Formulation and Characterization of a Novel Palm-Oil-Based α-Mangostin Nano-Emulsion (PO-AMNE) as an Antimicrobial Endodontic Irrigant: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of PO-AMNE: Formulation and Characterization
2.1.1. Selection of Suitable Internal Phase (Oil): Screening of Oils for α-Mangostin Nano-Emulsion Development
2.1.2. Selection of Surfactants and Co-Surfactants
2.1.3. Preparation of PO-AMNE
2.2. Thermodynamic Stability Testing of α-Mangostin Nano-Emulsion
2.2.1. Centrifugation Test
2.2.2. Heating–Cooling Cycle
2.2.3. Freeze–Thaw Cycle
2.3. Box–Behnken Statistical Design: Optimization of the α-Mangostin Nano-Emulsion (PO-AMNE)
2.3.1. Measurement of Droplet Size, Polydispersity Index, and Zeta Potential
2.3.2. Preparation of Optimized Palm-Oil-Based α-Mangostin Nano-Emulsion (PO-AMNE)
2.3.3. Transmission Electron Microscopy (TEM)
2.4. Antimicrobial Studies
2.4.1. Microorganisms
2.4.2. Determination of Minimum Inhibitory Concentration (MIC)
2.4.3. Micro Dilution Method
2.4.4. Biofilm Assay (Microtiter Plate)
2.5. Ex Vivo Experiment—Antimicrobial Efficacy—0.2% PO-AMNE Irrigant in aTooth Model Using Colony-Forming Units (CFU)
2.5.1. Tooth Sample Preparation
2.5.2. Antimicrobial Assessment Using Colony-Forming Units (CFU)
2.6. Smear Layer Removal in Tooth Model
2.6.1. Selection of Representative SEM Sections
2.6.2. SEM Analysis and Scoring
2.7. Biocompatibility Test Using an Alamar Blue Assay on Immortalized Oral Kerantinocyte OKF-6 Cells
2.8. Statistical Analysis
3. Results
3.1. Formulation and Characterization of PO-AMNE
Selection of Oils, Surfactants, and Co-Surfactant for PO-AMNE Development
3.2. Measurement of Droplet Size, Polydispersity Index, and Zeta Potential
3.2.1. Droplet Size
3.2.2. Effect of the Independent Variable on Polydispersity Index
3.3. Optimization and Characterization of 0.2% PO-AMNE
3.4. Ex Vivo Antimicrobial Studies
3.4.1. Enumeration and Identification of Enterococcus Faecalis, Staphylococcus epidermidis, and Candida albicans
3.4.2. Determination of Minimum Inhibitory Concentration (MIC)
3.5. Ex Vivo Experiment: Preparation of Human Teeth Specimens to Check the Antimicrobial Efficacy of PO-AMNE Irrigant in a Tooth Model Using Colony-Forming Units (CFU)
3.5.1. Antimicrobial Assessment Using CFU
Results for E. faecalis at 200 µm
Results for E. faecalis at 400 µm
Results for S. epidermidis at 200 µm
Results for S. epidermidis at 400 µm
Results for C. albicans at 200 µm
Results for C. albicans at 400 µm
3.6. Smear Layer Removal in Tooth Models
3.6.1. Debris Scores for 0.2% PO-AMNE
3.6.2. Debris Scores for 17% EDTA
3.6.3. Debris Score for Saline
3.7. Biocompatibility Test Using Alamar Blue Assay on Immortalized Oral Kerantinocytes OKF-6 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapsell, L.C.; Hemphill, I.; Cobiac, L.; Patch, C.S.; Sullivan, D.R.; Fenech, M.; Roodenrys, S.; Keogh, J.B.; Clifton, P.M.; Williams, P.G.; et al. Health benefits of herbs and spices: The past, the present, the future. Med. J. Aust. 2006, 185, S1–S24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triggiani, V.; Resta, F.; Guastamacchia, E.; Sabbà, C.; Licchelli, B.; Ghiyasaldin, S.; Tafaro, E. Role of antioxidants, essential fatty acids, carnitine, vitamins, phytochemicals and trace elements in the treatment of diabetes mellitus and its chronic complications. Endocr. Metab. Immune Disord. Drug Targets 2006, 6, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Estes, C.; McLaren, A.; Spangehl, M.J. Chlorhexidine Antiseptic Irrigation Eradicates Staphylococcus epidermidis From Biofilm: An In Vitro Study. Clin. Orthop. Relat. Res. 2018, 476, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Sakagami, Y.; Iinuma, M.; Piyasena, K.G.N.P.; Dharmaratne, H.R.W. Antibacterial activity of α-Mangostin against vancomycin-resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine 2005, 12, 203–208. [Google Scholar] [CrossRef]
