Screening and Investigation on Inhibition of Sediment Formation in a Kuwait Light Crude Oil by Commercial Additives with Some Guidelines for Field Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crude Oil Samples and Their Characterization
2.2. Asphaltene Stability Test Methods
- Method III: asphaltene stability test by the Stankiewicz method explained in detail in [9];
- Method IV: based on the method suggested by Yen et al. [8] based on SARA analysis, where the graph of the Y-X diagram is prepared with Y = Asphaltenes + Saturates; and X = Aromatics + Resins;
- Method V: based on the method suggested by de Boer et al. [10]. It employs the difference between initial pressure and bubble point pressure and the density of reservoir fluid under reservoir conditions.
2.3. Regions of Asphaltene Instability
2.4. Screening of Chemical Inhibitors for Retardation of Asphaltene Precipitation
3. Results
3.1. Results from Asphaltene Stability Test Methods
3.2. Determination of Regions of Asphaltene Instability for the Studied Crude Oil Samples
3.3. Retardation of Asphaltene Precipitation by the Use of Chemical Additives
3.4. Optimum Inhibitor Concentration at the Field and Impact of Water Cut
- -
- Temperature;
- -
- Pressure;
- -
- Fluid composition (presence of lighter components);
- -
- Flow rate;
- -
- Water (water cut);
- -
- Concentration of salt and metals in the brine such as Al3+ and Fe3+ in water.
3.5. Calculation of the Required Amount of Inhibitor, Cost Analysis, and Final Recommendations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ADEPT | Asphaltene Deposition Tool |
ADs | Asphaltene Dispersants |
ADT | Asphaltene Dispersant Test |
AIs | Asphaltene Inhibitors |
APD | Asphaltene Phase Diagrams |
APDD | Asphaltene Phase Diagram and Deposition |
API Gravity | The American Petroleum Institute gravity |
ATB | H-Oil hydrocracked atmospheric residue |
BHT | bottom hole temperature |
BP | Bubble point |
BPSD | Barrel Per Stream Day |
CII | Colloidal Instability Index |
CME | Constant Mass Experiment |
cP | Centipoise |
CPA-EOS | Cubic-plus-association equation of state |
cSt | Centistokes |
EOR | Enhanced Oil Recovery |
GC | Gas chromatography |
GOR, scf/bbl | Gas Oil Ratio, standard cubic feet of gas per barrel of oil |
H-Oil ATB | H-Oil hydrocracked atmospheric residue |
IBP | Initial Boiling Point, °C |
ID | Identity |
IR | Infrared |
KOC | Kuwait Oil Company |
Mol. Wt. | Molecular weight |
MW7+ | Molecular weight of C7+ |
PC-SAFT | Perturbed chain statistical associating fluid theory |
Psia | Pounds per square inch absolute |
Psig | Pounds per square in gauge |
PVT | pressure–volume temperature |
ROI | return on investment |
SWD XRF–ZSX | Sequential Wavelength Dispersive X-ray Fluorescene Spectrometer |
UAOP | Upper asphaltene onset pressure |
VBA codes | Visual Basic for Applications |
XRF | X-ray fluorescence |
References
- Riazi, M.R. Characterization and Properties of Petroleum Fractions; ASTM International: Conshohocken, PA, USA, 2005. [Google Scholar]
- Mousavi-Dehghani, S.A.; Riazi, M.R.; Vafaie-Sefti, M.; Mansoori, G.A. An Analysis of methods for determination of onsets of asphaltene phase separations. J. Pet. Sci. Eng. 2004, 42, 145–156. [Google Scholar] [CrossRef]
- Riazi, M.R. Characteristics of Asphaltenic and Waxy Oils; Annual AIChE Meeting, Session on Heavy Oil and Flow Assurance: San Francisco, CA, USA, 2013. [Google Scholar]
- Akbarzadeh, K.; Dhillon, A.; Svrcek, W.Y.; Yarranton, H.W. Methodology for the characterization and modeling of asphaltene precipitation from heavy oils diluted with n-alkanes. Energy Fuels 2004, 18, 1434–1441. [Google Scholar] [CrossRef]
