The Application of Hydroxyapatite NPs for Adsorption Antibiotic from Aqueous Solutions: Kinetic, Thermodynamic, and Isotherm Studies
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Apparatus
2.3. Preparations of HAP-NPs
2.4. Characterization Techniques
2.5. Batch Adsorption Experiments
3. Results and Discussion
3.1. Characterizations of HAP NPs
3.2. Retention of Amox from Aqueous Solutions on HAP
3.3. Kinetic of Amox Adsorption on HAP solid Phase
- (a)
- The amount of adsorbate in the solution remains constant over time;
- (b)
- In an equilibrium state, the amount of adsorbate adsorbed determines the whole number of binding sites.
Weber–Morris model | ||||
Rd | R2 | |||
Amox | 0.27 | 0.986 | ||
Fractional power function kinetic models | ||||
A | B | ab | R2 | |
Amox | 0.141 | 0.626 | 0.088 | 0.988 |
The pseudo-first-order kinetic (lagregen) model | ||||
qe, exp (mg/g) | qe, calc(mg/g) | k1 | R2 | |
Amox | 2.47 | 3.49 | 0.039 | 0.973 |
The pseudo-second-order kinetic models | ||||
qe, exp (mg/g) | qe, calc(mg/g) | k2 | R2 | |
Amox | 2.47 | 4.01 | 3.9 × 10−3 | 0.996 |
Elovich kinetic model | ||||
α, (g/mg min) | β, (mg/g min) | R2 | ||
Amox | 0.2 | 0.84 | 0.983 |
3.4. Adsorption Isotherms
3.5. Thermo-Dynamic Features of Amox Retention on HAP
4. Conclusions
Adsorbent | Conditions | Refs. | |
---|---|---|---|
1 | ZnO@SiO2 | 10 mg/L Amox, 25 mg/mL of ZnO@SiO2 at pH 8 | [34] |
2 | ZnO@CNF nanoadsorbent | 25 mg/L of Amox, 0.09 g of ZnO@CNF at pH7.5 | [61] |
3 | Fe3O4@C nanoparticles | 50 to 300 mg/L of Amox, 1 g/L Fe3O4@C at pH 5 | [62] |
4 | Maltodextrin/reduced graphene/CuO nanocomposite | 30 mg/L of Amox, 0.05 g of nanocomposite at a pH of 7.4 | [63] |
5 | Ag NPs | 30 mg/L of Amox, 0.5 of Ag NPs at pH 4 | [64] |
6 | Fe3O4-chitosan/Ag NPs | 20 mg/L of Amox, 0.4 g/L Fe3O4-chitosan/Ag NPs at pH 4 | [65] |
7 | Fe3O4@AgNPs | 100 and 500 μL of Amox, 10 and 100 mg/L of Fe3O4@AgNPs at pH 7 | [66] |
8 | MoS2 Nanosheets | 45.2 µg/mL of Amox, 1.5 mg/mL of MoS2 Nanosheets at pH 10.2 | [67] |
9 | Bismuth oxyiodide-chitosan (BiOI-Ch) bionanocomposite | 80 mg/g of Amox, 1.7 g/L of BiOI-Ch at pH 3 | [68] |
10 | Hydroxyapatite HAP | 30 mg/L of Amox, 4.01 mg/g of HAP at pH 5 | This study |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boddu, R.S.; Perumal, O. Microbial nitroreductases: A versatile tool for Biomedical and Environmental Applications. Biotechnol. Appl. Biochem. 2021, 68, 1518–1530. [Google Scholar] [CrossRef] [PubMed]
- Palmer, N.; Maasch, J.R.; Torres, M.D.; de la Fuente-Nunez, C. Molecular dynamics for Antimicrobial Peptide Discovery. Infect. Immun. 2021, 89, e00703-20. [Google Scholar] [CrossRef] [PubMed]
- Fatahi-Bafghi, M. Antibiotic resistance genes in the actinobacteria phylum. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1599–1624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Lin, L.; Xie, J. A mini-review of chemical and biological properties of polysaccharides from Momordica Charantia. Int. J. Biol. Macromol. 2016, 92, 246–253. [Google Scholar] [CrossRef]
- Zainab, S.M.; Junaid, M.; Xu, N.; Malik, R.N. Antibiotics and antibiotic resistant genes (args) global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020, 187, 116455. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Moyo, B.; Gitari, M.; Tavengwa, N.T. Application of sorptive micro-extraction techniques for the pre-concentration of antibiotic drug residues from food samples—A review. Food Addit. Contam. Part A 2020, 37, 1865–1880. [Google Scholar] [CrossRef]
- Ortelli, D.; Spörri, A.S.; Edder, P. Veterinary drug residue in food of animal origin in Switzerland: A health concern? CHIMIA 2018, 72, 713. [Google Scholar] [CrossRef]
