Shredding Roller Effect on the Cannabis sativa L. Residues and Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Assessment of the Mechanical Properties of Fibrous Cannabis Residues
2.2. The Assessment of Lignin Content
- W1—mass of the empty bag, g;
- W2—mass of the sample, g;
- W3—mass of organic matter (OM) (loss of mass on burning of bags and residual fiber), g;
- C2—correction of the blank (control) bag for ash (loss of mass on burning of the bag/initial mass of the bag), g;
- SM—expressed as a fraction of the mass, g.
2.3. The Assessment of the Impact of the Shredding Roller on Energy Consumption and CO2 Emissions
2.4. The Assessment of the Impact of the Shredding Roller on Cannabis Residues Moisture
2.5. Statistical Evaluation
3. Results and Discussion
3.1. Visual and Moisture Assessment of Rolled and Unrolled Cannabis Residues
3.2. The Assessment of the Need for Breaking and Cutting Force on Cannabis Residues
3.3. Effect of Shredding Roller on Breaking and Cutting Force Change of Cannabis Residues
3.4. Effect of Shredding Roller on Cannabis Residue Lignin
3.5. Impact of Shredding Roller on CO2 Emissions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pinto, P.; Fernández Long, M.E.; Piñeiroa, G. Including cover crops during fallow periods for increasing ecosystem services: Is it possible in croplands of Southern South America? Agric. Ecosyst. Environ. 2017, 248, 48–57. [Google Scholar] [CrossRef]
- Wang, D.; Blumfield, T.J.; Xu, Z. Long-term impacts of soil compaction and cultivation on soil carbon and nitrogen pools, foliar δ13C and δ15N as well as tree growth in a hoop pine plantation of subtropical Australia. J. Soils Sediments 2020, 20, 2829–2842. [Google Scholar] [CrossRef]
- Alskaf, K.; Mooney, S.J.; Sparkes, D.L.; Wilson, P.; Sjögersten, S. Short-term impacts of different tillage practices and plant residue retention on soil physical properties and greenhouse gas emissions. Soil Tillage Res. 2021, 206, 104803. [Google Scholar] [CrossRef]
- Bedano, J.C.; Domíngueza, A.; Arolfoab, R.; Wallbc, L.G. Effect of Good Agricultural Practices under no-till on litter and soil invertebrates in areas with different soil types. Soil Tillage Res. 2016, 158, 100–109. [Google Scholar] [CrossRef]
- Bender, S.F.; Wagg, C.; Heijden, M.G.A. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 2016, 31, 440–452. [Google Scholar] [CrossRef]
- Garland, G.; Edlinger, A.; Banerjee, S.; Degrune, F.; García-Palacios, P.; Pescador, D.S.; Herzog, C.; Romdhane, S.; Saghai, A.; Spor, A.; et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2021, 2, 28–37. [Google Scholar] [CrossRef]
- D’Acunto, L.; Semmartin, M.; Ghersa, M.C. Uncropped field margins to mitigate soil carbon losses in agriculturallandscapes. Agric. Ecosyst. Environ. 2014, 183, 60–68. [Google Scholar] [CrossRef]
- Grandy, A.S.; Salam, D.S.; Wickings, K.; McDaniel, M.D.; Culman, S.W.; Snapp, S.S. Soil respiration and litter decomposition responses to nitrogen fertilization rate in no-till corn systems. Agric. Ecosyst. Environ. 2013, 179, 35–40. [Google Scholar] [CrossRef]
- Araujo, P.I.; Grasso, A.A.; González-Arzac, A.; Méndez, M.S.; Austin, A.T. Sunlight and soil biota accelerate decomposition of crop residues in the Argentine Pampas. Agric. Ecosyst. Environ. 2022, 330, 107908. [Google Scholar] [CrossRef]
- Austin, A.T.; Méndez, M.S.; Ballaré, C.L. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2016, 113, 4392–4397. [Google Scholar] [CrossRef]
- Berenstecher, P.; Pérez, L.I.; Ballaré, C.L.; Austin, A.T. Sunlight doubles aboveground carbon loss in a seasonally dry woodland in Patagonia. Curr. Biol. 2020, 30, 3243–3251. [Google Scholar] [CrossRef] [PubMed]
- Vaitauskienė, K.; Šarauskis, E.; Naujokienė, V.; Liakas, V. The influence of free-living nitrogen-fixing bacteria on the mechanical characteristics of different plant residues under no-till and strip-till conditions. Soil Tillage Res. 2015, 154, 91–102. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, S. Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting. Bioresour. Technol. 2002, 85, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Upadhyay, G.; Choudhary, S.; Patel, B.; Chhokar, R.S.; Gill, S.C. Resource Conserving Mechanization Technologies for Dryland Agriculture. In Enhancing Resilience of Dryland Agriculture under Changing Climate: Interdisciplinary and Convergence Approaches; Springer Nature: Singapore, 2023; pp. 657–688. [Google Scholar]
