Properties of Selected Alternative Petroleum Fractions and Sustainable Aviation Fuels
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ASTM | American Society for Testing and Materials, West Conshohocken, PA, USA |
CAPEX | Capital Expenditures |
EN | Euro Norm, Office for Official Publications of the European Communities, Luxembourg, Luxembourg |
FBP | Final Boiling Point |
FCC | Fluid Catalytic Cracking |
HEFA | Hydrogenated Esters and Fatty Acids |
HN | Heavy Naphtha |
HVO | Hydrogenated Vegetable Oil |
IATA | International Air Transport Association |
IBP | Initial Boiling Point |
IEA | International Energy Agency |
ISO | International Organization for Standardization, Geneva, Switzerland |
JIG | Joint Inspection Group, Cambourne, Great Britain |
NSE | Net Specific Energy |
SAF | Sustainable Aviation Fuels |
UCT | University of Chemistry and Technology Prague |
References
- Hanson, S. EIA Projects Energy Consumption in Air Transportation to Increase through 2050. Available online: https://www.eia.gov/todayinenergy/detail.php?id=41913 (accessed on 15 November 2022).
- ATAG. ATAG Facts & Figures. Available online: https://www.atag.org/facts-figures.html (accessed on 4 May 2022).
- Warren, K.A. World Jet Fuel Specifications with Avgas Supplement; ExxonMobil Aviation: Brussels, Belgium, 2008. [Google Scholar]
- Kittel, H.; Kadleček, D.; Šimáček, P. Factors influencing production of JET fuel by hydrocracking. Pet. Sci. Technol. 2021, 40, 73–91. [Google Scholar] [CrossRef]
- JIG. The Aviation Fuel Quality Requirements for Jointly Operated Systems (AFQRJOS) Product Specification Bulletin; Joint Inspection Group: Cambourne, UK, 2022; pp. 1–10. [Google Scholar]
- Kolhe, N.S.; Syed, F.; Yadav, S.; Yele, K. Desulphurization of Jet Fuel using Merox Process: A Review. Int. J. Res. 2022, 6, 3910–3922. [Google Scholar] [CrossRef]
- Edwards, J.T. Reference jet fuels for combustion testing. In Proceedings of the 55th AIAA aerospace sciences meeting, Grapevine, TX, USA, 9–13 January 2017; pp. 1–58. [Google Scholar]
- Adekitan, A.I.; Shomefun, T.; John, T.M.; Adetokun, B.; Aligbe, A. Dataset on statistical analysis of jet A-1 fuel laboratory properties for on-spec into-plane operations. Data Brief 2018, 19, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jia, T.; Pan, L.; Liu, Q.; Fang, Y.; Zou, J.-J.; Zhang, X. Review on the relationship between liquid aerospace fuel composition and their physicochemical properties. Trans. Tianjin Univ. 2021, 27, 87–109. [Google Scholar] [CrossRef]
- IATA. Net Zero 2050: Sustainable Aviation Fuels. Available online: https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---alternative-fuels/ (accessed on 14 January 2023).
- Liu, G.; Yan, B.; Chen, G. Technical review on jet fuel production. Renew. Sustain. Energy Rev. 2013, 25, 59–70. [Google Scholar] [CrossRef]
- Kandaramath, H.T.; Yaakob, Z.; Binitha, N.N. Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renew. Sustain. Energy Rev. 2015, 42, 1234–1244. [Google Scholar] [CrossRef]
- Ail, S.S.; Dasappa, S. Biomass to liquid transportation fuel via Fischer Tropsch synthesis—Technology review and current scenario. Renew. Sustain. Energy Rev. 2016, 58, 267–286. [Google Scholar] [CrossRef]
- Chuck, C. Biofuels for Aviation: Feedstocks, Technology and Implementation; Academic Press: Kidlington, UK, 2016; p. 374. [Google Scholar]
- Mawhood, R.; Gazis, E.; de Jong, S.; Hoefnagels, R.; Slade, R. Production pathways for renewable jet fuel: A review of commercialization status and future prospects. Biofuels Bioprod. Biorefining 2016, 10, 462–484. [Google Scholar] [CrossRef]