- Fakher, S.; Ahdaya, M.; Elturki, M.; Imqam, A. An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection. J. Pet. Explor. Prod. Technol. 2020, 10, 919–931. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, I.; Mahmoud, M.; Al Shehri, D.; El-Husseiny, A.; Alade, O. Asphaltene precipitation and deposition: A critical review. J. Pet. Sci. Eng. 2021, 2, 107956. [Google Scholar] [CrossRef]
- Pereira, V.J.; Setaro, L.L.O.; Costa, G.M.N.; de Melo, S.A.B. Evaluation and improvement of screening methods applied to asphaltene precipitation. Energy Fuels 2016, 31, 3380–3391. [Google Scholar] [CrossRef]
- Yen, A.; Yin, Y.R.; Asomaning, S. Evaluating Asphaltene Inhibitors: Laboratory Tests and Field Studies; SPE International Symposium on Oilfield Chemistry: Houston, TX, USA, 2001; Paper Number: SPE-65376-MS. [Google Scholar] [CrossRef]
- Stankiewicz, A.B.; Flannery, M.D.; Fuex, N.A.; Broze, G.; Couch, J.L.; Dubey, S.T.; Iyer, S.D.; Ratulowski, J.; Westerich, J.T. Prediction of asphaltene deposition risk in E&P operations. In Proceedings of the 3rd International Symposium on Mechanisms and Mitigation of Fouling in Petroleum and Natural Gas Production, AIChE 2002 Spring National Meeting, New Orleans, LA, USA, 10–14 March 2002; paper 47C. pp. 410–416. [Google Scholar]
- De Boer, R.B.; Leelooyer, K.; Eigner, M.R.P.; van Bergen, A.R.D. 1995, Screening of crude oils for asphalt precipitation: Theory, practice, and the selection of inhibitors. SPE Prod. Oper. 1995, 10, 55–61. [Google Scholar] [CrossRef]
- Chapman, W.G.; Gubbins, K.E.; Jackson, G.; Radosz, M. SAFT: Equation of state solution model for associating fluids. Fluid Ph. Equilibria 1989, 52, 31–38. [Google Scholar] [CrossRef]
- Gross, J.; Sadowski, G. Perturbed chain SAFT: An equation of state on a perturbed theory for chain molecules. Ind. Eng. Chem. Res. 2001, 40, 1244–1260. [Google Scholar] [CrossRef]
- Kurup, A.S.; Wang, J.; Subramani, H.J.; Buckley, J.; Creek, J.L.; Chapman, W.G. Revisiting asphaltene deposition tool (ADEPT): Field application. Energy Fuels 2012, 26, 5702–5710. [Google Scholar] [CrossRef]
- Kurup, A.S.; Vargas, F.M.; Wang, J.; Buckley, J.; Creek, J.L.; Subramani, H.J.; Chapman, W.G. Development and application of an asphaltene deposition tool (ADEPT) for well bores. Energy Fuels 2011, 25, 4506–4516. [Google Scholar] [CrossRef]
- Gonzalez, D.L.; Ting, P.D.; Hirasaki, G.J.; Chapman, W.G. Prediction of asphaltene instability under gas injection with the PC-SAFT equation of state. Energy Fuels 2005, 19, 1230–1234. [Google Scholar] [CrossRef]
- Ting, P.D.; Gonzalez, D.L.; Hirasaki, G.J.; Chapman, W.G. Application of the of PC-SAFT Equation of State to Asphaltene Phase Behavior, Asphaltene, Heavy Oils, and Petroleomics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 301–327. [Google Scholar]
- Panuganti, S.R.; Tavakkoli, M.; Vargas, F.M.; Gonzalez, D.L.; Chapman, W.G. SAFT Model for upstream asphaltene applications. Fluid Ph. Equilibria 2013, 359, 2–16. [Google Scholar] [CrossRef]
- Nazari, F.; Asssareh, M. An effective asphaltene modeling approach using PC-SAFT with detailed description for gas injection conditions. Fluid Phase Equi. 2021, 532, 112937. [Google Scholar] [CrossRef]
- Kelland, M.A. Production Chemicals for the Oil and Gas Industry; Taylor & Francis, CRC Press: New York, NY, USA, 2009. [Google Scholar]
- Da Silva, R.; Haraguchi, A.C.; Notrispe, L.; Loh, F.R.; Mohamed, W.R.S. Interfacial and colloidal behavior of asphaltenes obtained from Brazilian crude oils. J. Pet. Sci. Eng. 2001, 32, 201–216. [Google Scholar]
- Ramdass, K.K.; Chakrabarti, D.P. Effectiveness of Biodiesel as an Alternative Solvent for the Remediation of Asphaltene Deposits. Available online: https://www.researchgate.net/publication/324128907_Effectiveness_of_Biodiesel_as_an_Alternative_Solvent_for_the_Remediation_of_Asphaltene_Deposits (accessed on 11 January 2023).
