholar] [CrossRef]
- Demiray, E.; Seker, A.; Tulek, Y. Drying Kinetics of Onion (Allium cepa L.) Slices with Convective and Microwave Drying. Heat Mass Transf. 2017, 53, 1817–1827. [Google Scholar] [CrossRef]
- Compaore, A.; Dissa, A.O.; Rogaume, Y.; Putranto, A.; Chen, X.D.; Mangindaan, D.; Zoulalian, A.; Rémond, R.; Tiendrebeogo, E. Application of the Reaction Engineering Approach (REA) for Modeling of the Convective Drying of Onion. Dry. Technol. 2017, 35, 500–508. [Google Scholar] [CrossRef]
- Compaoré, A.; Putranto, A.; Dissa, A.O.; Ouoba, S.; Rémond, R.; Rogaume, Y.; Zoulalian, A.; Béré, A.; Koulidiati, J. Convective Drying of Onion: Modeling of Drying Kinetics Parameters. J. Food Sci. Technol. 2019, 56, 3347–3354. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.W.; Xiao, H.W.; Ma, H.L.; Zhou, C.S. Artificial Neural Network Modeling of Drying Kinetics and Color Changes of Ginkgo Biloba Seeds during Microwave Drying Process. J. Food Qual. 2018, 2018, 3278595. [Google Scholar] [CrossRef]
- Kaveh, M.; Chayjan, R.A.; Golpour, I.; Poncet, S.; Seirafi, F.; Khezri, B. Evaluation of Exergy Performance and Onion Drying Properties in a Multi-Stage Semi-Industrial Continuous Dryer: Artificial Neural Networks (ANNs) and ANFIS Models. Food Bioprod. Process. 2021, 127, 58–76. [Google Scholar] [CrossRef]
- Brooker, D.B.; Bakker-Arkema, F.W.; Hall, C.W. Drying and Storage of Grains and Oilseeds; Springer Science & Business Media: New York, NY, USA, 1992; ISBN 0442205155. [Google Scholar]
- Jeevarathinam, G.; Pandiselvam, R.; Pandiarajan, T.; Preetha, P.; Krishnakumar, T.; Balakrishnan, M.; Thirupathi, V.; Ganapathy, S.; Amirtham, D. Design, Development, and Drying Kinetics of Infrared-Assisted Hot Air Dryer for Turmeric Slices. J. Food Process. Eng. 2022, 45, e13876. [Google Scholar] [CrossRef]
- Manikantan, M.R.; Mridula, D.; Sharma, M.; Kochhar, A.; Prasath, V.A.; Patra, A.; Pandiselvam, R. Investigation on Thin-Layer Drying Kinetics of Sprouted Wheat in a Tray Dryer. Qual. Assur. Saf. Crops Foods 2022, 14, 12–24. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Rafiee, S.; Keyhani, A. Study on Effective Moisture Diffusivity, Activation Energy and Mathematical Modeling of Thin Layer Drying Kinetics of Bell Pepper. Aust. J. Crop Sci. 2011, 5, 128–131. [Google Scholar]
- Elangovan, E.; Natarajan, S.K. Effects of Pretreatments on Quality Attributes, Moisture Diffusivity, and Activation Energy of Solar Dried Ivy Gourd. J. Food Process. Eng. 2021, 44, e13653. [Google Scholar] [CrossRef]