- Kaomongkolgit, R.; Jamdee, K.; Chaisomboon, N. Antifungal activity of alpha-mangostin against Candida albicans. J. Oral. Sci. 2009, 51, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Larson, R.T.; Lorch, J.M.; Pridgeon, J.W.; Becnel, J.J.; Clark, G.G.; Lan, Q. The biological activity of alpha-mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor. J. Med. Entomol. 2010, 47, 249–257. [Google Scholar]
- Fabricius, L.; Dahlén, G.; Öhman, A.E.; Möller, A.J. Predominant indigenous oral bacteria isolated from infected root canals after varied times of closure. Scand. J. Dent. Res. 1982, 90, 134–144. [Google Scholar] [CrossRef]
- Love, R.M. Enterococcus faecalis: A mechanism for its role in endodontic failure. Int. Endod. J. 2001, 34, 399–405. [Google Scholar] [CrossRef]
- Poptani, B.; Sharaff, M.; Archana, G.; Parekh, V. Detection of Enterococcus faecalis and Candida albicans in previously root-filled teeth in a population of Gujarat with polymerase chain reaction. Contemp. Clin. Dent. 2013, 4, 62–66. [Google Scholar] [CrossRef]
- Murad, C.F.; Sassone, L.M.; Faveri, M.; Hirata, R., Jr.; Figueiredo, L.; Feres, M. Microbial diversity in persistent root canal infections investigated by checkerboard DNA-DNA hybridization. J. Endod. 2014, 40, 899–906. [Google Scholar] [CrossRef]
- Dalhar, H.; Latief, M.; Ketut, S.; Dian, A.W. Effectiveness of flavonoid from mangosteen pericarp (Garcinia mangostana L.) as Enterococcus faecalis antibiofilm. Conserv. Dent. J. 2017, 7, 18–22. [Google Scholar]
- McComb, D.; Smith, D.C. A preliminary scanning electron microscopic study of root canals after endodontic procedures. J. Endod. 1975, 1, 238–242. [Google Scholar] [CrossRef]
- Hülsmann, M. Effects of mechanical instrumentation and chemical irrigation on the root canal dentin and surrounding tissues. Endod. Top. 2013, 9, 55–86. [Google Scholar] [CrossRef]
- Sen, B.H.; Wesselink, P.R.; Türkün, M. The smear layer: A phenomenon in root canal therapy. Int. Endod. J. 1995, 28, 141–148. [Google Scholar] [CrossRef]
- Di Lenarda, R.; Cadenaro, M.; Sbaizero, O. Effectiveness of 1 mol L-1 citric acid and 15% EDTA irrigation on smear layer removal. Int. Endod. J. 2000, 33, 46–52. [Google Scholar] [CrossRef]
- Haznedaroglu, F. Efficacy of various concentrations of citric acid at different pH values for smear layer removal. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2003, 96, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Dioguardi, M.; Gioia, G.D.; Illuzzi, G.; Laneve, E.; Cocco, A.; Troiano, G. Endodontic irrigants: Different methods to improve efficacy and related problems. Eur. J. Dent. 2018, 12, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, Z.; Asgary, S. A comparative study of antifungal activity of endodontic irrigants. Iran Endod. J. 2015, 10, 144–147. [Google Scholar] [PubMed]
- Mohammadi, Z. Chlorhexidine gluconate, its properties and applications in endodontics. Iran Endod. J. 2008, 2, 113–125. [Google Scholar] [PubMed]
