Effect of Packing Structure Evolution on the Flow Characteristics in a Binary Composite Packed Bed Based on DEM-CFD Method
Abstract
:1. Introduction
2. Model Description
2.1. Mathematical Model
2.1.1. Discrete Element Method
2.1.2. Computational Fluid Mechanics
2.2. Composite Packed Beds and Numerical Methods
2.2.1. Composite Packed Beds
2.2.2. Boundary Condition and Numerical Calculation Method
2.2.3. Grid Independence Test
3. Model Verification
3.1. Experimental Verification
3.2. Verification of Pressure Drop
4. Results and Discussion
4.1. Wall Effect and Flow Characteristics
4.2. Heat Transfer
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bale, S.; Sathe, M.; Ayeni, O.; Berrouk, A.S.; Joshi, J.; Nandakumar, K. Spatially resolved mass transfer coefficient for moderate Reynolds number flows in packed beds: Wall effects. Int. J. Heat Mass Transf. 2017, 110, 406–415. [Google Scholar] [CrossRef]
- Jiang, L.S.; Liu, H.S.; Suo, S.Y.; Xie, M.Z.; Wu, D.; Bai, M.L. Pore-scale simulation of flow and turbulence characteristics in three-dimensional randomly packed beds. Powder Technol. 2018, 338, 197–210. [Google Scholar]
- Ghosh, R. Cuboid Packed-Beds as Chemical Reactors. Processes 2018, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.H.; Wang, M.K.; Cao, X.X.; Geng, Z.F. Particle resolved CFD simulation on vapor-phase synthesis of vinyl acetate from ethylene in fixed-bed reactor. Korean J. Chem. Eng. 2020, 37, 839–849. [Google Scholar] [CrossRef]
- Reddy, R.K.; Joshi, J.B. CFD modeling of pressure drop and drag coefficient in fixed and expanded beds. Chem. Eng. Res. Des. 2008, 86, 444–453. [Google Scholar] [CrossRef]
- Dong, Y.; Sosna, B.; Korup, O.; Rosowski, F.; Horn, R. Investigation of radial heat transfer in a fixed-bed reactor: CFD simulations and profile measurements. Chem. Eng. J. 2017, 317, 204–214. [Google Scholar] [CrossRef]
- Dai, W.; Hanaor, D.; Gan, Y. The effects of packing structure on the effective thermal conductivity of granular media: A grain scale investigation. Int. J. Heat Mass Transf. 2019, 142, 266–279. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Yu, S.; Ahn, M.Y.; Park, Y.H.; Cho, S.; Sohn, D. Numerical investigation of mechanical and thermal characteristics of binary-sized pebble beds using discrete element method. Fusion Eng. Des. 2019, 146, 2285–2291. [Google Scholar] [CrossRef]
- Gorman, J.M.; Zheng, A.; Sparrow, E.M. Bounding wall effects on fluid flow and pressure drop through packed beds of spheres. Chem. Eng. J. 2019, 373, 519–530. [Google Scholar] [CrossRef]
- Bale, S.; Tiwari, S.; Sathe, M.; Berrouk, A.S.; Nandakumar, K.; Joshi, J. Direct numerical simulation study of end effects and D/d ratio on mass transfer in packed beds. Int. J. Heat Mass Transf. 2018, 127, 234–244. [Google Scholar] [CrossRef]
- Desu, R.K.; Moorthy, A.; Annabattula, R.K. DEM simulation of packing mono-sized pebbles into prismatic containers through different filling strategies. Fusion Eng. Des. 2018, 127, 259–266. [Google Scholar] [CrossRef]
- Zhang, K.; Du, S.Q.; Sun, P.; Zheng, B.; Liu, Y.Q.; Shen, Y.K.; Chang, R.Z.; Han, X.B.A. The effect of particle arrangement on the direct heat extraction of regular packed bed with numerical simulation. Energy 2021, 42, 120244. [Google Scholar] [CrossRef]