- Srinivas, Y.; Mathew, S.M.; Kothakota, A.; Sagarika, N.; Pandiselvam, R. Microwave Assisted Fluidized Bed Drying of Nutmeg Mace for Essential Oil Enriched Extracts: An Assessment of Drying Kinetics, Process Optimization and Quality. Innov. Food Sci. Emerg. Technol. 2020, 66, 102541. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioproc. Tech. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Kalsi, B.S.; Singh, S.; Alam, M.S. Influence of Ultrasound Processing on the Quality of Guava Juice. J. Food Process. Eng. 2022, e14163. [Google Scholar] [CrossRef]
- Shirkole, S.S.; Sutar, P.P. Modeling Sorption Phenomena and Moisture Migration Rates in Paprika (Capsicum annuum L.) Using Physicochemical Characteristics. J. Food Sci. Technol. 2018, 55, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sharma, S.R.; Dhall, R.K.; Mittal, T.C. Effect of γ-Radiation on Post-Harvest Storage Life and Quality of Onion Bulb under Ambient Condition. J. Food Sci. Technol. 2020, 57, 2534–2544. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, S.R.; Dhall, R.K.; Mittal, T.C.; Chavan, P. Pyramided Effects of γ-Irradiation, Packaging, and Low-Temperature Storage on Quality, Sensory and Microbial Attributes of Minimally Processed Onion Rings. J. Food Process. Preserv. 2022, 46, e16305. [Google Scholar] [CrossRef]
- Schwimmer, S.; Weston, W.J. Onion Flavor and Odor, Enzymatic Development of Pyruvic Acid in Onion as a Measure of Pungency. J. Agric. Food Chem. 1961, 9, 301–304. [Google Scholar] [CrossRef]
- McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic Content and Antioxidant Activity of Olive Extracts. Food Chem. 2001, 73, 73–84. [Google Scholar] [CrossRef]
- De Tarso Carvalho, P.; Clemente, E. The Influence of the Broccoli (Brassica oleracea Var. Itálica) Fill Weight on Postharvest Quality. Food Sci. Technol. 2004—SciELO Brasil 2004, 24, 646–651. [Google Scholar]
- de Ancos, B.; Sgroppo, S.; Plaza, L.; Pilar Cano, M. Possible Nutritional and Health-Related Value Promotion in Orange Juice Preserved by High-Pressure Treatment. J. Sci. Food Agric. 2002, 82, 790–796. [Google Scholar] [CrossRef]
- Majid, I.; Dar, B.N.; Nanda, V. Rheological, Thermal, Micro Structural and Functional Properties of Freeze Dried Onion Powders as Affected by Sprouting. Food Biosci. 2018, 22, 105–112. [Google Scholar] [CrossRef]
- Suhag, Y.; Nayik, G.A.; Nanda, V. Effect of Gum Arabic Concentration and Inlet Temperature during Spray Drying on Physical and Antioxidant Properties of Honey Powder. J. Food Meas. Charact. 2016, 10, 350–356. [Google Scholar] [CrossRef]
- Rajoriya, D.; Bhavya, M.L.; Hebbar, H.U. Impact of Process Parameters on Drying Behaviour, Mass Transfer and Quality Profile of Refractance Window Dried Banana Puree. LWT—Food Sci. Technol. 2021, 145, 111330. [Google Scholar] [CrossRef]
- Maskan, A.; Kaya, S.; Maskan, M. Hot Air and Sun Drying of Grape Leather (Pestil). J. Food Eng. 2002, 54, 81–88. [Google Scholar] [CrossRef]
