Study on Time-Dependent Failure Mechanisms and CBAG Differential Support Technology of Roadway in Steeply Inclined Coal Seam
Abstract
:1. Introduction
2. Asymmetric Deformation Characteristics of a Roadway in a Steeply Inclined Coal Seam
2.1. Basic Overview of the Roadway
2.2. Primary Support Scheme
2.3. Asymmetric Deformation Characteristics of the Roadway
2.4. Evolution Characteristics of Cracks
3. Time-Dependent Failure Mechanisms of a Roadway in a Steeply Inclined Coal Seam
3.1. Model Establishment and Scheme Design
3.1.1. Determination of Key Parameters
- Determination of Rock Mass Parameters
- 2.
- Verification of Model Parameters
3.1.2. Model Establishment
3.2. Time-Dependent Failure Process of a Roadway in a Steeply Inclined Coal Seam
3.2.1. Stress Evolution Analysis
3.2.2. Displacement Evolution Analysis
3.2.3. Analysis of the Crack Evolution Law
3.2.4. Analysis of Time-Dependent Failure Mechanism
4. CBAG Differential Support Technology
4.1. Distribution Characteristics of Cracks in the Surrounding Rocks under the Combined Support of Short Bolts and Long Anchor Cables
4.2. Thick-Layer Anchorage Principle and Differential Equivalent Reinforcement Technology
5. Engineering Case Analysis
5.1. Differential Support Scheme
5.2. Comparative Analysis of Simulation Effects of New Support
5.3. Mine Pressure Monitoring and Analysis
5.4. Discussion
5.4.1. Restraining Mechanism of Cross-Boundary Support on Cracks in the Surrounding Rocks
5.4.2. Discussion on CBAG New Support Structures and Grouting Sealing Method
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.M.; Wang, Z.H.; Zhang, J.W. Stability of Roof Structure and Its Control in Steeply Inclined Coal Seams. Int. J. Min. Sci. Technol. 2017, 27, 359–364. [Google Scholar] [CrossRef]
- He, S.Q.; Song, D.Z.; He, X.Q.; Chen, J.Q.; Ren, T.; Li, Z.L.; Qiu, L.M. Coupled Mechanism of Compression and Prying-Induced Rock Burst in Steeply Inclined Coal Seams and Principles for Its Prevention. Tunn. Undergr. Space Technol. 2020, 98, 103327. [Google Scholar] [CrossRef]
- Deng, Y.H.; Wang, S.Q. Feasibility analysis of gob-side entry retaining on a working face in a steep coal seam. Int. J. Min. Sci. Technol. 2014, 24, 499–503. [Google Scholar] [CrossRef]
- He, S.Q.; Song, D.Z.; Li, Z.L.; He, X.Q.; Chen, J.Q.; Li, D.H.; Tian, X.H. Precursor of Spatio-Temporal Evolution Law of MS and AE Activities for Rock Burst Warning in Steeply Inclined and Extremely Thick Coal Seams Under Caving Mining Conditions. Rock Mech. Rock Eng. 2019, 52, 2415–2435. [Google Scholar] [CrossRef]
- Wu, G.J.; Jia, S.P.; Chen, W.Z.; Yuan, J.Q.; Yu, H.D.; Zhao, W.S. An Anchorage Experimental Study on Supporting a Roadway in Steeply Inclined Geological Formations. Tunn. Undergr. Space Technol. 2018, 82, 125–134. [Google Scholar] [CrossRef]
- Wu, G.J.; Chen, W.Z.; Jia, S.P.; Tan, X.J.; Zheng, P.Q.; Tian, H.M.; Rong, C. Deformation Characteristics of a Roadway in Steeply Inclined Formations and Its Improved Support. Int. J. Rock Mech. Min. Sci. 2020, 130, 104324. [Google Scholar] [CrossRef]
- Xue, Y.; Gao, F.; Liu, X.G.; Liang, X. Permeability and Pressure Distribution Characteristics of the Roadway Surrounding Rock in the Damaged Zone of an Excavation. Int. J. Min. Sci. Technol. 2017, 27, 211–219. [Google Scholar] [CrossRef]
- Chen, D.X.; Sun, C.; Wang, L.G. Collapse Behavior and Control of Hard Roofs in Steeply Inclined Coal Seams. Bull. Eng. Geol. Environ. 2021, 80, 1489–1505. [Google Scholar] [CrossRef]