- Gutiérrez-Antonio, C.; Gómez-Castro, F.; de Lira-Flores, J.; Hernández, S. A review on the production processes of renewable jet fuel. Renew. Sustain. Energy Rev. 2017, 79, 709–729. [Google Scholar] [CrossRef]
- Kaltschmitt, M.; Neuling, U. Biokerosene: Status and Prospects; Springer: Berlin/Heidelberg, Germany, 2017; p. 758. [Google Scholar]
- Vásquez, M.C.; Silva, E.E.; Castillo, E.F. Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production. Biomass Bioenergy 2017, 105, 197–206. [Google Scholar] [CrossRef]
- de Souza, L.M.; Mendes, P.A.; Aranda, D.A. Assessing the current scenario of the Brazilian biojet market. Renew. Sustain. Energy Rev. 2018, 98, 426–438. [Google Scholar] [CrossRef]
- Khan, S.; Kay Lup, A.N.; Qureshi, K.M.; Abnisa, F.; Wan Daud, W.M.A.; Patah, M.F.A. A review on deoxygenation of triglycerides for jet fuel range hydrocarbons. J. Anal. Appl. Pyrolysis 2019, 140, 1–24. [Google Scholar] [CrossRef]
- Bauen, A.; Bitossi, N.; German, L.; Harris, A.; Leow, K. Sustainable Aviation Fuels: Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation. Johns. Matthey Technol. Rev. 2020, 64, 263–278. [Google Scholar] [CrossRef]
- Doliente, S.S.; Narayan, A.; Tapia, J.F.D.; Samsatli, N.J.; Zhao, Y.; Samsatli, S. Bio-aviation Fuel: A Comprehensive Review and Analysis of the Supply Chain Components. Front. Energy Res. 2020, 8, 1–38. [Google Scholar] [CrossRef]
- Holladay, J.; Abdullah, Z.; Heyne, J. Sustainable Aviation Fuel: Review of Technical Pathways; U.S. Department of Energy: Washington, DC, USA, 2020; p. 67.
- Dodd, T.; Yengin, D. Deadlock in sustainable aviation fuels: A multi-case analysis of agency. Transp. Res. Part D Transp. Environ. 2021, 94, 1–14. [Google Scholar] [CrossRef]
- Gibbs, A.; Soubly, K.; Calderwood, L.U.; Agnes, C.E.; Delasalle, F.; Moroz, D.; Mugabo, A. Clean Skies for Tomorrow—Sustainable Aviation. In Clean Skies for Tomorrow: Sustainable Aviation Fuel Policy Toolkit; World Economic Forum: Geneva, Switzerland, 2021; p. 41. [Google Scholar]
- Martinez-Valencia, L.; Garcia-Perez, M.; Wolcott, M.P. Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits. Renew. Sustain. Energy Rev. 2021, 152, 1–21. [Google Scholar] [CrossRef]
- Ng, K.S.; Farooq, D.; Yang, A. Global biorenewable development strategies for sustainable aviation fuel production. Renew. Sustain. Energy Rev. 2021, 150, 1–14. [Google Scholar] [CrossRef]
- Mäki-Arvela, P.; Martínez-Klimov, M.; Murzin, D.Y. Hydroconversion of fatty acids and vegetable oils for production of jet fuels. Fuel 2021, 306, 1–17. [Google Scholar] [CrossRef]
- Kittel, H.; Horský, J. The future of Jet fuel as an important refinery product. In Proceedings of the 9th ICCT Conference 2022, Nanjing, China, 11–14 November 2022; Veselý, M., Hrdlička, Z., Hanika, J., Lubojacký, J., Eds.; AMCA Prague: Mikulov, Czech Republic, 2022; pp. 29–36. [Google Scholar]
- IEA. The IEA Bioenergy Conference 2021. Available online: https://www.ieabioenergyconference2021.org/ (accessed on 9 December 2022).
- The IEA Bioenergy Webinar—Sustainable Aviation Fuel/Biojet Technologies—Commercialization Status, Oportunities and Challenges. Available online: https://www.ieabioenergy.com/blog/publications/iea-bioenergy-webinar-sustainable-aviation-fuel-biojet-technologies-commercialisation-status-opportunities-and-challenges/ (accessed on 17 April 2022).
- IEA. The IEA Bioenergy Task 39—Biofuels to Decarbonize Transport. Available online: https://task39.ieabioenergy.com/ (accessed on 12 April 2022).