- Khataei, M.M.; Epi, S.B.; Lood, R.; Spégel, P.; Yamini, Y.; Turner, C. A review of green solvent extraction techniques and their use in antibiotic residue analysis. J. Pharm. Biomed. Anal. 2022, 209, 114487. [Google Scholar] [CrossRef]
- Tasho, R.P.; Cho, J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A Review. Sci. Total Environ. 2016, 563–564, 366–376. [Google Scholar] [CrossRef]
- Shin, Y.-J.; Kim, B.; Kim, H.; Kim, K.; Park, K.; Kim, J.; Kim, H.-J.; Kim, P. 1,2,3-benzotriazole adversely affects the early-life stage of Oryzias latipes. Sci. Total Environ. 2022, 815, 152846. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Pereira, R.; Abrantes, N.; Pereira, J.; Gonçalves, F.; Marques, C.R. Ecotoxicological effects of ciprofloxacin on freshwater species: Data integration and derivation of toxicity thresholds for risk assessment. Ecotoxicology 2012, 21, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Redondo-Hasselerharm, P.E.; Falahudin, D.; Peeters, E.T.; Koelmans, A.A. Microplastic effect thresholds for freshwater benthic macroinvertebrates. Environ. Sci. Technol. 2018, 52, 2278–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michael, I.; Rizzo, L.; McArdell, C.S.; Manaia, C.M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A Review. Water Res. 2013, 47, 957–995. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, P.; Shukla, P.; Giri, B.S.; Chowdhary, P.; Chandra, R.; Gupta, P.; Pandey, A. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environ. Res. 2021, 194, 110664. [Google Scholar] [CrossRef]
- Sungur, Ş. Pharmaceutical and personal care products in the environment: Occurrence and impact on the functioning of the ecosystem. Emerg. Contam. Environ. 2022, 137–157. [Google Scholar] [CrossRef]
- Kosutic, K.; Dolar, D.; Asperger, D.; Kunst, B. Removal of antibiotics from a model wastewater by RO/NF membranes. Sep. Purif. Technol. 2007, 53, 244–249. [Google Scholar] [CrossRef]
- Pouretedal, H.R.; Sadegh, N. Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from Vine Wood. J. Water Process Eng. 2014, 1, 64–73. [Google Scholar] [CrossRef]
- Tian, X.; Fei, J.; Pi, Z.; Yang, C.; Luo, D. Synthesis and characterization of amoxicillin nanostructures. Nanomed. Nanotechnol. Biol. Med. 2005, 1, 323–325. [Google Scholar] [CrossRef]
- Dimitrakopoulou, D.; Rethemiotaki, I.; Frontistis, Z.; Xekoukoulotakis, N.P.; Venieri, D.; Mantzavinos, D. Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. J. Environ. Manag. 2012, 98, 168–174. [Google Scholar] [CrossRef]
- Moreira, N.F.F.; Orge, C.A.; Ribeiro, A.R.; Faria, J.L.; Nunes, O.C.; Pereira, M.F.; Silva, A.M.T. Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater. Water Res. 2015, 87, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Mehrjouei, M.; Müller, S.; Möller, D. Energy consumption of three different advanced oxidation methods for water treatment: A cost-effectiveness study. J. Clean. Prod. 2014, 65, 178–183. [Google Scholar] [CrossRef]
- Homem, V.; Santos, L. Degradation and removal methods of antibiotics from aqueous matrices—A Review. J. Environ. Manag. 2011, 92, 2304–2347. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, Z.; Shuang, C.; Li, A.; Zhang, M.; Wang, M. Efficient removal of tetracycline by reusable magnetic microspheres with a high surface area. Chem. Eng. J. 2012, 210, 350–356. [Google Scholar] [CrossRef]
- Han, R.; Ding, D.; Xu, Y.; Zou, W.; Wang, Y.; Li, Y.; Zou, L. Use of rice husk for the adsorption of Congo Red from aqueous solution in Column Mode. Bioresour. Technol. 2008, 99, 2938–2946. [Google Scholar] [CrossRef] [PubMed]