- Yamashita, J.C.; Tanomaru Filho, M.; Leonardo, M.R.; Rossi, M.A.; Silva, L.A. Scanning electron microscopic study of the cleaning ability of chlorhexidine as a root-canal irrigant. Int. Endod. J. 2003, 36, 391–394. [Google Scholar] [CrossRef]
- Chang, Y.C.; Huang, F.M.; Tai, K.W.; Chou, M.Y. The effect of NaOCl and CHX on cultured human periodontal ligament cells. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001, 92, 446–450. [Google Scholar] [CrossRef] [Green Version]
- Narang, J.K.; Narang, R. Emerging role of nanoemulsions in oral health management. Int. J. Pharm. Investig. 2017, 7, 1–3. [Google Scholar] [CrossRef]
- Kotta, S.; Khan, A.W.; Pramod, K.; Ansari, S.H.; Sharma, R.K.; Ali, J. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin. Drug Deliv. 2012, 9, 585–598. [Google Scholar] [CrossRef]
- Sabjan, K.B.; Munawar, S.M.; Rajendiran, D.; Vinoji, S.K.; Kasinathan, K. Nanoemulsion as Oral Drug Delivery-A Review. Curr. Drug Res. Rev. 2020, 12, 4–15. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, H.; Chen, H.; Lin, J.; Wang, Q. Food-Grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds. Molecules 2019, 21, 4242. [Google Scholar] [CrossRef] [Green Version]
- Jhajharia, K.; Parolia, A.; Shetty, K.V.; Mehta, L.K. Biofilm in endodontics: A review. J. Int. Soc. Prev. Community Dent. 2015, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hess, D.J.; Henry-Stanley, M.J.; Wells, C.L. The natural surfactant glycerol monolaurate significantly reduces development of Staphylococcus aureus and Enterococcus faecalis biofilms. Surg Infect. 2015, 16, 538–542. [Google Scholar] [CrossRef] [Green Version]
- Hinton, A., Jr.; Ingram, K.D. Antimicrobial activity of potassium hydroxide and lauric acid against microorganisms associated with poultry processing. J. Food Prot. 2006, 69, 1611–1615. [Google Scholar] [CrossRef] [Green Version]
- Devan, K.; Peedikayil, F.C.; Chandru, T.P.; Kottayi, S.; Dhanesh, N.; Suresh, K.R. Antimicrobial efficacy of medium chain fatty acids as root canal irrigants: An in vitro study. J. Indian Soc. Pedod. Prev. Dent. 2019, 37, 258–264. [Google Scholar] [CrossRef]
- Ghonmode, W.N.; Balsaraf, O.D.; Tambe, V.H.; Saujanya, K.P.; Patil, A.K.; Kakde, D.D. Comparison of the antibacterial efficiency of neem leaf extracts, grape seed extracts and 3% sodium hypochlorite against E. feacalis-An in vitro study. J. Int. Oral Health 2013, 5, 61–66. [Google Scholar]
- Gorain, B.; Choudhury, H.; Kundu, A.; Sarkar, L.; Karmakar, S.; Jaisankar, P.; Pal, T.K. Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity in hypertensive rats. Colloids Surf. B Biointerfaces 2014, 115, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, H.; Zakaria, N.F.B.; Tilang, P.A.B.; Tzeyung, A.S.; Pandey, M.; Chatterjee, B.; Alhakamy, N.A.; Bhattamishra, S.K.; Kesharwani, P.; Gorain, B.; et al. Formulation development and evaluation of rotigotine mucoadhesive nanoemulsion for intranasal delivery. J. Drug Deliv. Sci. Technol. 2019, 54, 101301. [Google Scholar] [CrossRef]
- Chong, W.T.; Tan, C.P.; Cheah, Y.K.; Lajis, A.F.B.; Habi Mat Dian, N.L.; Kanagaratnam, S.; Lai, O.M. Optimization of process parameters in preparation of tocotrienol-rich red palm oil-based nanoemulsion stabilized by Tween80-Span 80 using response surface methodology. PLoS ONE 2018, 13, e0202771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumbhar, S.A.; Kokare, C.R.; Shrivastava, B.; Gorain, B.; Choudhury, H. Preparation, characterization, and optimization of asenapine maleate mucoadhesive nanoemulsion using Box-Behnken design: In vitro and in vivo studies for brain targeting. Int. J. Pharm. 2020, 30, 119499. [Google Scholar] [CrossRef]