- Seber, G.; Malina, R.; Pearlson, M.N.; Olcay, H.; Hileman, J.I.; Barrett, S.R. Environmental and economic assessment of producing hydroprocessed jet and diesel fuel from waste oils and tallow. Biomass Bioenergy 2014, 67, 108–118. [Google Scholar] [CrossRef]
- Diederichs, G.W.; Ali Mandegari, M.; Farzad, S.; Gorgens, J.F. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice. Bioresour. Technol. 2016, 216, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Geleynse, S.; Brandt, K.; Garcia-Perez, M.; Wolcott, M.; Zhang, X. The Alcohol-to-Jet Conversion Pathway for Drop-In Biofuels: Techno-Economic Evaluation. ChemSusChem 2018, 11, 3728–3741. [Google Scholar] [CrossRef] [PubMed]
- Dahal, K.; Brynolf, S.; Xisto, C.; Hansson, J.; Grahn, M.; Grönstedt, T.; Lehtveer, M. Techno-economic review of alternative fuels and propulsion systems for the aviation sector. Renew. Sustain. Energy Rev. 2021, 151, 1–15. [Google Scholar] [CrossRef]
- Shahriar, M.F.; Khanal, A. The current techno-economic, environmental, policy status and perspectives of sustainable aviation fuel (SAF). Fuel 2022, 325, 1–26. [Google Scholar] [CrossRef]
- Rumizen, M.A. Qualification of Alternative Jet Fuels. Front. Energy Res. 2021, 9, 1–8. [Google Scholar] [CrossRef]
- ASTM D7566-22; Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- Vozka, P.; Šimáček, P.; Kilaz, G. Impact of HEFA Feedstocks on Fuel Composition and Properties in Blends with Jet A. Energy Fuels 2018, 32, 11595–11606. [Google Scholar] [CrossRef]
- Vozka, P.; Vrtiška, D.; Šimáček, P.; Kilaz, G. Impact of Alternative Fuel Blending Components on Fuel Composition and Properties in Blends with Jet A. Energy Fuels 2019, 33, 3275–3289. [Google Scholar] [CrossRef]
- Manigandan, S.; Atabani, A.E.; Ponnusamy, V.K.; Gunasekar, P. Impact of additives in Jet-A fuel blends on combustion, emission and exergetic analysis using a micro-gas turbine engine. Fuel 2020, 276, 1–9. [Google Scholar] [CrossRef]
- Srinivas, D.; Satyarthi, J.K. Challenges and opportunities in biofuels production. Indian J. Chem. 2012, 51, 174–185. [Google Scholar]
- NESTE. Renewable NEXBTL Diesel—Fuel with Many Applications. Available online: https://www.neste.com/renewable-nexbtl-diesel-fuel-many-applications (accessed on 4 May 2022).
- NESTE. NEXBTL Technology. Available online: https://www.neste.com/about-neste/innovation/nexbtl-technology (accessed on 7 January 2023).
- HONEYWELL-UOP. Honeywell Introduces Simplified Technology to Produce Renewable Diesel. Available online: https://uop.honeywell.com/en/news-events/2021/january/honeywell-uop-ecofining-single-stage-process (accessed on 12 May 2022).
- Rytter, E. Status and Developments in Fischer-Tropsch Synthesis. Issues of Importance to Biomass Conversion and Jetfuel Production; Norwegian University of Science and Technology: Trondheim, Norway, 2016. [Google Scholar]
- Sun, J.; Yang, G.; Peng, X.; Kang, J.; Wu, J.; Liu, G.; Tsubaki, N. Beyond Cars: Fischer-Tropsch Synthesis for Non-Automotive Applications. ChemCatChem 2019, 11, 1412–1424. [Google Scholar] [CrossRef]
- van Dyk, S.; Saddler, J. Progress in Commercialisation of Biojet fuels/SAF: Technologies, potencial and challenges. In Proceedings of the IEA Bioenergy Conference, Online, 29 November–1 December 2021. [Google Scholar]
- Chui, S. Flying the Rolls Royce B747 Test Bed—An Experimental Flight with 100% SAF. Available online: https://www.youtube.com/watch?v=4gSKbmODNxI (accessed on 23 March 2022).
- AIRBUS. First A380 Powered by 100% Sustainable Aviation Fuel Takes to the Skies. Available online: https://www.airbus.com/en/newsroom/press-releases/2022-03-first-a380-powered-by-100-sustainable-aviation-fuel-takes-to-the (accessed on 5 April 2022).
- AIRBUS. This A380 Is the Latest to Test 100% SAF. Available online: https://www.airbus.com/en/newsroom/news/2022-03-this-a380-is-the-latest-to-test-100-saf (accessed on 24 April 2022).