- Yang, S.Q.; Chen, M.; Jing, H.W.; Chen, K.F.; Meng, B. A Case Study on Large Deformation Failure Mechanism of Deep Soft Rock Roadway in Xin’An Coal Mine, China. Eng. Geol. 2017, 217, 89–101. [Google Scholar] [CrossRef]
- Sun, Y.T.; Li, G.C.; Zhang, J.F.; Qian, D.Y. Experimental and Numerical Investigation on a Novel Support System for Controlling Roadway Deformation in Underground Coal Mines. Energy Sci. Eng. 2020, 8, 490–500. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.P.; Liu, L.M.; Cao, J.Z.; Yan, X.; Zhang, F.T. Mechanism and Application of Concrete-Filled Steel Tubular Support in Deep and High Stress Roadway. Constr. Build. Mater. 2018, 186, 233–246. [Google Scholar] [CrossRef]
- Tao, Z.; Zhu, C.; Zheng, X.; Wang, D.; Liu, Y.; He, M.; Wang, Y. Failure mechanisms of soft rock roadways in steeply inclined layered rock formations. Geomat. Nat. Hazards Risk 2018, 9, 1186–1206. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.Z.; Zhang, N.; Feng, X.W.; Liang, D.X.; Wei, Q.; Weng, M.Y. Investigation on the Evolution and Control of Surrounding Rock Fracture under Different Supporting Conditions in Deep Roadway during Excavation Period. Int. J. Rock Mech. Min. Sci. 2019, 123, 104122. [Google Scholar] [CrossRef]
- An, Y.P.; Zhang, N.; Zhao, Y.M.; Xie, Z.Z. Field and Numerical Investigation on Roof Failure and Fracture Control of Thick Coal Seam Roadway. Eng. Fail. Anal. 2021, 128, 105594. [Google Scholar] [CrossRef]
- Das, A.J.; Mandal, P.K.; Bhattacharjee, R.; Tiwari, S.; Kushwaha, A.; Roy, L.B. Evaluation of Stability of Underground Workings for Exploitation of an Inclined Coal Seam by the Ubiquitous Joint Model. Int. J. Rock Mech. Min. Sci. 2017, 93, 101–114. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, D.S.; Wang, H.Z.; Liang, S.S. Discrete Element Simulation of the Control Technology of Large Section Roadway along a Fault to Drivage under Strong Mining. J. Geophys. Eng. 2018, 15, 2642–2657. [Google Scholar] [CrossRef] [Green Version]
- Ross, C.; Conover, D.; Baine, J. Highwall Mining of Thick, Steeply Dipping Coal-a Case Study in Geotechnical Design and Recovery Optimization. Int. J. Min. Sci. Technol. 2019, 29, 777–780. [Google Scholar] [CrossRef]
- Gao, F.Q.; Stead, D.; Coggan, J. Evaluation of Coal Longwall Caving Characteristics Using an Innovative UDEC Trigon Approach. Comput. Geotech. 2014, 55, 448–460. [Google Scholar] [CrossRef] [Green Version]
- Suner, M.C.; Tulu, I.B. Examining the Effect of Natural Fractures on Stone Mine Pillar Strength Through Synthetic Rock Mass Approach. Min. Met. Explor. 2022, 39, 1863–1871. [Google Scholar] [CrossRef]
- Gao, F.Q.; Stead, D. The Application of a Modified Voronoi Logic to Brittle Fracture Modelling at the Laboratory and Field Scale. Int. J. Rock Mech. Min. Sci. 2014, 68, 1–14. [Google Scholar] [CrossRef]
- Li, X.H.; Ju, M.H.; Yao, Q.L.; Zhou, J.; Chong, Z.H. Numerical Investigation of the Effect of the Location of Critical Rock Block Fracture on Crack Evolution in a Gob-Side Filling Wall. Rock Mech. Rock Eng. 2016, 49, 1041–1058. [Google Scholar] [CrossRef]
- Kazerani, T.; Zhao, J. Micromechanical Parameters in Bonded Particle Method for Modelling of Brittle Material Failure. Int. J. Numer. Anal. Methods Geomech. 2010, 34, 1877–1895. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Einstein, H.H. Using RQD to Estimate the Deformation Modulus of Rock Masses. Int. J. Rock Mech. Min. Sci. 2004, 41, 337–341. [Google Scholar] [CrossRef]