- Akrawi, S.H.; Gorain, B.; Nair, A.B.; Choudhury, H.; Pandey, M.; Shah, J.N.; Venugopala, K.N. Development and Optimization of Naringenin-Loaded Chitosan-Coated Nanoemulsion for Topical Therapy in Wound Healing. Pharmaceutics 2020, 20, 893. [Google Scholar] [CrossRef]
- Hofherr, L.; Votava, H.; Blazevic, D.J. Comparison of three methods for identifying nonfermenting gram-negative rods. Can. J. Microbiol. 1978, 24, 1140–1144. [Google Scholar] [CrossRef]
- Otto, L.A.; Blachman, U. Nonfermentative bacilli: Evaluation of three systems for identification. J. Clin. Microbiol. 1979, 10, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Owuama, C.I. Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. Afr. J. Microbiol. Res. 2017, 11, 977–980. [Google Scholar]
- Wu, G.; Yang, Q.; Long, M.; Guo, L.; Li, B.; Meng, Y.; Zhang, A.; Wang, H.; Liu, S.; Zou, L. Evaluation of agar dilution and broth microdilution methods to determine the disinfectant susceptibility. J. Antibiot. 2015, 68, 661–665. [Google Scholar] [CrossRef] [Green Version]
- Coffey, B.M.; Anderson, G.G. Biofilm formation in the 96-well microtiter plate. In Pseudomonas Methods and Protocols; Humana Press: New York, NY, USA, 2014; pp. 631–641. [Google Scholar]
- Haapasalo, M.; Ørstavik, D. In vitro infection and disinfection of dentinal tubules. J. Dent. Res. 1987, 66, 1375–1379. [Google Scholar] [CrossRef]
- Galán, C.; Ariatti, A.; Bonini, M.; Clot, B.; Crouzy, B.; Dahl, A.; FernandezGonzález, D.; Frenguelli, G.; Gehrig, R.; Isard, S.; et al. Recommended terminology for aerobiological studies. Aerobiologia 2017, 33, 293–295. [Google Scholar] [CrossRef]
- Chum, J.D.; Lim, D.J.Z.; Sheriff, S.O.; Pulikkotil, S.J.; Suresh, A.; Davamani, F. In vitro evaluation of octenidine as an antimicrobial agent against Staphylococcus epidermidis in disinfecting the root canal system. Restor. Dent. Endod. 2019, 8, e8. [Google Scholar]
- Andrabi, S.M.; Kumar, A.; Tewari, R.K.; Mishra, S.K.; Iftekhar, H. An In Vitro SEM Study on the Effectiveness of Smear Layer Removal of Four Different Irrigations. Iran Endod. J. 2012, 7, 171–176. [Google Scholar]
- Hülsmann, M.; Rümmelin, C.; Schäfers, F. Root canal cleanliness after preparation with different endodontic handpieces and hand instruments: A comparative SEM investigation. J. Endod. 1997, 23, 301–306. [Google Scholar] [CrossRef]
- Matt, C.; Jennifer, S.C. Guide to Research Techniques in Neuroscience, 2nd ed.; Elsevier Publication: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Ngo, Y.X.; Haga, K.; Suzuki, A.; Kato, H.; Yanagisawa, H.; Izumi, K.; Sada, A. Isolation and Culture of Primary Oral Keratinocytes from the Adult Mouse Palate. J. Vis. Exp. 2021, 24, 175. [Google Scholar]
- Saberi, A.H.; Fang, Y.; McClements, D.J. Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification. J. Colloid Interface Sci. 2013, 411, 105–113. [Google Scholar] [CrossRef]
- Posocco, P.; Perazzo, A.; Preziosi, V.; Laurini, E.; Priclab, S.; Guidocde, S.; Posocco, P. Interfacial tension of oil/water emulsions with mixed non-ionic surfactants: Comparison between experiments and molecular simulations. RSC Adv. 2016, 6, 4723–4729. [Google Scholar] [CrossRef]
- Algahtani, M.S.; Ahmad, M.Z.; Ahmad, J. Investigation of Factors Influencing Formation of Nanoemulsion by Spontaneous Emulsification: Impact on Droplet Size, Polydispersity Index, and Stability. Bioengineering 2022, 9, 384. [Google Scholar] [CrossRef]