- ROLLS ROYCE. Alternative Fuels—Fuelling a Sustainable Future. Available online: https://www.rolls-royce.com/innovation/net-zero/decarbonising-complex-critical-systems/alternative-fuels.aspx (accessed on 9 January 2023).
- Sieppi, S. Brussels Airlines Starts New Year with a First Delivery of Neste MY Sustainable Aviation Fuel to Brussels Airport via CEPS Pipeline. Available online: https://www.neste.com/releases-and-news/renewable-solutions/brussels-airlines-starts-new-year-first-delivery-neste-my-sustainable-aviation-fuel-brussels-airport (accessed on 7 January 2023).
- Zhang, X.; Lei, H.; Zhu, L.; Qian, M.; Zhu, X.; Wu, J.; Chen, S. Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions. Energy 2016, 173, 418–430. [Google Scholar] [CrossRef] [Green Version]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Tomasek, S.; Varga, Z.; Holló, A.; Miskolczi, N.; Hancsók, J. Production of JET fuel containing molecules of high hydrogen content. Catal. Sustain. Energy 2017, 4, 52–58. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, D.; Lei, H.; Villota, E.; Ruan, R. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Appl. Energy 2019, 251, 1–17. [Google Scholar] [CrossRef]
- Tomasek, S.; Varga, Z.; Hancsók, J. Production of jet fuel from cracked fractions of waste polypropylene and polyethylene. Fuel Process. Technol. 2020, 197, 1–7. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Oasmaa, A.; Pihkola, H.; Deviatkin, I.; Tenhunen, A.; Mannila, J.; Minkkinen, H.; Pohjakallio, M.; Laine-Ylijokid, J. Pyrolysis of plastic waste: Opportunities and challenges. J. Anal. Appl. Pyrolysis 2020, 152, 1–11. [Google Scholar] [CrossRef]
- Suchocki, T.; Witanowski, Ł.; Lampart, P.; Kazimierski, P.; Januszewicz, K.; Gawron, B. Experimental investigation of performance and emission characteristics of a miniature gas turbine supplied by blends of kerosene and waste tyre pyrolysis oil. Energy 2021, 215, 1–10. [Google Scholar] [CrossRef]
- van Dyk, S.; Si, J.; McMillan, J.D.; Saddler, J. Drop-in: The Key Role that co-Processing Will Play in Its Production; IEA Bioenergy: Paris, France, 2019. [Google Scholar]
- EIA. Hydrocracking Is an Important Source of Diesel and Jet Fuel. Available online: https://www.eia.gov/todayinenergy/detail.php?id=9650 (accessed on 9 February 2023).
- Peng, C.; Cao, Z.; Du, Y.; Zeng, R.; Guo, R.; Duan, X.; Fang, X. Optimization of a Pilot Hydrocracking Unit to Improve the Yield and Quality of Jet Fuel Together with Heavy Naphtha and Tail Oil. Ind. Eng. Chem. Res. 2018, 57, 2068–2074. [Google Scholar] [CrossRef]
- Larsen, J.L. Upgrading of FCC Heavy Gasoline to Jet Fuel in a Two-Stage Hydrogenation Process; American Institute of Chemical Engineers: New York, NY, USA, 1997; p. 21. [Google Scholar]
- Kim, H.; Kim, D.; Park, Y.-K.; Jeon, J.-K. Synthesis of jet fuel through the oligomerization of butenes on zeolite catalysts. Res. Chem. Intermed. 2018, 44, 3823–3833. [Google Scholar] [CrossRef]
- Nicholas, C.P. Applications of light olefin oligomerization to the production of fuels and chemicals. Appl. Catal. A Gen. 2017, 543, 82–97. [Google Scholar] [CrossRef]
- Kittel, H.; Straka, P.; Šimáček, P.; Kadleček, D. Kerosene from hydrocracking for JET fuel with reduced aromatic content. Pet. Sci. Technol. 2022, 41, 507–523. [Google Scholar] [CrossRef]