- Beaulieu, C.; Vidal, D.; Yari, B.; Chaouki, J.; Bertrand, F. Impact of surface roughness on heat transfer through spherical particle packed beds. Chem. Eng. Sci. 2018, 231, 116256. [Google Scholar] [CrossRef]
- Wu, Z.X.; Wu, Y.W.; Tang, S.M.; Liu, D.; Qiu, S.Z.; Su, G.H.; Tian, W.X. DEM-CFD simulation of helium flow characteristics in randomly packed bed for fusion reactors. Prog. Nucl. Energy 2018, 109, 29–37. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, B.J.; Yan, S.L.; Bai, Z.S.; Hu, Z.Q.; Lu, Z.J. CFD-DEM coupling simulation of fixed bed reactor with small diameter ratio. J. Dispers. Sci. Technol. 2021, 42, 1747–1755. [Google Scholar] [CrossRef]
- Capozzi, L.C.; Barresi, A.A.; Pisano, R. Supporting data and methods for the multi-scale modelling of freeze-drying of microparticles in packed-beds. Data Brief 2019, 343, 834–846. [Google Scholar] [CrossRef]
- Zhang, S.J.; Zhao, X.; Yang, Z. Flow Simulations in a Pebble Bed Reactor by a Combined DEM-CFD Approach. Nucl. Sci. Eng. 2018, 189, 135–151. [Google Scholar] [CrossRef]
- Natsui, S.; Takai, H.; Nashimoto, R.; Kikuchi, T.; Suzuki, R.O. Model study of the effect of particles structure on the heat and mass transfer through the packed bed in ironmaking blast furnace. Int. J. Heat Mass Transf. 2015, 91, 1176–1186. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Y.H.; Huang, K.; Liu, S.L. Investigation of effective thermal conductivity for pebble beds by one-way coupled CFD-DEM method for CFETR WCCB. Fusion Eng. Des. 2016, 106, 1–8. [Google Scholar] [CrossRef]
- Pichler, M.; Haddadi, B.; Jordan, C.; Norouzi, H.; Harasek, M. Effect of particle contact point treatment on the CFD simulation of the heat transfer in packed beds. Chem. Eng. Res. Des. 2021, 165, 242–253. [Google Scholar] [CrossRef]
- She, X.F.; Liu, S.H.; Liu, Y.J.; Zhao, W.S.; Wang, Y.J.; Zhou, H. Dynamic analysis of blockage behavior of fine particles in a packed bed by discrete element method. Ironmak. Steelmak. 2021, 48, 860–867. [Google Scholar] [CrossRef]
- Xie, Z.Z.; Wang, S.; Shen, Y.S. CFD-DEM modelling of the migration of fines in suspension flow through a solid packed bed. Chem. Eng. Sci. 2021, 231, 116261. [Google Scholar] [CrossRef]
- Tan, Y.; Rackl, M.; Fottner, J.; Kessler, S. Study on the importance of bed shape in combined DEM-CFD simulation of fixed-bed Biomass gasifiers. Powder Technol. 2022, 412, 117971. [Google Scholar] [CrossRef]
- Lian, G.Q.; Zhong, W.Q. CFD-DEM modeling of oxy-char combustion in a fluidized bed. Powder Technol. 2022, 407, 117698. [Google Scholar] [CrossRef]
- Gan, J.Q.; Zhou, Z.Y.; Yu, A.B. Particle scale study of heat transfer in packed and fluidized beds of ellipsoidal particles. Chem. Eng. Sci. 2016, 144, 201–215. [Google Scholar] [CrossRef]
- Niu, Q.; Wang, N.X. Study of heat transfer by using DEM-CFD method in a randomly packed pebble-bed reactor. Nucl. Sci. Tech. 2019, 30, 28. [Google Scholar] [CrossRef]
- Wang, S.; Luo, K.; Hu, C.S.; Lin, J.J.; Fan, J.R. CFD-DEM simulation of heat transfer in fluidized beds: Model verification, validation, and application. Chem. Eng. Sci. 2019, 197, 280–295. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, L.; Feng, J.S.; Dong, H. Numerical investigation of the air-particles heat transfer characteristics of moving bed-effect of particle size distribution. Int. J. Heat Mass Transf. 2022, 182, 122036. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, L.; Liu, S.L.; Luo, G.N. Flow characteristics analysis of purge gas in unitary pebble beds by CFD simulation coupled with DEM geometry model for fusion blanket. Fusion Eng. Des. 2017, 114, 84–90. [Google Scholar] [CrossRef]