- Mahdi, M.; Kharrat, R.; Hamoule, T. 2018, Screening of inhibitors for remediation of asphaltene deposits: Experimental and modeling study. Petroleum 2018, 4, 168–177. [Google Scholar]
- Abrahamsen, E.L. Organic Flow Assurance: Asphaltene Dispersant/Inhibitor Formulation Development through Experimental Design. Ph.D. Thesis, University of Stavanger, Stavanger, Norway, 2012. [Google Scholar]
- Stratiev, D.; Dinkov, R.; Shishkova, I.; Sharafutdinov, I.; Ivanova, N.; Mitkova, M.; Yordanov, D.; Rudnev, N.; Stanulov, K.; Artemiev, A.; et al. What is behind the high values of hot filtration test of the ebullated bed residue H-Oil hydrocracker residual oils? Energy Fuels 2016, 30, 7037–7054. [Google Scholar] [CrossRef]
- Schermer, W.E.M.; Melein, P.M.J.; van den Berg, F.G.A. Simple techniques for evaluation of crude oil compatibility. Pet Sci Technol. 2004, 22, 7–8, 1045–1054. [Google Scholar] [CrossRef]
- Stratiev, D.; Shishkova, I.; Tavlieva, M.; Kirilov, K.; Dinkov, R.; Yordanov, D.; Yankova, L.; Toteva, V.; Nikolova, R. Inhibiting sediment formation in an extra light crude oil and in a hydrocracked atmospheric residue by commercial chemical additives. J. Chem. Technol. Metall. 2022, 57, 63–75. [Google Scholar]
- Melendez-Alvarez, A.A.; Garcia-Bermudes, M.; Tavakkoli, M.; Doherty, R.H.; Meng, S.; Abdallah, D.S.; Vargas, F.M. On the evaluation of the performance of asphaltene dispersants. Fuel 2016, 179, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Ghloum, E.F.; Al-Qahtani, M.; Al-Rashid, A. Effect of inhibitors on asphaltene precipitation for Marrat Kuwaiti reservoirs. J. Petrol. Sci. Eng. 2010, 70, 99–106. [Google Scholar] [CrossRef]
- Jamaluddin, A.K.M.; Creek, J.; Kabir, C.S.; McFadden, J.D.; D’Cruz, D.; Manakalathil, J.; Joshi, N.; Ross, B. Laboratory techniques to measure thermodynamic asphaltene instability. J. Can. Pet. Technol. 2002, 41, 44–52. [Google Scholar] [CrossRef]
- Barcenas, M.; Orea, P.; Buenrostro-González, E.; Zamudio-Rivera, L.S.; Duda, Y. Study of medium effect on asphaltene agglomeration inhibitor efficiency. Energy Fuels 2008, 22, 1917–1922. [Google Scholar] [CrossRef] [Green Version]
- Kor, P.; Kharrat, R. 2016, Modeling of asphaltene particle deposition from turbulent oil flow in tubing: Model validation and a parametric study. Petroleum 2016, 2, 393–398. [Google Scholar] [CrossRef]
- Amiri, R.; Khamehchi, E.; Ghaffarzadeh, M.; Kardani, N. Static and dynamic evaluation of a novel solution path on asphaltene deposition and drag reduction in flowlines: An experimental study. J. Pet. Sci. Eng. 2021, 205, 108833. [Google Scholar] [CrossRef]