- Kumar, N.; Chaudhary, A.; Ahlawat, O.P.; Naorem, A.; Upadhyay, G.; Chhokar, R.S.; Gill, S.C.; Khippal, A.; Tripathi, S.C.; Singh, G.P. Crop residue management challenges, opportunities and way forward for sustainable food-energy security in India: A review. Soil Tillage Res. 2023, 228, 105641. [Google Scholar] [CrossRef]
- Angelova, V.; Ivanova, R.; Delibaltova, V.; Ivanov, K. Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and cannabis). Ind. Crops Prod. 2004, 19, 197–205. [Google Scholar] [CrossRef]
- Kok, C.J.; Coenen, G.C.M.; Maas, P.W.T.; Gerlagh, M.; Dijst, M. Effect of cannabis on soil pathogens. In Paper from Cannabis Grown in The Netherlands; van Berlo, J.M., Ed.; ATO-DLO: Wageningen, The Netherlands, 1993; pp. 99–107. [Google Scholar]
- Lotz, L.A.P.; Groeneveld, R.M.W.; Habekotte, B.; Van Oene, H. Reduction of growth and reproduction of Cyperus esculentus by specific crops. Weed Res. 1991, 31, 153–160. [Google Scholar] [CrossRef]
- Yano, H.; Fu, W. Cannabis: A Sustainable Plant with High Industrial Value in Food Processing. Foods 2023, 12, 651. [Google Scholar] [CrossRef]
- Center for Agricultural Information and Rural Development. In 2021 Declared Total Area According to the Agricultural Land and Other Areas Classifier Code. Available online: https://www.vic.lt/ppis/wp-content/uploads/sites/2/2021/07/4_Deklaruotos-zemes-ukio-naudmenos-ir-kiti-plotai.pdf (accessed on 20 March 2022).
- Citterio, S.; Santagostino, A.; Fumagalli, P.; Prato, N.; Ranalli, P.; Sgorbati, S. Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 2003, 256, 243–252. [Google Scholar] [CrossRef]
- Adesina, I.; Bhowmik, A.; Sharma, H.; Shahbazi, A. A Review on the Current State of Knowledge of Growing Conditions, Agronomic Soil Health Practices and Utilities of Cannabis in the United States. Agriculture 2020, 10, 129. [Google Scholar] [CrossRef]
- Eidukevichiene, M.J.; Ozheraitiene, D.J.; Tripolskaja, L.N.; Marcinkonis, S.I. The effect of long-term liming on the chemical properties of Lithuanian soils. Eurasian Soil Sci. Pochvovedenie 2001, 34, 999–1005. [Google Scholar]
- Taghavifar, H.; Mardani, A. Prognostication of energy consumption and greenhouse gas (GHG) emissions analysis of apple production in West Azarbayjan of Iran using Artificial Neural Network. J. Clean. Prod. 2015, 87, 159–167. [Google Scholar] [CrossRef]
- Damanauskas, V.; Janulevičius, A. Differences in tractor performance parameters between single-wheel 4WD and dual-wheel 2WD driving systems. J. Terramechanics 2015, 60, 63–73. [Google Scholar] [CrossRef]
- Naujokienė, V.; Šarauskis, E.; Lekavičienė, K.; Adamavičienė, A.; Buragienė, S.; Kriaučiūnienė, Z. The influence of biopreparations on the reduction of energy consumption and CO2 emissions in shallow and deep soil tillage. Sci. Total Environ. 2018, 626, 1402–1413. [Google Scholar] [CrossRef] [PubMed]
- Filipovic, D.; Husnjak, S.; Kosutic, S.; Gospodaric, Z. Effects of tillage systems on compaction and crop yield of Albic Luvisol in Croatia. J. Terramechanics 2006, 43, 177–189. [Google Scholar] [CrossRef]
- Koga, K.; Osuga, Y.; Yoshino, O.; Hirota, Y.; Ruimeng, X.; Hirata, T.; Takeda, S.; Yano, T.; Tsutsumi, O.; Taketani, Y. Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J. Clin. Endocrinol. Metab. 2003, 88, 2348–2351. [Google Scholar] [CrossRef]
- Šarauskis, E.; Vaitauskienė, K.; Romaneckas, K.; Jasinskas, A.; Butkus, V.; Kriaučiūnienė, Z. Fuel consumption and CO2 emission analysis in different strip tillage scenarios. Energy 2017, 118, 957–968. [Google Scholar] [CrossRef]
- Manzone, M.; Calvo, A. Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy. Renew. Energy 2016, 86, 675–681. [Google Scholar] [CrossRef]