- Tallarek, U.; Scheenen, T.W.J.; Van, A.H. Macroscopic heterogeneities in electroosmotic and pressure-driven flow through fixed beds at low column-to-particle diameter ratio. J. Phys. Chem. B. 2001, 105, 8591–8599. [Google Scholar] [CrossRef]
- Zhang, M.H.; Dong, H.; Geng, Z.F. Computational study of flow and heat transfer in fixed beds with cylindrical particles for low tube to particle diameter ratios. Chem. Eng. Res. Des. 2018, 132, 149–161. [Google Scholar] [CrossRef]
- Nijemeisland, M.; Dixon, A.G. CFD study of fluid flow and wall heat transfer in a fixed bed of spheres. AICHE J. 2004, 50, 906–921. [Google Scholar] [CrossRef]
- Yang, J.; Wu, J.Q.; Zhou, L.; Wang, Q.W. Computational study of fluid flow and heat transfer in composite packed beds of spheres with low tube to particle diameter ratio. Nucl. Eng. Des. 2016, 300, 85–96. [Google Scholar] [CrossRef]
- Bai, H.; Theuerkauf, J.; Gillis, P.A.; Witt, P.M. A Coupled DEM and CFD Simulation of Flow Field and Pressure Drop in Fixed Bed Reactor with Randomly Packed Catalyst Particles. Ind. Eng. Chem. Res. 2009, 48, 4060–4074. [Google Scholar] [CrossRef]
- Eppinger, T.; Seidler, K.; Kraume, M. DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios. Chem. Eng. J. 2011, 166, 324–331. [Google Scholar] [CrossRef]
- Ma, X.T.; Wang, J.C.; Cui, Z. Analysis and intensification of the thermal performance in packed beds based on simulation and experiment. Chem. Eng. Process. 2019, 142, 107541. [Google Scholar] [CrossRef]
- Mohanty, R.; Mohanty, S.; Mishra, B.K. Study of flow through a packed bed using discrete element method and computational fluid dynamics. J. Taiwan Inst. Chem. Eng. 2016, 63, 71–80. [Google Scholar] [CrossRef]
- Peng, W.P.; Xu, M.; Huai, X.L.; Liu, Z.G. CFD study on local fluid-to-wall heat transfer in packed beds and field synergy analysis. J. Therm. Sci. 2016, 25, 167–170. [Google Scholar]
- Erdim, E.; Akgiray, O.; Demir, I. A revisit of pressure drop-flow rate correlations for packed beds of spheres. Powder Technol. 2015, 283, 488–504. [Google Scholar] [CrossRef]
- Feng, Y.J.; Gong, B.P.; Cheng, H.; Wang, L.; Wang, X.Y. Effects of fixed wall and pebble size ratio on packing properties and contact force distribution in binary-sized pebble mixed beds at the maximum packing efficiency state. Powder Technol. 2021, 390, 504–520. [Google Scholar] [CrossRef]
- Guo, Z.H.; Sun, Z.N.; Zhang, N.; Ding, M.; Shi, S. CFD analysis of fluid flow and particle-to-fluid heat transfer in packed bed with radial layered configuration. Chem. Eng. Sci. 2019, 197, 357–370. [Google Scholar] [CrossRef]
- Dun, H.C.; Yue, P.; Huang, N.; Zhang, J. Discrete Element Simulation on Sand-Bed Collision Considering Surface Moisture Content. Processes 2022, 10, 52. [Google Scholar] [CrossRef]
- Qian, Y.A.; Han, Z.N.; Zhan, J.H.; Liu, X.X.; Xu, G.G. Comparative evaluation of heat conduction and radiation models for CFD simulation of heat transfer in packed beds. Int. J. Heat Mass Transf. 2018, 127, 573–584. [Google Scholar] [CrossRef]
