Fabrication of Ni−MOF−74@PA−PEI for Radon Removal under Ambient Conditions
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Synthesis Method
2.2.1. Synthesis of PA and PA−PEI
2.2.2. Synthesis of Ni−MOF−74 and Ni−MOF−74@PA
2.3. Characterisation
2.4. Radon Breakthrough Experiment
2.4.1. Experimental Setup
2.4.2. Test Preparation
2.4.3. Calculation of the Dynamic Adsorption Coefficients
3. Results and Discussion
3.1. Composition Analysis and Morphology Characterization
3.2. Pore Structure Characteristics
3.3. Thermal Stability
3.4. Radon Adsorption Capacity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lei, B.; Zhao, L.; Girault, F.; Cai, Z.; Luo, C.; Thapa, S.; She, J.; Perrier, F. Overview and Large-Scale Representative Estimate of Radon-222 Flux Data in China. Environ. Adv. 2022, 11, 100312. [Google Scholar] [CrossRef]
- Lorenzo-González, M.; Torres-Durán, M.; Barbosa-Lorenzo, R.; Provencio-Pulla, M.; Barros-Dios, J.M.; Ruano-Ravina, A. Radon Exposure: A Major Cause of Lung Cancer. Expert Rev. Respir. Med. 2019, 13, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.K.; Smith, O.V.; Miller, G.E. Chronic Home Radon Exposure Is Associated with Higher Inflammatory Biomarker Concentrations in Children and Adolescents. Int. J. Environ. Res. Public Health 2022, 20, 246. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, L.T.N.; Park, D.; Lee, Y.-C. Human Health Impacts of Residential Radon Exposure: Updated Systematic Review and Meta-Analysis of Case–Control Studies. Int. J. Environ. Res. Public Health 2022, 20, 97. [Google Scholar] [CrossRef]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F.D.; Anthony, M.; Antunes, B.; Arneodo, F.; Balata, M.; Barrow, P.; et al. The XENON1T Dark Matter Experiment. Eur. Phys. J. C 2017, 77, 881. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, P. Optimization of Processing Parameters and Development of a Radon Trapping System for the NEWS-G Dark Matter Detector; University of Alberta: Edmonton, AB, Canada, 2021. [Google Scholar]
- Araujo, G.R.; Baudis, L.; Biondi, Y. The Upgraded Low-Background Germanium Counting Facility Gator for High-Sensitivity γ-Ray Spectrometry. J. Inst. 2022, 17, P08010. [Google Scholar] [CrossRef]
- Finne, I.E.; Kolstad, T.; Larsson, M.; Olsen, B.; Prendergast, J.; Rudjord, A.L. Significant Reduction in Indoor Radon in Newly Built Houses. J. Environ. Radioact. 2019, 196, 259–263. [Google Scholar] [CrossRef]
- Ackley, R.D. Removal of Radon-220 from HTGR Fuel Reprocessing and Refabrication Off-Gas Streams by Adsorption (Based on a Literature Survey); Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1975. [Google Scholar]
- Bikit, I.; Mrdja, D.; Bikit, K.; Grujic, S.; Knezevic, D.; Forkapic, S.; Kozmidis-Luburic, U. Radon Adsorption by Zeolite. Radiat. Meas. 2015, 72, 70–74. [Google Scholar] [CrossRef]
- Karunakara, N.; Sudeep Kumara, K.; Yashodhara, I.; Sahoo, B.K.; Gaware, J.J.; Sapra, B.K.; Mayya, Y.S. Evaluation of Radon Adsorption Characteristics of a Coconut Shell-Based Activated Charcoal System for Radon and Thoron Removal Applications. J. Environ. Radioact. 2015, 142, 87–95. [Google Scholar] [CrossRef]