- Sarheed, O.; Dibi, M.; Ramesh, K.V.R.N.S. Studies on the Effect of Oil and Surfactant on the Formation of Alginate-Based O/W Lidocaine Nanocarriers Using Nanoemulsion Template. Pharmaceutics 2020, 17, 1223. [Google Scholar] [CrossRef]
- Vasconcelos, B.C.de.; Luna-Cruz, S.M.; De-Deus, G.; Moraes, I.G.D.; Maniglia-Ferreira, C.; Gurgel-Filho, E.D. Cleaning ability of chlorhexidine gel and sodium hypochlorite associated or not with EDTA as root canal irrigants: A scanning electron microscopy study. J. Appl. Oral Sci. 2007, 15, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Karkehabadi, H.; Yousefifakhr, H.; Zadsirjan, S. Cytotoxicity of Endodontic Irrigants on Human Periodontal Ligament Cells. Iranian Endodontic Journal. 2018, 13, 390–394. [Google Scholar] [PubMed]
- Scelza, M.Z.; de Noronha, F.; da Silva, L.E.; Maurício, M.; Gallito, M.A.; Scelza, P. Effect of Citric Acid and Ethylenediaminetetraacetic Acid on the Surface Morphology of Young and Old Root Dentin. Iran Endod. J. 2016, 11, 188–191. [Google Scholar] [PubMed]
- Bystrom, A.; Sundqvist, G. The antibacterial action of NaOCl and EDTA in 60 cases of endodontic therapy. Int. Endod. J. 1985, 18, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Sedgley, C.; Buck, G.; Appelbe, O. Prevalence of Enterococcus faecalis at multiple oral sites in endodontic patients using culture and PCR. J. Endod. 2006, 32, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Stuart, C.H.; Schwartz, S.A.; Beeson, T.J.; Owatz, C.B. Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment. J. Endod. 2006, 32, 93–98. [Google Scholar] [CrossRef]
- Waltimo, T.M.T.; Siren, E.K.; Torkko, H.L.; Olsen, I.; Haapasalo, M.P. Fungi in therapy-resistant apical periodontitis. Int. Endod. J. 1997, 30, 96–101. [Google Scholar] [CrossRef]
- Peciuliene, V.; Reynaud, A.H.; Balciuniene, I.; Haapasalo, M.P.P. Isolation of yeasts and enteric bacteria in root-filled teeth with chronic apical periodontitis. Int. Endod. J. 2001, 34, 429–434. [Google Scholar] [CrossRef]
- Egan, M.W.; Spart, D.A.; Ng, Y.L.; Lam, J.M.; Moles, D.R.; Gulabivala, K. Prevalence of yeast in saliva and root canals of teeth associated with apical periodontitis. Int. Endod. J. 2002, 35, 321–329. [Google Scholar] [CrossRef]
- Röhner, E.; Jacob, B.; Böhle, S.; Rohe, S.; Löffler, B.; Matziolis, G.; Zippelius, T. NaOCl is more effective than CHX for eradication of bacterial biofilm of staphylococci and Pseudomonas aeruginosa. Knee Surg. Sport. Traumatol. Arthrosc. 2020, 28, 3912–3918. [Google Scholar] [CrossRef]
- Hidajat, M.J.; Jo, W.; Kim, H.; Noh, J. Effective Droplet Size Reduction and Excellent Stability of Limonene Nanoemulsion Formed by High-Pressure Homogenizer. Colloids Interfaces 2020, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Đorđević, S.M.; Cekić, N.D.; Savić, M.M.; Isailović, T.M.; Ranđelović, D.V.; Marković, B.D.; Savić, S.R.; Timić Stamenić, T.; Daniels, R.; Savić, S.D. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. Int. J. Pharm. 2015, 493, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Eid, A.; Elmarzugi, N.; El Enshasy, H. Preparation and evaluation of olive oil nanoemulsion using sucrose monoester. Int. J. Pharm. Pharm. Sci. 2013, 5, 434–440. [Google Scholar]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh, D.F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 18, 57. [Google Scholar] [CrossRef] [Green Version]