- Nezhad, S.R.; Kiomarsiyan, A.; Darvish, H. A novel experimental study on inhibition of asphaltene deposition. Pet Sci. Technol. 2022, 1–9. [Google Scholar] [CrossRef]
- Ali, S.I.; Lalji, S.M.; Haneef, J.; Tariq, S.M.; Zaidi, S.F.; Anjum, M. Performance evaluation of asphaltene inhibitors using integrated method—ADT coupled with spot test. Arab. J. Geosci. 2022, 15, 674. [Google Scholar] [CrossRef]
- Khormali, A.; Moghadasi, R.; Kazemzadeh, Y.; Struchkov, I. Development of a new chemical solvent package for increasing the asphaltene removal performance under static and dynamic conditions. J. Pet. Sci. Eng. 2021, 206, 109066. [Google Scholar] [CrossRef]
Reservoir Temperature | 242 |
---|---|
Sample volume used at reservoir T & P, mL | 67.5 |
Flashed Liquid Volume at STP, mL | 47.1 |
GOR, scf/bbl | 675.5 |
Basic Sediment & Water Content, wt.% | 0 |
Reservoir Initial Pressure, psig | 9300 |
Bubble point pressure, psia | 2271.6 |
Asphaltene onset pressure, psia | 5200 |
Density at reservoir condition, g/cm3 | 0.640 |
Density at 60 F, kg/m3 | 823.8 |
Mol. Wt., g/mol | 194 |
API Gravity | 40.1 |
Absolute viscosity, cP | 4.91 |
Kinematic viscosity at 60 F, mm2/s (cSt.) | 4.04 |
SARA analysis of STO | |
Saturates, wt.% | 65.5 |
Aromatics, wt.% | 28.3 |
Resin, wt.% | 4.7 |
Asphaltene, wt.% | 1.6 |
Reservoir Temperature, F | 230 |
---|---|
Asphaltene onset pressure, psia | 4500 |
Bubble point pressure, psia | 3130 |
SARA analysis of STO | |
Saturates, wt.% | 57.3 |
Aromatics, wt.% | 28.5 |
Resin, wt.% | 3.1 |
Asphaltene, wt.% | 1.0 |
Component | Sample A | Sample B |
---|---|---|
mol % | mol % | |
CO2 | 2.03 | 0.90 |
N2 | 0.12 | 0.03 |
H2S | 1.91 | 0.03 |
C1 | 27.47 | 41.95 |
C2 | 12.68 | 10.68 |
C3 | 8.23 | 7.11 |
nC4 | 3.10 | 3.48 |
iC4 | 0.90 | 0.96 |
nC5 | 3.41 | 2.10 |
iC5 | 2.95 | 1.22 |
C6 | 5.36 | 2.89 |
C7+ | 31.84 | 28.65 |
MW7+ | 212 | 211 |
SG7+ | 0824 | 0.843 |
Property | Value |
---|---|
Density at 15 °C, g/cm3 | 0.8313 |
Density at 20 °C, g/cm3 | 0.8277 |
API Gravity, 60 °F/60 °F | 39.29 |
Sulfur content, wt.% | 1.049 |
C5 asphaltenes, wt.% | 2.6 |
C7 asphaltenes, wt.% | 1.6 |
Kin. Viscosity at 40 °C, mm2/s | 9.4 |
Narrow Cuts BP, °C | Density g/cm3 | Content of | |
---|---|---|---|
at 15 °C | at 20 °C | Sulfur, wt.% | |
IBP-70 °C | 0.6496 | 0.6447 | 0.060 |
70–100 °C | 0.6949 | 0.6902 | 0.048 |
100–110 °C | 0.7170 | 0.7124 | 0.061 |
110–130 °C | 0.7302 | 0.7256 | 0.058 |
130–150 °C | 0.7503 | 0.7458 | 0.063 |
150–170 °C | 0.7675 | 0.7630 | 0.073 |
170–180 °C | 0.7775 | 0.7733 | 0.070 |
180–200 °C | 0.7857 | 0.7819 | 0.073 |
200–220 °C | 0.7952 | 0.7914 | 0.077 |
220–240 °C | 0.8029 | 0.799 | 0.107 |
240–260 °C | 0.8160 | 0.8123 | 0.224 |
260–280 °C | 0.8307 | 0.8271 | 0.466 |
280–300 °C | 0.8442 | 0.8406 | 0.677 |