- Straka, P.; Auersvald, M.; Vrtiška, D.; Kittel, H.; Šimáček, P.; Vozka, P. Production of transportation fuels via hydrotreating of scrap tires pyrolysis oil. Chem. Eng. J. 2023, 460, 141764. [Google Scholar] [CrossRef]
- Horský, J. Study of Synergies in the Production of JET Fuel by Blending Fractions of Different Technological Origin; UCT Prague: Prague, Czech Republic, 2022. [Google Scholar]
Component | JIG Jet A-1 Requirements | Jet A-1 | Jet HC | FCC HN | HEFA Cam | HEFA 215 | PyrTIR | PyrPO |
---|---|---|---|---|---|---|---|---|
Density at 15 °C (kg·m−3) | 775–840 | 802.3 | 817.3 | 858.8 | 759.5 | 760.7 | 850.9 | 794.8 |
Distillation (°C) | ||||||||
10% distilled (°C) | max 205 | 178.5 | 181.0 | 178.2 | 164.4 | 180.1 | 175.8 | 180.5 1 |
End of distillation (°C) | max 300 | 234.9 | 228.6 | 232.3 | 279.0 | 271.0 | 238.9 | 240.5 1 |
Distillation residue (vol%) | max 1.5 | 1.1 | 1.1 | 1 | 1.1 | 1.4 | 1.2 | 1 |
Distillation loss (vol%) | max 1.5 | 0.3 | 1 | 0.3 | 0.1 | 0.2 | 0.8 | 1 |
(H/C)at | - | 1.928 | 1.882 | 1.550 | 2.177 | 2.172 | 1.708 | 1.972 |
Aromatics content (vol%) | max 26.5 | 19.7 | 22.7 | 59.7 | 0.3 | 0.0 | 44.2 | 15.9 |
Monoaromatics | 18.5 | 22.6 | 54.2 | 0.3 | 0.0 | 43.8 | 15.7 | |
Diaromatics | 1.2 | 0.1 | 5.5 | 0.0 | 0.0 | 0.4 | 0.2 | |
Smoke point (mm) | min 18 | 22.2 | 18.9 | - | >50 2 | >50 2 | 12.2 | 26.6 |
For naphtalenes > 3 vol% | min. 25 | - | - | 9.3 3 | - | - | - | - |
Freezing point (°C) | max −47 | −55.4 | <−80 | <−80 | −57.2 | −49.1 | −80 | −50.1 |
Flash point (°C) | min 38 | 50 | 53 | 54.5 | 43.5 | 43 | 1 | 1 |
Net specific energy (MJ·kg−1) | min 42.8 | |||||||
measured (ASTM D4809) | 42.8 | 42.7 | 41.2 | 43.3 | 43.7 | 42.2 | 43.0 | |
calculated (ASTM D3338) | 43.2 | 43.0 | 42.0 | 44.1 | 44.1 | 42.3 | 43.4 |
Sample | Jet A-1 | Jet HC | FCC HN | HEFA Cam | HEFA 215 | PyrTIR |
---|---|---|---|---|---|---|
IBP | 8.8 | −4.3 | −11.0 | −0.9 | −10.9 | −6.3 |
5 vol% | 1.4 | 2.2 | −1.2 | 3.1 | −3.7 | −2.3 |
10 vol% | 2.1 | 5.3 | 2.9 | 3.8 | −0.6 | 0.8 |
30 vol% | 3.3 | 4.8 | 5.0 | −1.6 | −1.3 | 4.1 |
50 vol% | 2.5 | 3.1 | 2.9 | −2.8 | −1.2 | 1.8 |
70 vol% | 3.5 | 5.1 | 3.3 | −1.9 | −1.1 | 1.7 |
90 vol% | 4.4 | 5.4 | 6.4 | 2.4 | 1.5 | 5.0 |
95 vol% | 4.3 | 6.6 | 8.9 | 2.8 | 1.4 | 5.3 |
FBP | 0.8 | 3.4 | 7.4 | −1.2 | −3.0 | −0.4 |
Average absolute deviation (°C) | 3.3 | 4.2 | 5.1 | 2.3 | 2.7 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kittel, H.; Horský, J.; Šimáček, P. Properties of Selected Alternative Petroleum Fractions and Sustainable Aviation Fuels. Processes 2023, 11, 935. https://doi.org/10.3390/pr11030935
Kittel H, Horský J, Šimáček P. Properties of Selected Alternative Petroleum Fractions and Sustainable Aviation Fuels. Processes. 2023; 11(3):935. https://doi.org/10.3390/pr11030935
Chicago/Turabian StyleKittel, Hugo, Jiří Horský, and Pavel Šimáček. 2023. "Properties of Selected Alternative Petroleum Fractions and Sustainable Aviation Fuels" Processes 11, no. 3: 935. https://doi.org/10.3390/pr11030935
APA StyleKittel, H., Horský, J., & Šimáček, P. (2023). Properties of Selected Alternative Petroleum Fractions and Sustainable Aviation Fuels. Processes, 11(3), 935. https://doi.org/10.3390/pr11030935