- Kaomongkolgit, R.; Jamdee, K.; Pumklin, J.; Pavasant, P. Laboratory evaluation of the antibacterial and cytotoxic effect of alpha-mangostin when used as a root canal irrigant. Indian J. Dent. 2013, 4, 12–28. [Google Scholar] [CrossRef]
- Sivaranjani, M.; Prakash, M.; Gowrishankar, S.; Rathna, J.; Pandian, S.K.; Ravi, A.V. In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl. Microbiol. Biotechnol. 2017, 101, 3349–3359. [Google Scholar] [CrossRef]
- Ibrahim, M.Y.; Hashim, N.M.; Mariod, A.A.; Mohan, S.; Abdulla, M.A.; Abdelwahab, S.I.; Arbab, I.A. α-Mangostin from Garcinia mangostana Linn: An updated review of its pharmacological properties. Arab. J. Chem. 2016, 9, 31–329. [Google Scholar] [CrossRef] [Green Version]
- Leelapornpisid, W. Efficacy of alpha-mangostin for antimicrobial activity against endodontopathogenic microorganisms in a multi-species bacterial-fungal biofilm model. Arch. Oral Biol. 2022, 133, 105304. [Google Scholar] [CrossRef]
- Nourzadeh, M.; Amini, A.; Fakoor, F.; Raoof, M.; Sharififar, F. Comparative Antimicrobial Efficacy of Eucalyptus Galbie and Myrtus Communis L. Extracts, Chlorhexidine and Sodium Hypochlorite against Enterococcus Faecalis. Iran Endod. J. 2017, 12, 205–210. [Google Scholar]
- Smith, D.C.; Maiman, R.; Schwechter, E.M.; Kim, S.J.; Hirsh, D.M. Optimal irrigation and debridement of infected total joint implants with chlorhexidine gluconate. J. Arthroplasty. 2015, 30, 1820–1822. [Google Scholar] [CrossRef]
- Vianna, M.E.; Gomes, B.P.; Berber, V.B.; Zaia, A.A.; Ferraz, C.C.; de Souza-Filho, F.J. In vitro evaluation of the antimicrobial activity of chlorhexidine and sodium hypochlorite. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2004, 97, 79–84. [Google Scholar] [CrossRef]
- Radcliffe, C.E.; Potouridou, L.; Qureshi, R.; Habahbeh, N.; Qualtrough, A.; Worthington, H.; Drucker, D.B. Antimicrobial activity of varying concentrations of sodium hypochlorite on the endodontic microorganisms Actinomyces israelii, A. naeslundii, Candida albicans and Enterococcus faecalis. Int. Endod. J. 2004, 37, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Sakinah, A.; Setyowati, L. The cleanliness differences of root canal irrigated with 0.002% saponin of mangosteen peel extract and 2.5% NaOCl. Dent. J. 2015, 48, 104–107. [Google Scholar] [CrossRef]
- Charlie, K.M.; Kuttappa, M.A.; George, L.; Manoj, K.V.; Joseph, B.; John, N.K. A Scanning Electron Microscope Evaluation of Smear Layer Removal and Antimicrobial Action of Mixture of Tetracycline, Acid and Detergent, Sodium Hypochlorite, Ethylenediaminetetraacetic Acid, and Chlorhexidine Gluconate: An In vitro Study. J. Int. Soc. Prev. Community Dent. 2018, 8, 62–69. [Google Scholar]
- Niyonsaba, F.; Ushio, H.; Nakano, N.; Ng, W.; Sayama, K.; Hashimoto, K.; Nagaoka, I.; Okumura, K.; Ogawa, H. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J. Investig. Dermatol. 2007, 27, 594–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grone, A. Keratinocytes and cytokines. Vet. Immunol. Immunopathol. 2002, 6, 1–12. [Google Scholar] [CrossRef]
- Sfakianakis, A.; Barr, C.E.; Kreutzer, D.L. Localization of the chemokine interleukin-8 and interleukin-8 receptors in human gingiva and cultured gingival keratinocytes. J. Periodontal. Res. 2002, 37, 154–160. [Google Scholar] [CrossRef]
- Abate, M.; Pagano, C.; Masullo, M.; Citro, M.; Pisanti, S.; Piacente, S.; Bifulco, M. Mangostanin, A Xanthone Derived from Garcinia mangostana Fruit, Exerts Protective and Reparative Effects on Oxidative Damage in Human Keratinocytes. Pharmaceuticals 2022, 15, 84. [Google Scholar] [CrossRef]