300–320 °C | 0.8482 | 0.8446 | 0.787 |
320–340 °C | 0.8638 | 0.8602 | 1.252 |
340–360 °C | 0.8820 | 0.8784 | 1.831 |
>360 °C | |||
360–380 °C | 0.8885 | 0.8812 | 1.824 |
380–390 °C | 0.8949 | 0.8916 | 1.815 |
390–430 °C | 0.9000 | 0.8967 | 1.716 |
430–470 °C | 0.9163 | 0.9132 | 1.876 |
470–490 °C | 0.9291 | 0.9261 | 2.047 |
490–500 °C | 0.9377 | 0.9347 | 2.248 |
>500 °C | 0.9828 | 0.9802 | 3.025 |
Properties | H-Oil ATB (68%Urals/32BL) 15.10.2018 Sample-1 | H-Oil ATB (80%Urals/20BL) 15.10.2018 Sample-2 |
---|---|---|
H-Oil VR conversion, wt.% | 73.6 | 72.9 |
Specific gravity SG420 | 1.027 | 1.012 |
SARA analysis | ||
Saturates, wt.% | 28.9 | 31.4 |
Aromatics, wt.% | 59.4 | 56.8 |
Resin, wt.% | 3.7 | 4.5 |
Asphaltene, wt.% | 8.0 | 7.3 |
Colloidal instability index | 0.58 | 0.62 |
Performance Ranking Order | Inhibitor ID | Figure No. for Performance Test | Optimum Concentration ppm | Optimum %Reduction in Precipitate |
---|---|---|---|---|
1 | A4 | Figure 13d | 500 ppm | 75% |
2 | A5 | Figure 13e | 700 ppm | 75% |
3 | A6 | Figure 13f | 700 ppm | 75% |
4 | A2 | Figure 13b | 700 ppm | 75% |
5 | A3 | Figure 13c | 500 ppm | 67% |
6 | A1 | Figure 13a | 500 ppm | 67% |
7 | A11 | Figure 14e | 700 ppm | 17% |
8 | A8 | Figure 14b | 500 ppm | 0% (no effect) |
9 | A10 | Figure 14d | 700 ppm | +42% (increasing precipitation) |
10 | A9 | Figure 14c | 700 ppm | +50% (increasing precipitation) |
11 | A7 | Figure 14a | 1000 ppm | +250% (increasing precipitation) |
Performance Ranking Order | Inhibitor ID | Figure No. for Performance Test | Optimum Concentration ppm | Optimum %Reduction in Precipitate |
---|---|---|---|---|
1 | A3 | Figure 15b | 500 ppm | 42% |
2 | A2 | Figure 15a | 500 ppm | 38% |
3 | A4 | Figure 15c | 500 ppm | 38% |
4 | A8 | Figure 15f | 1000 ppm | 33% |
5 | A5 | Figure 15d | 300 ppm | 22% |
6 | A7 | Figure 15e | 1000 ppm | 4% |
Comp. | Na | Mg | Al | Si | S | Cl | K | Ca | Br | Sr | Ba | W | H2O |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | mass% | mass% | mass% | mass% | mass% | mass% | mass% | mass% | mass% | mass% | mass% | mass% | mass% |
Result | 5.205 | 0.243 | 0 | 0.001 | 0.019 | 11.42 | 0.241 | 1.530 | 0.082 | 0.062 | 0.021 | 0.001 | 81.18 |
Unit | ppm | ppm | Ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm |
Result | 52046 | 2432 | <29 | 15 | 192 | 114169 | 2406 | 15291 | 822 | 618 | 214 | 11 | 52046 |
A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | Functional Group/ Assignments |
---|---|---|---|---|---|---|---|---|---|---|---|
Group Frequency, Wavenumbers (cm−1) | |||||||||||
3450 | 3449 | 3483 | 3448 | 3447 | 3400 | 3426 | 3386 | −OH; −NH stretch | |||
3002 | 3017 | =C−H stretch | |||||||||