- Castoldi, M.; Zotarelli, M.F.; Durigon, A.; Carciofi, B.A.M.; Laurindo, J.B. Production of Tomato Powder by Refractance Window Drying. Dry. Technol. 2015, 33, 1463–1473. [Google Scholar] [CrossRef]
- Fernando, J.A.K.M.; Amarasinghe, A.D.U.S. Drying Kinetics and Mathematical Modeling of Hot Air Drying of Coconut Coir Pith. Springerplus 2016, 5, 807. [Google Scholar] [CrossRef] [Green Version]
- Soysal, Y. Microwave Drying Characteristics of Parsley. Biosyst. Eng. 2004, 89, 167–173. [Google Scholar] [CrossRef]
- Akinola, A.A.; Ezeorah, S.N. Moisture Diffusivity and Activation Energy Estimation of White Yam (Dioscorea rotundata) Slices Using Drying Data from a Refractance WindowTM Dryer. FUOYE J. Eng. Technol. 2019, 4, 102–106. [Google Scholar] [CrossRef]
- Surendhar, A.; Sivasubramanian, V.; Vidhyeswari, D.; Deepanraj, B. Energy and Exergy Analysis, Drying Kinetics, Modeling and Quality Parameters of Microwave-Dried Turmeric Slices. J. Therm. Anal. Calorim. 2019, 136, 185–197. [Google Scholar] [CrossRef]
- Karami, H.; Lorestani, A.N.; Tahvilian, R. Assessment of Kinetics, Effective Moisture Diffusivity, Specific Energy Consumption, and Percentage of Thyme Oil Extracted in a Hybrid Solar-Electric Dryer. J. Food Process. Eng. 2021, 44, e13588. [Google Scholar] [CrossRef]
- Jafari, S.M.; Ghanbari, V.; Ganje, M.; Dehnad, D. Modeling the Drying Kinetics of Green Bell Pepper in a Heat Pump Assisted Fluidized Bed Dryer. J. Food Qual. 2016, 39, 98–108. [Google Scholar] [CrossRef]
- Tarafdar, A.; Shahi, N.C.; Singh, A. Freeze-Drying Behaviour Prediction of Button Mushrooms Using Artificial Neural Network and Comparison with Semi-Empirical Models. Neural Comput. Appl. 2019, 31, 7257–7268. [Google Scholar] [CrossRef]
- Ai, Z.; Ren, H.; Lin, Y.; Sun, W.; Yang, Z.; Zhang, Y.; Zhang, H.; Yang, Z.; Pandiselvam, R.; Liu, Y. Improving Drying Efficiency and Product Quality of Stevia Rebaudiana Leaves Using Innovative Medium-and Short-Wave Infrared Drying (MSWID). Innov. Food Sci. Emerg. Technol. 2022, 81, 103154. [Google Scholar] [CrossRef]
- Kaur, P.; Zalpouri, R.; Modi, R.; Sahota, P.P.; Dhillon, T.S.; Kaur, A. Development and Standardization of Processing Technique for Ready-to-Use Lab Fermented Kanji Mix Using Refractance Window Dried Black Carrot Powder. Sci. Rep. 2023, 13, 185. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, K.; Singh, M.; Zalpouri, R. Effect of Treatment and Drying Method (Solar and Convective) on Physico-Chemical Quality of Dried Moringa Leaves. Int. J. Agric. Sci. 2021, 17, 228–233. [Google Scholar] [CrossRef]
- Zalpouri, R.; Kaur, P.; Sain, M. Refractive Window Drying-A Better Approach to Preserve the Visual Appearance of Dried Products. Pantnagar J. Res. 2020, 18, 90–94. [Google Scholar]