- Ciesielczyk, F.; Bartczak, P.; Klapiszewski, Ł.; Jesionowski, T. Treatment of model and galvanic waste solutions of copper (ii) ions using a lignin/inorganic oxide hybrid as an effective sorbent. J. Hazard. Mater. 2017, 328, 150–159. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, S.; Lu, K.; Jia, H.; Xia, M.; Wang, F. Preparation of hierarchically floral ZIF-8 derived carbon@polyaniline@Ni/Al layered double hydroxides composite with outstanding removal phenomenon for saccharin. Chem. Eng. J. 2022, 450, 138127. [Google Scholar] [CrossRef]
- Bakry, A.M.; Alamier, W.M.; Salama, R.S.; Samy El-Shall, M.; Awad, F.S. Remediation of water containing phosphate using ceria nanoparticles decorated partially reduced graphene oxide (CEO2-PRGO) composite. Surf. Interfaces 2022, 31, 102006. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Salama, R.S.; El-Hakam, S.A.; Khder, A.S.; Ahmed, A.I. Synthesis of 12-tungestophosphoric acid supported on Zr/MCM-41 composite with excellent heterogeneous catalyst and promising adsorbent of Methylene Blue. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127753. [Google Scholar] [CrossRef]
- Salama, R.S.; El-Hakam, S.A.; Samra, S.E.; El-Dafrawy, S.M.; Ahmed, A.I. Cu-BDC as a Novel and Efficient Catalyst for the Synthesis of 3, 4-Dihydropyrimidin-2 (1H)-ones and Aryl-14H-dibenzo [a, j] Xanthenes under Conventional Heating. Int. J. Nano Mater. Sci. 2018, 7, 31–42. [Google Scholar]
- Fulekar, M.H. Microbial degradation of petrochemical waste-polycyclic aromatic hydrocarbons. Bioresour. Bioprocess. 2017, 4, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Gashtasbi, F.; Yengejeh, R.J.; Babaei, A.A. Photocatalysis assisted by activated-carbon-impregnated magnetite composite for removal of cephalexin from aqueous solution. Korean J. Chem. Eng. 2018, 35, 1726–1734. [Google Scholar] [CrossRef]
- Singh, A.; Gautam, P.K.; Verma, A.; Singh, V.; Shivapriya, P.M.; Shivalkar, S.; Sahoo, A.K.; Samanta, S.K. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A Review. Biotechnol. Rep. 2020, 25, e00427. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.-D.; Truong, T.-T.-T.; Nguyen, H.-L.; Hoang, L.-B.-L.; Bui, V.-P.; Tran, T.-T.-M.; Dinh, T.-D.; Le, T.-D. Synthesis and characterization of novel core–shell ZnO@SiO2 nanoparticles and application in antibiotic and bacteria removal. ACS Omega 2022, 7, 42073–42082. [Google Scholar] [CrossRef]
- Machado, S.; Pacheco, J.G.; Nouws, H.P.; Albergaria, J.T.; Delerue-Matos, C. Green zero-valent iron nanoparticles for the degradation of amoxicillin. Int. J. Environ. Sci. Technol. 2016, 14, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Gaim, Y.T.; Yimanuh, S.M.; Kidanu, Z.G. Enhanced photocatalytic degradation of amoxicillin with MN-doped cu2o under sunlight irradiation. J. Compos. Sci. 2022, 6, 317. [Google Scholar] [CrossRef]
- Sultan, M. Hydroxyapatite/polyurethane composites as promising biomaterials. Chem. Pap. 2018, 72, 2375–2395. [Google Scholar] [CrossRef]
- Ragab, A.; Ahmed, I.; Bader, D. The removal of brilliant green dye from aqueous solution using nano hydroxyapatite/chitosan composite as a Sorbent. Molecules 2019, 24, 847. [Google Scholar] [CrossRef] [Green Version]
- Bee, S.-L.; Hamid, Z.A.A. Hydroxyapatite derived from food industry bio-wastes: Syntheses, properties and its potential multifunctional applications. Ceram. Int. 2020, 46, 17149–17175. [Google Scholar] [CrossRef]
- Alhasan, H.S.; Alahmadi, N.; Yasin, S.A.; Khalaf, M.Y.; Ali, G.A. Low-cost and eco-friendly hydroxyapatite nanoparticles derived from eggshell waste for cephalexin removal. Separations 2022, 9, 10. [Google Scholar] [CrossRef]
