Experimental Study on Cyclic Hydraulic Fracturing of Tight Sandstone under In-Situ Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Sample Preparation
2.3. Test Apparatus
2.4. Experimental Design
3. Results and Discussion
3.1. Breakdown Pressure
3.2. Hydraulic Fracture Morphology
3.3. Acoustic Emission Behavior
3.3.1. AE Counts
3.3.2. AE Peak Frequency
4. Conclusions
- (1)
- Compared with conventional hydraulic fracturing, cyclic hydraulic fracturing under high-ground-stress conditions can effectively reduce the specimen breakdown pressure by more than 30%, and the upper limit of the cyclic pump pressure of 70%Pb can make the specimen break down. The minimum threshold of the upper limit of the cyclic pump pressure which can make the specimen break down is between 60%Pb and 70%Pb.
- (2)
- In cyclic hydraulic fracturing, when the upper limit of the cyclic pump pressure is the same, the high-pressure duration decreases from 15 s to 10 s and to 5 s, the cycles required for the specimen breakdown decreases from 32 to 25 to 7. This means that the shorter the high-pressure duration, the more easily the specimen expands and breaks down.
- (3)
- In cyclic hydraulic fracturing, under the same condition of “high-pressure duration + low-pressure duration”, the cycles required for breakdown increases as the upper limit of the cyclic pump pressure decreases from 90%Pb to 60%Pb, which means that the larger the upper limit of the cyclic pump pressure, the more favorable the extended rupture of the specimen.
- (4)
- Compared with conventional hydraulic fracturing, the fracture morphology of cyclic hydraulic fracturing specimens is more complex and diverse, with higher undulations and larger sizes.
- (5)
- AE events show a good response to the pump pressure curves of sandstone samples, with AE counts sporadically presenting in the early stage and sharply increasing near the breakdown pressure; AE peak frequencies are distributed in horizontal bands, mainly divided into low, medium, and high parts, and AE peak frequencies in cyclic hydraulic fracturing are also characterized by bands in the vertical direction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, T.; Tang, S.; Liu, S.; Liu, X.; Xu, J.; Qi, N.; Rui, Z. Physical simulation of hydraulic fracturing of large-sized tight sandstone outcrops. SPE J. 2021, 26, 372–393. [Google Scholar] [CrossRef]
- Duan, W.; Sun, B.; Pan, D.; Wang, T.; Guo, T.; Wang, Z. Experimental study on fracture propagation of hydraulic fracturing for tight sandstone outcrop. Energy Explor. Exploit. 2021, 39, 156–179. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, G.; Wang, X. Study on fracture mechanism of hydraulic fracturing in sandstone by acoustic emission parameters. In Proceedings of the ISRM European Rock Mechanics Symposium-EUROCK 2017, Ostrava, Czech Republic, 20–22 June 2017; OnePetro: Richardson, TX, USA, 2017. [Google Scholar]
- He, J.; Lin, C.; Li, X.; Zhang, Y.; Chen, Y. Initiation, propagation, closure and morphology of hydraulic fractures in sandstone cores. Fuel 2017, 208, 65–70. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, S.; Chang, X.; Zhai, H.; Wu, H. Three-Dimensional Ultrasonic Imaging and Acoustic Emission Monitoring of Hydraulic Fractures in Tight Sandstone. Appl. Sci. 2021, 11, 9352. [Google Scholar] [CrossRef]
- Ma, D.; Cheng, C.; Ding, C.; Song, J.; Hu, D.; Zhou, H. Comparisons of fracturing mechanism of tight sandstone using liquid CO2 and water. J. Nat. Gas Sci. Eng. 2021, 94, 104108. [Google Scholar] [CrossRef]
- Muqtadir, A.; Elkatatny, S.; Mahmoud, M.; Abdulraheem, A.; Gomaa, A. Effect of the type of fracturing fluid on the breakdown pressure of tight sandstone rocks. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 23–26 April 2018; OnePetro: Richardson, TX, USA, 2018. [Google Scholar]