- Tontul, I.; Eroğlu, E.; Topuz, A. Convective and Refractance Window Drying of Cornelian Cherry Pulp: Effect on Physicochemical Properties. J. Food Process. Eng. 2018, 41, e12917. [Google Scholar] [CrossRef]
- Majid, I.; Hussain, S.; Nanda, V. Moisture Sorption Isotherms and Quality Characteristics of Onion Powder during Storage as Affected by Sprouting. J. Food Meas. Charact. 2019, 13, 775–784. [Google Scholar] [CrossRef]
- Adetoro, A.O.; Opara, U.L.; Fawole, O.A. Effect of Carrier Agents on the Physicochemical and Technofunctional Properties and Antioxidant Capacity of Freeze-Dried Pomegranate Juice (Punica granatum) Powder. Foods 2020, 9, 1388. [Google Scholar] [CrossRef]
- Tontul, İ.; Ergin, F.; Eroğlu, E.; Küçükçetin, A.; Topuz, A. Physical and Microbiological Properties of Yoghurt Powder Produced by Refractance Window Drying. Int. Dairy J. 2018, 85, 169–176. [Google Scholar] [CrossRef]
- da Costa, R.D.S.; da Cruz Rodrigues, A.M.; Borges Laurindo, J.; da Silva, L.H.M. Development of Dehydrated Products from Peach Palm–Tucupi Blends with Edible Film Characteristics Using Refractive Window. J. Food Sci. Technol. 2019, 56, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Tontul, I.; Ergin, F.; Eroğlu, E.; Küçükçetin, A.; Topuz, A. The Impact of Refractance Window Drying Conditions on the Physical and Microbiological Properties of Kefir Powder. Food Biosci. 2021, 43, 101317. [Google Scholar] [CrossRef]
- Seifu, M.; Tola, Y.B.; Mohammed, A.; Astatkie, T. Effect of Variety and Drying Temperature on Physicochemical Quality, Functional Property, and Sensory Acceptability of Dried Onion Powder. Food Sci. Nutr. 2018, 6, 1641–1649. [Google Scholar] [CrossRef] [Green Version]
- Attkan, A.K.; Raleng, A.; Alam, M.S. Process Optimization and Changes in Quality Characteristics of Hot Air Dried Onion Slices (Allium cepa L.). Vegetos—Int. J. Plant Res. 2017, 30, 11–17. [Google Scholar] [CrossRef]
- Kaur, K.; Pandiselvam, R.; Kothakota, A.; Padma Ishwarya, S.; Zalpouri, R.; Mahanti, N.K. Impact of Ozone Treatment on Food Polyphenols—A Comprehensive Review. Food Control 2022, 142, 109207. [Google Scholar] [CrossRef]
- Guclu, G.; Keser, D.; Kelebek, H.; Keskin, M.; Emre Sekerli, Y.; Soysal, Y.; Selli, S. Impact of Production and Drying Methods on the Volatile and Phenolic Characteristics of Fresh and Powdered Sweet Red Peppers. Food Chem 2021, 338, 128129. [Google Scholar] [CrossRef]
- Djamila, B.; Fatima Zohra, K.; Lahcene, K.; Zohra, R.F. Drying Methods Affect the Extracts and Essential Oil of Mentha Aquatica L. Food Biosci. 2021, 41, 101007. [Google Scholar] [CrossRef]
- Seyfi, A.; Asl, A.R.; Motevali, A. Comparison of the Energy and Pollution Parameters in Solar Refractance Window (Photovoltaic-Thermal), Conventional Refractance Window, and Hot Air Dryer. Sol. Energy 2021, 229, 162–173. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [Green Version]