- Vinayagam, R.; Pai, S.; Murugesan, G.; Varadavenkatesan, T.; Kaviyarasu, K.; Selvaraj, R. Green synthesized hydroxyapatite nanoadsorbent for the adsorptive removal of AB113 Dye for environmental applications. Environ. Res. 2022, 212, 113274. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, N.H.; Munir, M.U.; Alruwaili, N.K.; Alharbi, K.S.; Ihsan, A.; Almurshedi, A.S.; Khan, I.U.; Bukhari, S.N.; Rehman, M.; Ahmad, N. Synthesis and characterization of antibiotic–loaded biodegradable citrate functionalized mesoporous hydroxyapatite nanocarriers as an alternative treatment for bone infections. Pharmaceutics 2022, 14, 975. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, A.P.; Venkatasubbu, G.D. Sustained release of amoxicillin from hydroxyapatite nanocomposite for bone infections. Prog. Biomater. 2018, 7, 289–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, F.; Wang, S.; Wen, S.; Shen, M.; Zhu, M.; Shi, X. Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials 2013, 34, 1402–1412. [Google Scholar] [CrossRef] [PubMed]
- Kamalanathan, P.; Ramesh, S.; Bang, L.T.; Niakan, A.; Tan, C.Y.; Purbolaksono, J.; Chandran, H.; Teng, W.D. Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor. Ceram. Int. 2014, 40, 16349–16359. [Google Scholar] [CrossRef]
- Chaudhuri, B.; Mondal, B.; Modak, D.K.; Pramanik, K.; Chaudhuri, B.K. Preparation and characterization of nanocrystalline hydroxyapatite from egg shell and K2HPO4 Solution. Mater. Lett. 2013, 97, 148–150. [Google Scholar] [CrossRef]
- Ummartyotin, S.; Tangnorawich, B. Utilization of eggshell waste as raw material for synthesis of hydroxyapatite. Colloid Polym. Sci. 2015, 293, 2477–2483. [Google Scholar] [CrossRef]
- Marr, I.L. Separation and spectrophotometric determination of elements. Endeavour 1987, 11, 220. [Google Scholar] [CrossRef]
- Goddard, A.F.; Jessa, M.J.; Barrett, D.A.; Shaw, P.N.; Idstrom, J.P.; Cederberg, C.; Spiller, R.C. Effect of omeprazole on the distribution of metronidazole, amoxicillin, and clarithromycin in human gastric juice. Gastroenterology 1996, 111, 358–367. [Google Scholar] [CrossRef]
- Adriano, W.S.; Veredas, V.; Santana, C.C.; Gonçalves, L.R.B. Adsorption of amoxicillin on chitosan beads: Kinetics, equilibrium and validation of finite bath models. Biochem. Eng. J. 2005, 27, 132–137. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 2015, 532, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Dastgheib, S.A.; Rockstraw, D.A. A systematic study and proposed model of the adsorption of binary metal ion solutes in aqueous solution onto activated carbon produced from Pecan Shells. Carbon 2002, 40, 1853–1861. [Google Scholar] [CrossRef]
- Al-Saidi, H.M.; Abdel-Fadeel, M.A.; El-Sonbati, A.Z.; El-Bindary, A.A. Multi-walled carbon nanotubes as an adsorbent material for the solid phase extraction of bismuth from aqueous media: Kinetic and thermodynamic studies and analytical applications. J. Mol. Liq. 2016, 216, 693–698. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Dalal, R.C. Desorption of soil phosphate by anion-exchange resin. Commun. Soil Sci. Plant Anal. 1974, 5, 531–538. [Google Scholar] [CrossRef]
- Bhattacharya, A.K.; Venkobachar, C. Removal of cadmium (ii) by low cost adsorbents. J. Environ. Eng. 1984, 110, 110–122. [Google Scholar] [CrossRef]
- Salam, M.A.; Alkhateeb, L.; Abdel-Fadeel, M.A. Removal of toxic ammonium ions from water using nanographene sheets. Desalination Water Treat. 2018, 129, 168–176. [Google Scholar] [CrossRef]
- Dubinin, M.M. The surface and porosity of adsorbents. Bull. Acad. Sci. USSR Div. Chem. Sci. 1974, 23, 958–971. [Google Scholar] [CrossRef]