- Ngawhirunpat, T.; Opanasopi, P.; Sukma, M.; Sittisombut, C.; Kat, A.; Adachi, I. Antioxidant, free radical-scavenging activity and cytotoxicity of different solvent extracts and their phenolic constituents from the fruit hull of mangosteen (Garcinia mangostana). Pharm. Biol. 2010, 48, 55–62. [Google Scholar] [CrossRef]
Batch | Level of Independent Variables | ||
---|---|---|---|
A | B | C | |
F1 | −1 | 0 | −1 |
F2 | 1 | 0 | 1 |
F3 | 0 | 0 | 0 |
F4 | 1 | 0 | −1 |
F5 | 0 | 0 | 0 |
F6 | 0 | 1 | −1 |
F7 | 0 | 0 | 0 |
F8 | −1 | 1 | 0 |
F9 | 1 | 1 | 0 |
F10 | −1 | −1 | 0 |
F11 | 0 | −1 | 1 |
F12 | 0 | 0 | 0 |
F13 | 1 | −1 | 0 |
F14 | 0 | 0 | 0 |
F15 | −1 | 0 | 1 |
F16 | 0 | 1 | 1 |
F17 | 0 | −1 | −1 |
Independent variable | Levels | ||
Low (−1) | Medium (0) | High (1) | |
A = Oil (% v/v) | 5 | 7.5 | 10 |
B = Smix (% v/v) Smix :: Span 80: tween 80 :: 1:2 | 9 | 15 | 21 |
C = Glycerol (% v/v) | 10 | 15 | 20 |
Dependent variables | |||
Y1 = Droplet size (nm) |
Score | Criteria |
---|---|
1 | Clean root canal wall and only a few small debris particles |
2 | A few small agglomerations of debris |
3 | Many agglomerations of debris covering less than 50% of the root canal wall |
4 | More than 50% of the root canal walls were covered with debris |
5 | Complete or nearly complete root canal wall coverage with debris |
Oils | α-Mangostin Solubility * (mg/mL) |
---|---|
Palm oil | 29.579 ± 0.101 |
Olive | 27.288 ± 0.006 |
Avocado | 27.38 ± 0.010 |
Macadamia | 27.182 ± 0.011 |
Almond | 27.885 ± 0.045 |
Primrose | 26.807 ± 0.008 |
Surfactants and Co-surfactants | α-MangostinSolubility (mg/mL) * |
Tween 80 | 70.804 ± 0.102 |
Tween 20 | 64.31 ± 0.0588 |
Lipophille | 34.71 ± 0.03 |
Labrafac PG | 54.632 ± 0.014 |
Labra CS | 64.104 ± 0.074 |
Peceol | 39.2422 ± 0.25 |
Maisine | 34.51 ± 0.045 |
Glycerol | 212. 412 ± 0.07 |
Transcutol HP | 418.457 ± 0.122 |
Transcutol HP | 417.755 ± 0.076 |
Span 80 | 69.236 ± 0.032 |
Source | F-Ratio | p-Value |
---|---|---|
Model | 79.96 | <0.0001 |
A | 568.47 | <0.0001 |
B | 46.82 | 0.0002 |
C | 0.0808 | 0.7845 |
AB | 16.76 | 0.0046 |
AC | 7.79 | 0.0269 |
BC | 9.46 | 0.0179 |
A2 | 48.02 | 0.0002 |
B2 | 15.36 | 0.0058 |
C2 | 8.53 | 0.0223 |
Residual | ||
Lack of Fit | 2.68 | 0.1823 |
Pure Error |
Source | F-Ratio | p-Value |
---|---|---|
Model | 15.12 | 0.0008 |
A | 19.96 | 0.0029 |
B | 70.92 | <0.0001 |
C | 7.34 | 0.0303 |
AB | 1.72 | 0.2306 |
AC | 0.3818 | 0.5562 |
BC | 4.54 | 0.0705 |
A2 | 17.68 | 0.0040 |
B2 | 11.64 | 0.0113 |
C2 | 0.9561 | 0.3607 |
Residual | ||
Lack of Fit | 3.57 | 0.1254 |
Pure Error |
Nano-Formulation | Average Particle Size (nm) | Polydispersity Index (PDI) | Zeta Potential (mV) |
---|---|---|---|
0.2% PO-AMNE | 340.9 nm | PDI 0.246 | −27.2 ± 0.7 mV |
Irrigants | N | Mean | Std. Deviation |
---|---|---|---|
0.2% PO-AMNE | 10 | 4.63972392 | 0.266228615 |
2% CHX | 10 | 4.68676222 | 0.350818870 |
3.25% NaOCl | 10 | 4.87883986 | 0.158879880 |
Saline | 10 | 6.05010073 | 0.043594317 |
Total | 40 | 5.06385668 | 0.625931661 |
Irrigants | N | Mean | Std. Deviation |
---|---|---|---|
0.2% PO-AMNE | 10 | 5.20722816 | 0.098434833 |
2% CHX | 10 | 5.52280850 | 0.074578498 |
3.25% NaOCl | 10 | 5.52824399 | 0.027822768 |
Saline | 10 | 6.14335492 | 0.016507675 |
Total | 40 | 5.60040889 | 0.349093792 |
Irrigants | N | Mean | Std. Deviation |
---|---|---|---|
0.2% PO-AMNE | 10 | 3.77083657 | 0.379532943 |
2% CHX | 10 | 4.44137166 | 0.342868124 |
3.25% NaOCl | 10 | 4.78653050 | 0.086264246 |