- Potdar, P.P.; Kaur, P.; Zalpouri, R.; Ummat, V. Convective and Pulsed Microwave Drying of Lemongrass (Cymbopogon citratus) Shreds: Kinetic Modeling, Retention of Bio-actives, and Oil Yield. J. Food Process. Preserv. 2022, e16914. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, M.; Zalpouri, R.; Kaur, K. Potential Application of Domestic Solar Dryers for Coriander Leaves: Drying Kinetics, Thermal Efficiency and Quality Assessment. Environ. Prog. Sustain. Energy 2023, e14092. [Google Scholar] [CrossRef]
- Hihat, S.; Remini, H.; Madani, K. Effect of Oven and Microwave Drying on Phenolic Compounds and Antioxidant Capacity of Coriander Leaves. Int. Food Res. J. 2017, 24, 503–509. [Google Scholar]
- Chaaban, H.; Ioannou, I.; Chebil, L.; Slimane, M.; Gérardin, C.; Paris, C.; Charbonnel, C.; Chekir, L.; Ghoul, M. Effect of Heat Processing on Thermal Stability and Antioxidant Activity of Six Flavonoids. J. Food Process. Preserv. 2017, 41, e13203. [Google Scholar] [CrossRef]
- Akther, S.; Jothi, J.S.; Badsha, M.R.; Rahman, M.M.; Das, G.B.; Alim, M.A. Drying Methods Effect on Bioactive Compounds, Phenolic Profile, and Antioxidant Capacity of Mango Powder. J. King Saud. Univ. Sci. 2022, 35, 102370. [Google Scholar] [CrossRef]
- Abonyi, B.I.; Feng, H.; Tang, J.; Edwards, C.G.; Chew, B.P.; Mattinson, D.S.; Fellman, J.K. Quality Retention in Strawberry and Carrot Purees Dried with Refractance Window TM System. J. Food Sci. 2001, 67, 1051–1056. [Google Scholar] [CrossRef]
- Nindo, C.I.; Sun, T.; Wang, S.W.; Tang, J.; Powers, J.R. Evaluation of Drying Technologies for Retention of Physical Quality and Antioxidants in Asparagus (Asparagus officinalis L.). LWT—Food Sci. Technol. 2003, 36, 507–516. [Google Scholar] [CrossRef]
- Jaya, S.; Das, H. Glass Transition and Sticky Point Temperatures and Stability/Mobility Diagram of Fruit Powders. Food Bioproc. Tech. 2009, 2, 89–95. [Google Scholar] [CrossRef]
- Begum, Y.A.; Deka, S.C. Effect of Processing on Structural, Thermal, and Physicochemical Properties of Dietary Fiber of Culinary Banana Bracts. J. Food Process. Preserv. 2019, 43, e14256. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, S.; Sudhakar, A.; Verma, D.K.; Shankar, S.; Thakur, M.; Singh, S.; Tripathy, S.; Gupta, A.K.; Srivastav, P.P. Refractance WindowTM-Drying vs. Other Drying Methods and Effect of Different Process Parameters on Quality of Foods: A Comprehensive Review of Trends and Technological Developments. Future Foods 2021, 3, 100024. [Google Scholar] [CrossRef]
Model and Equation | Thickness of Puree (mm) | Coefficients | R2 | RMSE | SEE | χ2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
k | n | A | b | k0 | k1 | ||||||