- Reichenberg, D. Properties of ion-exchange resins in relation to their structure. III. Kinetics of Exchange. J. Am. Chem. Soc. 1953, 75, 589–597. [Google Scholar] [CrossRef]
- Hameed, S.A.; Abdel-Fadeel, M.A.; Al-Saidi, H.M.; Abdel Salam, M. Simultaneous removal of the toxic tungsten ions and rhodamine B dye by graphene nanosheets from model and real water. Desalination Water Treat. 2020, 188, 266–276. [Google Scholar] [CrossRef]
- Chaba, J.M.; Nomngongo, P.N. Effective adsorptive removal of amoxicillin from aqueous solutions and wastewater samples using zinc oxide coated carbon nanofiber composite. Emerg. Contam. 2019, 5, 143–149. [Google Scholar] [CrossRef]
- Kakavandi, B.; Esrafili, A.; Mohseni-Bandpi, A.; Jonidi Jafari, A.; Rezaei Kalantary, R. Magnetic Fe3O4@C nanoparticles as adsorbents for removal of amoxicillin from aqueous solution. Water Sci. Technol. 2013, 69, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Moradi, O.; Alizadeh, H.; Sedaghat, S. Removal of pharmaceuticals (diclofenac and amoxicillin) by maltodextrin/reduced graphene and maltodextrin/reduced graphene/copper oxide nanocomposites. Chemosphere 2022, 299, 134435. [Google Scholar] [CrossRef] [PubMed]
- Lotfollahzadeh, R.; Yari, M.; Sedaghat, S.; Delbari, A.S. Biosynthesis and characterization of silver nanoparticles for the removal of amoxicillin from aqueous solutions using Oenothera biennis water extract. J. Nanostructure Chem. 2021, 11, 693–706. [Google Scholar] [CrossRef]
- Mahmodi Sheikh Sarmast, Z.; Sedaghat, S.; Derakhshi, P.; Azar, P.A. Facile fabrication of silver nanoparticles grafted with fe3o4-chitosan for efficient removal of amoxicillin from aqueous solution: Application of central composite design. J. Polym. Environ. 2022, 30, 2990–3004. [Google Scholar] [CrossRef]
- Caravaca, M.; Vicente-Martínez, Y.; Soto-Meca, A.; Angulo-González, E. Total removal of amoxicillin from water using magnetic core nanoparticles functionalized with silver. Environ. Res. 2022, 211, 113091. [Google Scholar] [CrossRef]
- Jalees, M.I.; Nawaz, R. Synthesis and application of MOS2 nanosheets for the removal of amoxicillin from water: Response surface method. Arab. J. Sci. Eng. 2022, 48, 443–455. [Google Scholar] [CrossRef]
- Bisaria, K.; Wadhwa, S.; Mathur, A.; Roy, S.; Dixit, A.; Singh, R. New bismuth oxyiodide/chitosan nanocomposite for ultrasonic waves expedited adsorptive removal of amoxicillin from aqueous medium: Kinetic, isotherm and thermodynamic investigations. Environ. Sci. Pollut. Res. 2022, 29, 86260–86276. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhasan, H.S.; Yasin, S.A.; Alahmadi, N.; Alkhawaldeh, A.K. The Application of Hydroxyapatite NPs for Adsorption Antibiotic from Aqueous Solutions: Kinetic, Thermodynamic, and Isotherm Studies. Processes 2023, 11, 749. https://doi.org/10.3390/pr11030749
Alhasan HS, Yasin SA, Alahmadi N, Alkhawaldeh AK. The Application of Hydroxyapatite NPs for Adsorption Antibiotic from Aqueous Solutions: Kinetic, Thermodynamic, and Isotherm Studies. Processes. 2023; 11(3):749. https://doi.org/10.3390/pr11030749
Chicago/Turabian StyleAlhasan, Huda S., Suhad A. Yasin, Nadiyah Alahmadi, and Ahmad Khalaf Alkhawaldeh. 2023. "The Application of Hydroxyapatite NPs for Adsorption Antibiotic from Aqueous Solutions: Kinetic, Thermodynamic, and Isotherm Studies" Processes 11, no. 3: 749. https://doi.org/10.3390/pr11030749
APA StyleAlhasan, H. S., Yasin, S. A., Alahmadi, N., & Alkhawaldeh, A. K. (2023). The Application of Hydroxyapatite NPs for Adsorption Antibiotic from Aqueous Solutions: Kinetic, Thermodynamic, and Isotherm Studies. Processes, 11(3), 749. https://doi.org/10.3390/pr11030749