Saline | 10 | 6.07355352 | 0.013985945 |
Total | 40 | 4.76807306 | 0.884068563 |
Irrigants | N | Mean | Std. Deviation |
---|---|---|---|
0.2% PO-AMNE | 10 | 0.171520772 | 0.054239631 |
2% CHX | 10 | 0.469422690 | 0.148444489 |
3.25% NaOCl | 10 | 0.094514831 | 0.029888214 |
Saline | 10 | 0.016537682 | 0.005229674 |
Total | 40 | 0.731541254 | 0.115666828 |
Irrigants | N | Mean | Std. Deviation |
---|---|---|---|
0.2% PO-AMNE | 10 | 2.83659430 | 0.247612845 |
2% CHX | 10 | 3.14848172 | 0.181043992 |
3.25% NaOCl | 10 | 3.34090591 | 0.240291718 |
Saline | 10 | 5.09852677 | 0.020267240 |
Total | 40 | 3.60612717 | 0.910935697 |
Irrigants | N | Mean | Std. Deviation |
---|---|---|---|
0.2% PO-AMNE | 10 | 2.95885666 | 0.150876977 |
2% CHX | 10 | 3.11424553 | 0.149477061 |
3.25% NaOCl | 10 | 3.33568568 | 0.101826728 |
Saline | 10 | 5.14021700 | 0.025604369 |
Total | 40 | 3.63725122 | 0.896448891 |
Coronal Third | Middle Third | Apical Third | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clean | Debris Present | Clean | Debris Present | Clean | Debris Present | |||||||||
1 * | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 |
0 | 8/10 + | 2/10 + | 0 | 0 | 1/10 + | 8/10 + | 0 | 0 | 0 | 0/10 + | 8/10 + | 1/10 + | 1/10 + | 0 |
8/10 + (80%) *+ | 2/10 + (20%) *+ | 9/10 + (30%) *+ | 0/10 + (70%) *+ | 8/10 + (60%) *+ | 2/10 + (100%) *+ |
Coronal Third | Middle Third | APICAL THIRD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clean | Debris Present | Clean | Debris Present | Clean | Debris Present | |||||||||
1 * | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 |
0 | 8/10 + | 2/10 + | 0 | 0 | 0 | 4/10 + | 6/10 + | 0 | 0 | 1/0 + | 4/10 + | 2/10 + | 1/0 + | 0 |
8/10 + (100%) *+ | 2/10 + (100%) *+ | 4/10 + (100%) *+ | 6/10 + (100%) *+ | 5/10 + (100%) *+ | 3/10 + (100%) *+ |
Coronal Third | Middle Third | Apical Third | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clean | Debris Present | Clean | Debris Present | Clean | Debris Present | |||||||||
1 * | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 |
0 | 0 | 0 | 0 | 10/10 + | 0 | 0 | 0 | 0 | 10/10 + | 0 | 0 | 0 | 0 | 10/10 + |
0/10 + (100%) *+ | 10/10 + (100%) *+ | 0/10 + (100%) *+ | 10/10 + (100%) *+ | 0/10 + (100%) *+ | 10/10 + (100%) *+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultan, O.S.; Kantilal, H.K.A.; Phaik, K.S.; Choudhury, H.; Davamani, F. Formulation and Characterization of a Novel Palm-Oil-Based α-Mangostin Nano-Emulsion (PO-AMNE) as an Antimicrobial Endodontic Irrigant: An In Vitro Study. Processes 2023, 11, 798. https://doi.org/10.3390/pr11030798
Sultan OS, Kantilal HKA, Phaik KS, Choudhury H, Davamani F. Formulation and Characterization of a Novel Palm-Oil-Based α-Mangostin Nano-Emulsion (PO-AMNE) as an Antimicrobial Endodontic Irrigant: An In Vitro Study. Processes. 2023; 11(3):798. https://doi.org/10.3390/pr11030798
Chicago/Turabian StyleSultan, Omer Sheriff, Haresh Kumar AL Kantilal, Khoo Suan Phaik, Hira Choudhury, and Fabian Davamani. 2023. "Formulation and Characterization of a Novel Palm-Oil-Based α-Mangostin Nano-Emulsion (PO-AMNE) as an Antimicrobial Endodontic Irrigant: An In Vitro Study" Processes 11, no. 3: 798. https://doi.org/10.3390/pr11030798
APA StyleSultan, O. S., Kantilal, H. K. A., Phaik, K. S., Choudhury, H., & Davamani, F. (2023). Formulation and Characterization of a Novel Palm-Oil-Based α-Mangostin Nano-Emulsion (PO-AMNE) as an Antimicrobial Endodontic Irrigant: An In Vitro Study. Processes, 11(3), 798. https://doi.org/10.3390/pr11030798