Lewis MR = exp(−kt) | 2 | 0.0375 | - | - | - | - | - | 0.9966 | 0.0019 | 0.0011 | 0.0001 |
4 | 0.0203 | - | - | - | - | - | 0.9939 | 0.0024 | 0.0005 | 0.0010 | |
6 | 0.0147 | - | - | - | - | - | 0.9945 | 0.0055 | 0.0008 | 0.0030 | |
Page MR = exp(−ktn) | 2 | 0.0359 | 1.0122 | - | - | - | - | 0.9962 | 0.0201 | 0.0032 | 0.0001 |
4 | 0.0220 | 0.9804 | - | - | - | - | 0.9935 | 0.0245 | 0.0072 | 0.0010 | |
6 | 0.0027 | 1.3881 | - | - | - | - | 0.9946 | 0.0242 | 0.0088 | 0.0010 | |
Henderson & Pabis MR = a × exp(−kt) | 2 | 0.0375 | - | 0.9986 | - | - | - | 0.9962 | 0.0201 | 0.0032 | 0.0001 |
4 | 0.0200 | - | 0.9888 | - | - | - | 0.9936 | 0.0244 | 0.0071 | 0.0010 | |
6 | 0.0157 | - | 1.0727 | - | - | - | 0.9765 | 0.0505 | 0.0383 | 0.0030 | |
Exponential two term MR = a × exp(−kt) + (1−a) × exp(−kat) | 2 | 0.0407 | - | 1.3261 | - | - | - | 0.9963 | 0.0199 | 0.0032 | 0.0001 |
4 | 0.5373 | - | 0.0364 | - | - | - | 0.9938 | 0.0237 | 0.0067 | 0.0010 | |
6 | 0.0217 | - | 1.9195 | - | - | - | 0.9935 | 0.0266 | 0.0106 | 0.0010 | |
Wang and Singh (MR = 1 + at + bt2) | 2 | - | - | −0.0217 | 0.0001 | - | - | 0.9282 | 0.0875 | 0.0612 | 0.0077 |
4 | - | - | −0.0133 | 0.0000 | - | - | 0.9563 | 0.0635 | 0.0484 | 0.0040 | |
6 | - | - | −0.0103 | 0.0000 | - | - | 0.9883 | 0.0357 | 0.0191 | 0.0013 | |
Modified Page MR = exp(−(kt)n) | 2 | 0.0374 | 1.0127 | - | - | - | - | 0.9962 | 0.0032 | 0.0032 | 0.0004 |
4 | 0.0204 | 0.9813 | - | - | - | - | 0.9935 | 0.0072 | 0.0072 | 0.0006 | |
6 | 0.0140 | 1.3892 | - | - | - | - | 0.9946 | 0.0088 | 0.0088 | 0.0006 | |
Logarithmic MR = a × exp(−kt) + b | 2 | −1.0345 × 105 | - | 0.9069 | 0.0931 | - | - | 0.3545 | 0.9621 | 0.4809 | 0.0687 |
4 | −1.2592 × 105 | - | 0.8353 | 0.1647 | - | - | 0.1532 | 1.3262 | 1.1704 | 0.1064 | |
6 | −1.4552 × 105 | - | 0.8010 | 0.1990 | - | - | 0.3820 | 2.3875 | 2.1020 | 0.1501 | |
Two-term MR = a × exp(−k0t) + b × exp(−k1t) | 2 | - | - | 0.5000 | 0.5000 | −6.2388 × 104 | −6.2288 × 104 | 0.2469 | 0.9831 | 0.4809 | 0.0802 |
4 | - | - | 0.5000 | 0.5000 | −8.2619 × 104 | −8.1619 × 104 | 0.2686 | 1.9421 | 1.1704 | 0.1170 | |
6 | - | - | 0.5000 | −9.5298 × 104 | 0.5000 | −9.6298 × 104 | 0.4884 | 2.9021 | 2.1020 | 0.1617 |
Model and Equation | Thickness of Puree (mm) | Coefficients | R2 | RMSE | SEE | χ2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
k | n | a | b | k0 | k1 | ||||||
Lewis MR = exp(−kt) | 2 | 0.0060 | - | - | - | - | - | 0.9590 | 0.0629 | 0.0647 | 0.0042 |
4 | 0.0050 | - | - | - | - | - | 0.9450 | 0.0789 | 0.0809 | 0.0065 | |
6 | 0.0040 | - | - | - | - | - | 0.9530 | 0.0710 | 0.0726 | 0.0053 | |
Page MR = exp(−ktn) | 2 | 0.0010 | 1.3390 | - | - | - | - | 0.9790 | 0.0456 | 0.0469 | 0.0022 |
4 | 0.0002 | 1.6666 | - | - | - | - | 0.9900 | 0.0231 | 0.0237 | 0.0006 | |