- Tarakanov, A.O.; Skormin, V.A.; Sokolova, S.P.; Sokolova, S.S. Immunocomputing: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Sommers, L.E.; Gilmour, C.M.; Wildung, S.M. The effect of water potential on decomposition processes in soils. In Water Potential Relations in Soil Microbiology; Parr, J., Gardner, W., Elliott, L., Eds.; Soil Science Society of America: Madison, WI, USA, 1981. [Google Scholar]
- Kutlu, T.; Guber, A.K.; Rivers, M.L.; Kravchenko, A.N. Moisture absorption by plant residue in soil. Geoderma 2018, 316, 47–55. [Google Scholar] [CrossRef]
- Šarauskis, E.; Masilionytė, L.; Andriušis, A.; Jakštas, A. The force needed for breaking and cutting of winter wheat and spring barley straw. Zemdirb.-Agric. 2013, 100, 269–276. [Google Scholar] [CrossRef]
- Novošinskas, H. Educational Book “Engineering Technology Design”; VP1-2.2-ŠMM-07-K-01-092; Aleksandras Stulginskis University: Akademija, Lithuania, 2012. [Google Scholar]
- Tavakoli, H.; Mohtasebi, S.S.; Jafari, A. Effects of moisture content, internode position and loading rate on the bending characteristics of barley straw. Res. Agric. Eng. 2009, 55, 45–51. [Google Scholar] [CrossRef]
- Hemmatian, R.; Najafi, G.; Hosseinzadeh, B.; Tavakoli Hashjin, T.; Khoshtaghaza, M.H. Experimental and theoretical investigation of the effects of moisture content and internodes position on shearing characteristics of sugar cane stems. J. Agric. Sci. Technol. 2012, 14, 963–974. [Google Scholar]
- Šarauskis, E.; Köller, K.; Butkus, V. Research on technological parameters to determine the design factors of direct drilling coulters for sugar beets. Lanbauforschung Volkenrode 2005, 55, 171–180. [Google Scholar]
- Vogel, K.P.; Jung, H.J.G. Genetic modification of herbaceous plants for feed and fuel. Crit. Rev. Plant Sci. 2001, 20, 15–49. [Google Scholar] [CrossRef]
- Grabber, J.H.; Ralph, J.; Lapierre, C.; Barrière, Y. Genetic and molecular basis of grass cell-wall degradability. I. Lignin–cell wall matrix interactions. Comp. Rend. Biol. 2004, 327, 455–465. [Google Scholar] [CrossRef]
- Darginavičiūtė, D.; Zigmontienė, A. Research and analysis of environmental pollution in industrial districts. In Proceedings of the 10th Young Scientists Conference, Vytautas Magnus University, Kaunas, Lithuania, 23 March 2007. [Google Scholar]
- Naujokienė, V.; Šarauskis, E.; Bleizgys, R.; Sasnauskienė, J. Soil biotreatment effectiveness for reducing global warming potential from main polluting tillage operations in life cycle assessment phase. Sci. Total Environ. 2019, 671, 805–817. [Google Scholar] [CrossRef]
- Smolnikovas, M.; Viselga, G.; Viselgaitė, G.; Jasinskas, A. Diesel engine with different kind of injection systems exhaust gas analysis. Sci. Future 2015, 7, 594–600. [Google Scholar] [CrossRef]
- Mantoam, E.J.; Romanelli, T.L.; Gimenez, L.M. Energy demand and greenhouse gases emissions in the life cycle of tractors. Biosyst. Eng. 2016, 151, 158–170. [Google Scholar] [CrossRef]
- Ninikas, K.; Mitani, A.; Koutsianitis, D.; Ntalos, G.; Taghiyari, H.R.; Papadopoulos, A.N. Thermal and Mechanical Properties of Green Insulation Composites Made from Cannabis and Bark Residues. J. Compos. Sci. 2021, 5, 132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naujokienė, V.; Lekavičienė, K.; Eigirdas, E.; Šarauskis, E. Shredding Roller Effect on the Cannabis sativa L. Residues and Environment. Processes 2023, 11, 1067. https://doi.org/10.3390/pr11041067
Naujokienė V, Lekavičienė K, Eigirdas E, Šarauskis E. Shredding Roller Effect on the Cannabis sativa L. Residues and Environment. Processes. 2023; 11(4):1067. https://doi.org/10.3390/pr11041067
Chicago/Turabian StyleNaujokienė, Vilma, Kristina Lekavičienė, Eimantas Eigirdas, and Egidijus Šarauskis. 2023. "Shredding Roller Effect on the Cannabis sativa L. Residues and Environment" Processes 11, no. 4: 1067. https://doi.org/10.3390/pr11041067
APA StyleNaujokienė, V., Lekavičienė, K., Eigirdas, E., & Šarauskis, E. (2023). Shredding Roller Effect on the Cannabis sativa L. Residues and Environment. Processes, 11(4), 1067. https://doi.org/10.3390/pr11041067