- Singh, M.; Rao, K.S. Empirical Methods to Estimate the Strength of Jointed Rock Masses. Eng. Geol. 2005, 77, 127–137. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Practical estimates of rockmass strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Li, S.C.; Wang, Q.; Wang, H.T.; Jiang, B.; Wang, D.C.; Zhang, B.; Li, Y.; Ruan, G.Q. Model Test Study on Surrounding Rock Deformation and Failure Mechanisms of Deep Roadways with Thick Top Coal. Tunn. Undergr. Space Technol. 2015, 47, 52–63. [Google Scholar] [CrossRef]
- Xie, Z.Z.; Zhang, N.; Qian, D.Y.; Han, C.L.; An, Y.P.; Wang, Y. Rapid Excavation and Stability Control of Deep Roadways for an Underground Coal Mine with High Production in Inner Mongolia. Sustainability 2018, 10, 1160. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.X.; Han, C.L.; Zhang, N.; Feng, X.W.; Wang, P.; Song, K.; Wei, M. Zonal Disintegration Characteristics of Roadway Roof Under Strong Mining Conditions and Mechanism of Thick Anchored and Trans-Boundary Supporting. Rock Mech. Rock Eng. 2022, 55, 297–315. [Google Scholar] [CrossRef]
- Skrzypkowski, K.; Zagórski, K.; Zagórska, A.; Apel, D.B.; Wang, J.; Xu, H.; Guo, L. Choice of the arch yielding support for the preparatory roadway located near the fault. Energies 2022, 15, 3774. [Google Scholar] [CrossRef]
Rock Stratum Lithology | Rock Mechanics Parameters | RQD | Rock Mass Mechanical Parameters | |||
---|---|---|---|---|---|---|
Er/GPa | Em/GPa | |||||
Coal | 7.9 | 1.4 | 63 | 1.2 | 0.3 | 0.1 |
Muddy siltstone | 25.2 | 6.4 | 82 | 15.3 | 2.6 | 1.5 |
Carbonaceous mudstone | 12.3 | 3.1 | 76 | 6.5 | 1.0 | 0.8 |
Siltstone | 37.8 | 14.5 | 90 | 27.9 | 8.4 | 2.8 |
Fine-grained sandstone | 40.5 | 16.2 | 95 | 33.7 | 11.7 | 3.4 |
Rock Stratum Lithology | Block Parameters | Contact Surface Parameters | |||||
---|---|---|---|---|---|---|---|
Density ρ/kg·m−3 | Elastic Modulus Em/GPa | Normal Stiffness kn/GPa·m−1 | Tangential Stiffness ks/GPa·m−1 | Internal Friction Angle θ/° | Cohesion C/MPa | Tensile Strength/MPa | |
Coal | 1350 | 0.3 | 16 | 7 | 10 | 1.0 | 0.1 |
Muddy siltstone | 2180 | 2.6 | 53 | 21 | 12 | 4.1 | 1.5 |
Carbonaceous mudstone | 2060 | 1.0 | 47 | 19 | 12 | 2.3 | 0.8 |
Siltstone | 2300 | 8.4 | 109 | 44 | 16 | 8.7 | 2.8 |
Fine grained sandstone | 2550 | 11.7 | 79 | 32 | 19 | 11.9 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Wang, J.; Zhang, N.; Guo, F.; He, Z.; Xiang, Z.; Zhang, C. Study on Time-Dependent Failure Mechanisms and CBAG Differential Support Technology of Roadway in Steeply Inclined Coal Seam. Processes 2023, 11, 866. https://doi.org/10.3390/pr11030866
Xie Z, Wang J, Zhang N, Guo F, He Z, Xiang Z, Zhang C. Study on Time-Dependent Failure Mechanisms and CBAG Differential Support Technology of Roadway in Steeply Inclined Coal Seam. Processes. 2023; 11(3):866. https://doi.org/10.3390/pr11030866
Chicago/Turabian StyleXie, Zhengzheng, Jin Wang, Nong Zhang, Feng Guo, Zhe He, Zhe Xiang, and Chenghao Zhang. 2023. "Study on Time-Dependent Failure Mechanisms and CBAG Differential Support Technology of Roadway in Steeply Inclined Coal Seam" Processes 11, no. 3: 866. https://doi.org/10.3390/pr11030866
APA StyleXie, Z., Wang, J., Zhang, N., Guo, F., He, Z., Xiang, Z., & Zhang, C. (2023). Study on Time-Dependent Failure Mechanisms and CBAG Differential Support Technology of Roadway in Steeply Inclined Coal Seam. Processes, 11(3), 866. https://doi.org/10.3390/pr11030866