6 | 0.0001 | 1.4970 | - | - | - | - | 0.9921 | 0.4543 | 0.4655 | 0.2167 | |
Henderson & Pabis MR = a × exp(−kt) | 2 | 0.0060 | - | 1.0400 | - | - | - | 0.9610 | 0.0612 | 0.0630 | 0.0040 |
4 | 0.0060 | - | 1.1210 | - | - | - | 0.9590 | 0.0680 | 0.0697 | 0.0049 | |
6 | 0.0050 | - | 1.0960 | - | - | - | 0.9620 | 0.0633 | 0.0648 | 0.0042 | |
Exponential two-term MR = a × exp(−kt) +(1−a) × exp(−kat) | 2 | 8.2940 | - | 0.0010 | - | - | - | 0.9590 | 0.0629 | 0.0648 | 0.0042 |
4 | 0.0080 | - | 2.0650 | - | - | - | 0.9890 | 0.0356 | 0.0365 | 0.0013 | |
6 | 0.0060 | - | 1.9520 | - | - | - | 0.9860 | 0.0377 | 0.0385 | 0.0015 | |
Wang and Singh (MR = 1 + at + bt2) | 2 | - | - | −0.0043 | 0.0000 | - | - | 0.9886 | 0.0345 | 0.0191 | 0.0012 |
4 | - | - | −0.0038 | 0.0000 | - | - | 0.9944 | 0.0430 | 0.0351 | 0.0019 | |
6 | - | - | −0.0030 | 0.0000 | - | - | 0.9953 | 0.0229 | 0.0110 | 0.0005 | |
Modified Page MR = exp(−(kt)n) | 2 | 0.0060 | 1.3390 | - | - | - | - | 0.9790 | 0.0456 | 0.0469 | 0.0022 |
4 | 0.0050 | 1.6660 | - | - | - | - | 0.9920 | 0.0231 | 0.0237 | 0.0006 | |
6 | 0.0040 | 1.4970 | - | - | - | - | 0.9910 | 0.0291 | 0.0298 | 0.0009 | |
Logarithmic MR = a × exp(−kt) + b | 2 | 0.0040 | - | 1.1850 | −0.1921 | - | - | 0.9830 | 0.0419 | 0.0431 | 0.0019 |
4 | 0.0040 | - | 1.2250 | −0.1451 | - | - | 0.9777 | 0.0502 | 0.0514 | 0.0026 | |
6 | 0.0030 | - | 1.3030 | −0.2680 | - | - | 0.9900 | 0.0333 | 0.0341 | 0.0012 | |
Two-term MR = a × exp(−k0t) + b × exp(−k1t) | 2 | - | - | 0.3610 | 0.6790 | 0.0060 | 0.0070 | 0.9610 | 0.0613 | 0.0631 | 0.0040 |
4 | - | - | 0.6560 | 0.4650 | 0.0060 | 0.0060 | 0.9590 | 0.0680 | 0.0697 | 0.0049 | |
6 | - | - | 0.5850 | 0.5110 | 0.0050 | 0.0060 | 0.9620 | 0.0633 | 0.0648 | 0.0042 |
Thickness of Puree (mm) | Effective Moisture Diffusivity | |||
---|---|---|---|---|
Slope | Deff (m2/s) | R2 | ||
RWD | 2 | 0.619 | 2.509 × 10−7 | 0.970 |
4 | 0.368 | 5.976 × 10−7 | 0.963 | |
6 | 0.259 | 9.446 × 10−7 | 0.968 | |
CD | 2 | 0.304 | 1.234 × 10−7 | 0.934 |
4 | 0.285 | 4.628 × 10−7 | 0.948 | |
6 | 0.256 | 9.376 × 10−7 | 0.913 |
Models | RWD | CD | |||||
---|---|---|---|---|---|---|---|
2 mm | 4 mm | 6 mm | 2 mm | 4 mm | 6 mm | ||
Best drying model | R2 | 0.9966 | 0.9939 | 0.9945 | 0.9886 | 0.9944 | 0.9953 |
RMSE | 0.0019 | 0.0024 | 0.0055 | 0.0345 | 0.0430 | 0.0229 | |
ANN model | R2 | 0.9971 | 0.9943 | 0.9992 | 0.9958 | 0.9986 | 0.9983 |
RMSE | 0.0008 | 0.0005 | 0.0001 | 0.0004 | 0.0001 | 0.0001 |
Physicochemical Qualities | RWD | CD | ||||
---|---|---|---|---|---|---|
2 mm | 4 mm | 6 mm | 2 mm | 4 mm | 6 mm | |
Moisture content (%wb) | 5.115 ± 0.007 f | 5.735 ± 0.035 e | 5.914 ± 0.005 d | 6.025 ± 0.021 c | 6.100 ± 0.014 b | 6.725 ± 0.021 a |
L* | 78.600 ± 0.001 a | 78.400 ± 0.141 a | 78.850 ± 0.070 a | 63.500 ± 3.818 b | 67.250 ± 0.637 b | 65.500 ± 0.141 b |