- Mueller, G.E. Radial void fraction distributions in randomly packed fixed beds of uniformly sized spheres in cylindrical containers-sciencedirect. Powder Technol. 1992, 72, 269–275. [Google Scholar] [CrossRef]
- de Klerk, A. Voidage variation in packed beds at small column to particle diameter ratio. AICHE J. 2003, 49, 2022–2029. [Google Scholar] [CrossRef]
- Li, X.B.; Wei, W.; Wang, L.; Ding, P.B.; Zhu, L.Q.; Cai, J.C. A new method for evaluating the pore structure complexity of digital rocks based on the relative value of fractal dimension. Mar. Pet. Geol. 2022, 141, 105694. [Google Scholar] [CrossRef]
- Peng, R.D.; Yang, Y.C.; Ju, Y.; Mao, L.T.; Yang, Y.M. Computation of fractal dimension of rock pores based on gray CT images. Chin. Sci. Bull.-Chin. 2011, 56, 3346–3357. [Google Scholar] [CrossRef] [Green Version]
- Tsotsas, E. The influence of confining walls on the pressure drop in packed beds. Chem. Eng. Sci. 2002, 57, 1827. [Google Scholar] [CrossRef]
- Romero-Limones, A.; Poissonnier, J.; Thybaut, J.W.; Castillo-Araiza, C.O. A pseudo-local heat transfer approach in a low tube to particle diameter ratio packed bed catalytic reactor: Oxidative dehydrogenation of ethane as a case study. Chem. Eng. J. 2023, 454, 140392. [Google Scholar] [CrossRef]
- Wehinger, G.D.; Scharf, F. Thermal radiation effects on heat transfer in slender packed-bed reactors: Particle-resolved CFD simulations and 2D modeling. Chem. Eng. Res. Des. 2022, 184, 24–38. [Google Scholar] [CrossRef]
- Li, Q.; Guo, S.; Wang, S.; Zou, Z.S. CFD-DEM Investigation on Pressure Drops of Heterogeneous Alternative-Layer Particle Beds for Low-Carbon Operating Blast Furnaces. Metals 2022, 12, 1507. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Bed diameter [mm] | 20 |
Bed height [mm] | 26 |
Particle diameter [mm] | 2.5, 4.0 |
Density of particles [kg/m3] | 2700 |
Young’s modulus [GPa] | 70 |
Poisson’s ratio of particle | 0.25 |
Coefficient of restitution of particle | 0.5 |
Time step (s) | 1.0 × 10−8 |
Parameters | Value |
---|---|
Inlet velocity of bed [m/s] | 0.8 |
Inlet temperature of bed [K] | 423 |
Outlet pressure of bed [bar] | 1.013 |
Particle surface temperature [K] | 373 |
Density (kg/m3) | 1.225 |
Viscosity [kg/(m·s)] | 1.8 × 10−5 |
Gravitational accelerating [m/s2] | 9.81 |
Time step (s) | 1.0 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, C.; Li, M.; Ji, J.; Yang, X.; Li, L.; Wu, Y. Effect of Packing Structure Evolution on the Flow Characteristics in a Binary Composite Packed Bed Based on DEM-CFD Method. Processes 2023, 11, 732. https://doi.org/10.3390/pr11030732
Shen C, Li M, Ji J, Yang X, Li L, Wu Y. Effect of Packing Structure Evolution on the Flow Characteristics in a Binary Composite Packed Bed Based on DEM-CFD Method. Processes. 2023; 11(3):732. https://doi.org/10.3390/pr11030732
Chicago/Turabian StyleShen, Cunliang, Mingchun Li, Jie Ji, Xin Yang, Laishi Li, and Yusheng Wu. 2023. "Effect of Packing Structure Evolution on the Flow Characteristics in a Binary Composite Packed Bed Based on DEM-CFD Method" Processes 11, no. 3: 732. https://doi.org/10.3390/pr11030732
APA StyleShen, C., Li, M., Ji, J., Yang, X., Li, L., & Wu, Y. (2023). Effect of Packing Structure Evolution on the Flow Characteristics in a Binary Composite Packed Bed Based on DEM-CFD Method. Processes, 11(3), 732. https://doi.org/10.3390/pr11030732