2963 | 2957 | 2963 | 2959 | 2956 | 2956 | 2961 | 2953 | 2964 | 2953 | 2958 | C−H asymmetric stretch |
2931 | 2926 | 2933 | 2926 | 2926 | 2927 | 2930 | 2925 | 2925 | 2925 | 2925 | C−H asymmetric stretch |
2873 | 2872 | 2872 | 2872 | 2871 | 2873 | 2873 | 2871 | C−H symmetric stretch | |||
2856 | 2855 | 2858 | 2854 | 2855 | 2855 | 2856 | C−H asymmetric stretch | ||||
1770 | 1772 | 1780 | C=O stretch | ||||||||
1736 | 1736 | 1735 | 1735 | ||||||||
1717 | |||||||||||
1711 | |||||||||||
1706 | 1701 | 1702 | 1702 | ||||||||
1607 | 1608 | 1607 | 1607 | 1602 | 1602 | 1607 | 1607 | 1607 | carbon-carbon stretching vibrations in the aromatic ring | ||
1577 | |||||||||||
1516 | |||||||||||
1505 | 1506 | 1505 | 1505 | 1505 | 1505 | 1505 | 1505 | ||||
1462 | 1464 | 1461 | 1462 | 1464 | 1466 | 1463 | 1459 | 1455 | 1466 | 1462 | C−H bend:CH2 |
1386/1366 | 1385/1366 | 1389/1366 | 1377/1366 | CH(CH3)2 | |||||||
1366 | 1380 | 1377 | 1377 | C−H bend: CH3 | |||||||
1388/1377/1366 | 1385/1377/1366 | 1389/1377/1366 | C(CH3)3 | ||||||||
1213 | P=O stretch | ||||||||||
1024 | P−O stretch | ||||||||||
900–700 | 900–700 | 900–700 | 900–700 | 900–700 | 900–700 | 900–700 | 900–700 | C−H out-of-plane bend | |||
750–400 | Metal—oxygen stretch |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qubian, A.; Abbas, A.S.; Al-Khedhair, N.; Peres, J.F.; Stratiev, D.; Shishkova, I.; Nikolova, R.; Toteva, V.; Riazi, M.R. Screening and Investigation on Inhibition of Sediment Formation in a Kuwait Light Crude Oil by Commercial Additives with Some Guidelines for Field Applications. Processes 2023, 11, 818. https://doi.org/10.3390/pr11030818
Qubian A, Abbas AS, Al-Khedhair N, Peres JF, Stratiev D, Shishkova I, Nikolova R, Toteva V, Riazi MR. Screening and Investigation on Inhibition of Sediment Formation in a Kuwait Light Crude Oil by Commercial Additives with Some Guidelines for Field Applications. Processes. 2023; 11(3):818. https://doi.org/10.3390/pr11030818
Chicago/Turabian StyleQubian, A., A. S. Abbas, N. Al-Khedhair, J. F. Peres, D. Stratiev, I. Shishkova, R. Nikolova, V. Toteva, and M. R. Riazi. 2023. "Screening and Investigation on Inhibition of Sediment Formation in a Kuwait Light Crude Oil by Commercial Additives with Some Guidelines for Field Applications" Processes 11, no. 3: 818. https://doi.org/10.3390/pr11030818
APA StyleQubian, A., Abbas, A. S., Al-Khedhair, N., Peres, J. F., Stratiev, D., Shishkova, I., Nikolova, R., Toteva, V., & Riazi, M. R. (2023). Screening and Investigation on Inhibition of Sediment Formation in a Kuwait Light Crude Oil by Commercial Additives with Some Guidelines for Field Applications. Processes, 11(3), 818. https://doi.org/10.3390/pr11030818