a* | 3.550 ± 0.495 ab | 3.750 ± 0.071 a | 3.400 ± 0.141 ab | 0.250 ± 0.212 c | 2.250 ± 0.071 b | 0.750 ± 0.778 c |
b* | 24.000 ± 0.036 a | 23.250 ± 0.141 ab | 21.500 ± 0.141 b | 17.450 ± 1.485 c | 21.550 ± 0.212 b | 18.350 ± 0.495 c |
ΔE | 3.965 ± 0.037 b | 3.463 ± 0.016 b | 3.791 ± 0.117 b | 13.066 ± 3.991 a | 8.072 ± 0.651 ab | 10.825 ± 0.176 a |
Hue angle | 81.586 ± 1.156 c | 80.835 ± 0.307 c | 81.015 ± 0.310 c | 89.206 ± 0.629 a | 84.040 ± 0.128 bc | 87.628 ± 0.385 ab |
Chromaticity | 11.778 ± 0.054 a | 11.005 ± 0.359 ab | 9.314 ± 0.117 b | 6.954 ± 0.959 c | 9.609 ± 0.185 b | 7.313 ± 0.845 b |
Hygroscopicity (absorbed moisture per 100 g dry solids) | 3.711 ± 0.115 b | 3.815 ± 0.095 b | 3.985 ± 0.0297 b | 4.136 ± 0.007 a | 4.166 ± 0.166 a | 4.193 ± 0.023 a |
Pyruvic content (µmol/g dw) | 0.566 ± 0.042 a | 0.546 ± 0.061 b | 0.495 ± 0.078 c | 0.437 ± 0.037 d | 0.381 ± 0.024 e | 0.338 ± 0.035 f |
Total phenolic content (mg GAE/100 g dw) | 30.038 ± 0.094 a | 29.865 ± 0.019 a | 29.793 ± 0.047 a | 25.207 ± 0.085 b | 24.932 ± 0.104 b | 24.478 ± 0.132 c |
Total flavonoids content (mg QE/100 g dw) | 12.819 ± 0.049 a | 12.728 ± 0.113 a | 12.266 ± 0.109 b | 10.802 ± 0.227 c | 10.684 ± 0.019 c | 10.675 ± 0.007 c |
Antioxidant capacity (%) | 89.934 ± 0.700 a | 88.394 ± 0.701 ab | 88.064 ± 0.388 b | 88.284 ± 0.389 ab | 87.844 ± 0.233 b | 87.403 ± 0.078 b |
Thermal Properties | RWD | CD |
---|---|---|
On-set temperature (T1) (°C) | 69.061 a | 53.056 b |
Peak temperature (Tp) (°C) | 103.838 a | 99.561 b |
End-set temperature (T2) (°C) | 127.682 a | 113.334 b |
Specific heat capacity (Cp) (J/g °C) | 105.087 b | 2337.515 a |
Enthalpy (ΔH) (J/g) | 28.912 b | 32.377 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalpouri, R.; Singh, M.; Kaur, P.; Kaur, A.; Gaikwad, K.K.; Singh, A. Drying Kinetics, Physicochemical and Thermal Analysis of Onion Puree Dried Using a Refractance Window Dryer. Processes 2023, 11, 700. https://doi.org/10.3390/pr11030700
Zalpouri R, Singh M, Kaur P, Kaur A, Gaikwad KK, Singh A. Drying Kinetics, Physicochemical and Thermal Analysis of Onion Puree Dried Using a Refractance Window Dryer. Processes. 2023; 11(3):700. https://doi.org/10.3390/pr11030700
Chicago/Turabian StyleZalpouri, Ruchika, Manpreet Singh, Preetinder Kaur, Amrit Kaur, Kirtiraj K. Gaikwad, and Ashutosh Singh. 2023. "Drying Kinetics, Physicochemical and Thermal Analysis of Onion Puree Dried Using a Refractance Window Dryer" Processes 11, no. 3: 700. https://doi.org/10.3390/pr11030700
APA StyleZalpouri, R., Singh, M., Kaur, P., Kaur, A., Gaikwad, K. K., & Singh, A. (2023). Drying Kinetics, Physicochemical and Thermal Analysis of Onion Puree Dried Using a Refractance Window Dryer. Processes, 11(3), 700. https://doi.org/10.3390/pr11030700