- Yang, B.; Wang, H.; Shen, Z.; Olorode, O.; Wang, B.; Zheng, Y.; Yan, W.; Jia, Z. Full-Sample X-ray Microcomputed Tomography Analysis of Supercritical CO2 Fracturing in Tight Sandstone: Effect of Stress on Fracture Dynamics. Energy Fuels 2021, 35, 1308–1321. [Google Scholar] [CrossRef]
- Cai, C.; Tao, Z.; Ren, K.; Liu, S.; Yang, Y.; Feng, Y.; Su, S.; Hou, P. Experimental investigation on the breakdown behaviours of sandstone due to liquid nitrogen fracturing. J. Pet. Sci. Eng. 2021, 200, 108386. [Google Scholar] [CrossRef]
- Zhuang, L.; Kim, K.; Jung, S.; Nam, Y.; Min, K.-B.; Park, S.; Zang, A.; Stephansson, O.; Zimmermann, G.; Yoon, J. Laboratory evaluation of induced seismicity reduction and permeability enhancement effects of cyclic hydraulic fracturing. In Proceedings of the 51st US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 25–28 June 2017; OnePetro: Richardson, TX, USA, 2017. [Google Scholar]
- Goyal, S.; Curtis, M.; Sondergeld, C.; Rai, C. A Comparative Study of Monotonic and Cyclic Injection Hydraulic Fracturing in Dry Tight Rocks Under Triaxial Stress. In Proceedings of the 55th US Rock Mechanics/Geomechanics Symposium, Alexandria, VA, USA, 18–25 June 2021; OnePetro: Richardson, TX, USA, 2021. [Google Scholar]
- Sun, X.; Luo, T.; Wang, L.; Wang, H.; Song, Y.; Li, Y. Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization. Appl. Energy 2019, 250, 7–18. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, X.; Shao, L.; Li, S.; Gao, L. Sensitivity analysis of the frozen soil nonlinear latent heat and its precise transformation method. Geophys. J. Int. 2022, 228, 240–249. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, X.; Shao, L.; Li, S.; Tian, X. Design of a three-dimensional earth pressure device and its application in a tailings dam construction simulation experiment. Acta Geotech. 2021, 16, 2203–2216. [Google Scholar] [CrossRef]
- Chen, Z.; Feng, Y.; Zhang, X.; Guo, X.; Shao, L.; Cao, Y.; Li, S.; Gao, L. Similarity criterion for the nonlinear thermal analysis of the soil freezing process: Considering the dual effect of nonlinear thermal parameters and boundary conditions. Acta Geotech. 2022, 17, 5709–5719. [Google Scholar] [CrossRef]
- Zhou, Z.-L.; Zhang, G.-Q.; Xing, Y.-K.; Fan, Z.-Y.; Zhang, X.; Kasperczyk, D. A Laboratory Study of Multiple Fracture Initiation from Perforation Clusters by Cyclic Pumping. Rock Mech. Rock Eng. 2018, 52, 827–840. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, T.; Yuan, Y.; Feng, B.; Tang, X.; Liu, X.; Cui, Z. A laboratory study on fracture initiation and propagation of granite under cyclic-injection hydraulic fracturing. J. Pet. Sci. Eng. 2022, 212, 110278. [Google Scholar] [CrossRef]
- Zhou, Z.-L.; Zhang, G.-Q.; Dong, H.-R.; Liu, Z.-B.; Nie, Y.-X. Creating a network of hydraulic fractures by cyclic pumping. Int. J. Rock Mech. Min. Sci. 2017, 97, 52–63. [Google Scholar] [CrossRef]
- Zhuang, L.; Kim, K.Y.; Jung, S.G.; Diaz, M.; Min, K.-B.; Zang, A.; Stephansson, O.; Zimmermann, G.; Yoon, J.-S.; Hofmann, H. Cyclic hydraulic fracturing of pocheon granite cores and its impact on breakdown pressure, acoustic emission amplitudes and injectivity. Int. J. Rock Mech. Min. Sci. 2019, 122, 104065. [Google Scholar] [CrossRef]
- Diaz, M.B.; Kim, K.Y.; Jung, S.G. Effect of frequency during cyclic hydraulic fracturing and the process of fracture development in laboratory experiments. Int. J. Rock Mech. Min. Sci. 2020, 134, 104474. [Google Scholar] [CrossRef]
- Jia, Y.; Lu, Z.; Xiong, Q.; Hampton, J.C.; Zhang, Y.; He, P. Laboratory characterization of cyclic hydraulic fracturing for deep shale application in Southwest China. Int. J. Rock Mech. Min. Sci. 2021, 148, 104945. [Google Scholar] [CrossRef]
- Patel, S.M.; Sondergeld, C.H.; Rai, C.S. Laboratory studies of hydraulic fracturing by cyclic injection. Int. J. Rock Mech. Min. Sci. 2017, 95, 8–15. [Google Scholar] [CrossRef]
- Zhuang, L.; Jung, S.G.; Diaz, M.; Kim, K.Y.; Hofmann, H.; Min, K.-B.; Zang, A.; Stephansson, O.; Zimmermann, G.; Yoon, J.-S. Laboratory True Triaxial Hydraulic Fracturing of Granite under Six Fluid Injection Schemes and Grain-Scale Fracture Observations. Rock Mech. Rock Eng. 2020, 53, 4329–4344. [Google Scholar] [CrossRef]
- Scholz, C.H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am. 1968, 58, 399–415. [Google Scholar] [CrossRef]
- Madariaga, R. High-frequency radiation from crack (stress drop) models of earthquake faulting. Geophys. J. Int. 1977, 51, 625–651. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Li, Q.; Hu, Q.; Liang, Y.; Xu, Y.; Liu, L.; Wu, X.; Li, X.; Wang, X.; Hu, L.; et al. Acoustic emission characteristics in hydraulic fracturing of stratified rocks: A laboratory study. Powder Technol. 2020, 371, 267–276. [Google Scholar] [CrossRef]
Bedding Angle (°) | Longitudinal Wave Velocity (m·s−1) | Uniaxial Compressive Strength (MPa) | Elastic Modulus (GPa) | Poisson’s Ratio | Uniaxial Tensile Strength (MPa) | Fracture Toughness (MPa·m1/2) |
---|---|---|---|---|---|---|
0 | 2024 | 45.55 | 9.66 | 0.29 | 1.70 | 0.14 |
90 | 2314 | 53.08 | 8.05 | 0.24 | 2.41 | 0.11 |
Injection Modes | Test Number | Axial Stress (MPa) | Confining Pressure (MPa) | Fracturing Fluid Viscosity (mPa·s) | Upper Limit of Pump Pressure | High-Pressure Duration Time | Low-Pressure Duration Time | Breakdown Pressure (MPa) | Breakdown Observed | Equivalent Cycles |
---|---|---|---|---|---|---|---|---|---|---|
Conventional hydraulic fracturing | S1 | 56.5 | 50 | 40 | / | / | / | 99.13 | √ | / |
S3 | 56.5 | 50 | 40 | / | / | / | 97.16 | √ | / | |
S4 | 56.5 | 50 | 40 | / | / | / | 110.01 | √ | / | |
Cyclic hydraulic fracturing | S5 | 56.5 | 50 | 40 | 90%Pb | 15 s | 5s | 92.03 | √ | 32 |
S6 | 56.5 | 50 | 40 | 90%Pb | 10 s | 10s | 92.03 | √ | 25 | |
S7-1 | 56.5 | 50 | 40 | 90%Pb | 5 s | 15s | 92.03 | √ | 7 | |
S10 | 56.5 | 50 | 40 | 80%Pb | 5 s | 15s | 81.84 | √ | 35 | |
S13-1 | 56.5 | 50 | 40 | 70%Pb | 5 s | 15s | 71.61 | √ | 37 | |
S14-1 | 56.5 | 50 | 40 | 60%Pb | 5 s | 15s | / | × | 60 |
Test Number | Low Frequency | Medium Frequency | High Frequency |
---|---|---|---|
S4 | 11.9% | 88.1% | 0 |
S5 | 19.2% | 80.4% | 0.4% |
S6 | 14.3% | 85.1% | 0.1% |
S7-1 | 19.4% | 80.3% | 0.3% |
S10 | 38.6% | 59.7% | 1.7% |
S13-1 | 16.7% | 82.6% | 0.7% |
S14-1 | 1.2% | 98.8% | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Guo, Y.; Chang, X.; Bi, Z.; Zhao, G.; Yang, H.; Guo, W. Experimental Study on Cyclic Hydraulic Fracturing of Tight Sandstone under In-Situ Stress. Processes 2023, 11, 875. https://doi.org/10.3390/pr11030875
Wu X, Guo Y, Chang X, Bi Z, Zhao G, Yang H, Guo W. Experimental Study on Cyclic Hydraulic Fracturing of Tight Sandstone under In-Situ Stress. Processes. 2023; 11(3):875. https://doi.org/10.3390/pr11030875
Chicago/Turabian StyleWu, Xiaolong, Yintong Guo, Xin Chang, Zhenhui Bi, Guokai Zhao, Hanzhi Yang, and Wuhao Guo. 2023. "Experimental Study on Cyclic Hydraulic Fracturing of Tight Sandstone under In-Situ Stress" Processes 11, no. 3: 875. https://doi.org/10.3390/pr11030875
APA StyleWu, X., Guo, Y., Chang, X., Bi, Z., Zhao, G., Yang, H., & Guo, W. (2023). Experimental Study on Cyclic Hydraulic Fracturing of Tight Sandstone under In-Situ Stress. Processes, 11(3), 875. https://doi.org/10.3390/pr11030875