- Pushkin, K.; Akerlof, C.; Anbajagane, D.; Armstrong, J.; Arthurs, M.; Bringewatt, J.; Edberg, T.; Hall, C.; Lei, M.; Raymond, R.; et al. Study of Radon Reduction in Gases for Rare Event Search Experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 903, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Yu, B.; Wu, H.; He, Z.; Wang, M.; Xiao, D. High-Efficiency Radon Adsorption by Nickel Nanoparticles Supported on Activated Carbon. New J. Chem. 2022, 46, 9222–9228. [Google Scholar] [CrossRef]
- Fajt, L.; Kouba, P.; Mamedov, F.; Smolek, K.; Štekl, I.; Fojtík, P.; Hýža, M.; Hůlka, J.; Jílek, K.; Stoček, P.; et al. Compact Anti-Radon Facility. In Proceedings of the Low Radioactivity Techniques 2015 (LRT 2015): Proceedings of the 5th International Workshop in Low Radioactivity Techniques, Seattle, WA, USA, 18–20 March 2015. [Google Scholar]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [Green Version]
- Perry, J.J.; Teich-McGoldrick, S.L.; Meek, S.T.; Greathouse, J.A.; Haranczyk, M.; Allendorf, M.D. Noble Gas Adsorption in Metal–Organic Frameworks Containing Open Metal Sites. J. Phys. Chem. C 2014, 118, 11685–11698. [Google Scholar] [CrossRef]
- Banerjee, D.; Simon, C.M.; Elsaidi, S.K.; Haranczyk, M.; Thallapally, P.K. Xenon Gas Separation and Storage Using Metal-Organic Frameworks. Chem 2018, 4, 466–494. [Google Scholar] [CrossRef] [Green Version]
- Pei, J.; Gu, X.-W.; Liang, C.-C.; Chen, B.; Li, B.; Qian, G. Robust and Radiation-Resistant Hofmann-Type Metal–Organic Frameworks for Record Xenon/Krypton Separation. J. Am. Chem. Soc. 2022, 144, 3200–3209. [Google Scholar] [CrossRef]
- Van Heest, T.; Teich-McGoldrick, S.L.; Greathouse, J.A.; Allendorf, M.D.; Sholl, D.S. Identification of Metal–Organic Framework Materials for Adsorption Separation of Rare Gases: Applicability of Ideal Adsorbed Solution Theory (IAST) and Effects of Inaccessible Framework Regions. J. Phys. Chem. C 2012, 116, 13183–13195. [Google Scholar] [CrossRef]
- Sumer, Z.; Keskin, S. Molecular Simulations of MOF Adsorbents and Membranes for Noble Gas Separations. Chem. Eng. Sci. 2017, 164, 108–121. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, F.; Cao, D. Screening Metal-Organic Frameworks for Capturing Radioactive Gas Rn in Indoor Air. J. Hazard. Mater. 2019, 366, 624–629. [Google Scholar] [CrossRef]
- Wang, X.; Ma, F.; Liu, S.; Chen, L.; Xiong, S.; Dai, X.; Tai, B.; He, L.; Yuan, M.; Mi, P.; et al. Thermodynamics-Kinetics-Balanced Metal–Organic Framework for In-Depth Radon Removal under Ambient Conditions. J. Am. Chem. Soc. 2022, 144, 13634–13642. [Google Scholar] [CrossRef]
- Wang, X.W.; Yan, T.; Wan, J.; Zhao, L.F.; Tu, Y. Zeolitic Imidazolate Framework-8 as a Nanoadsorbent for Radon Capture. Nucl. Sci. Tech. 2016, 27, 9. [Google Scholar] [CrossRef]
- Chen, D.-L.; Shang, H.; Zhu, W.; Krishna, R. Transient Breakthroughs of CO2/CH4 and C3H6/C3H8 Mixtures in Fixed Beds Packed with Ni-MOF-74. Chem. Eng. Sci. 2014, 117, 407–415. [Google Scholar] [CrossRef]
- Harandizadeh, A.H.; Aghamiri, S.; Hojjat, M.; Ranjbar-Mohammadi, M.; Talaie, M.R. Adsorption of Carbon Dioxide with Ni-MOF-74 and MWCNT Incorporated Poly Acrylonitrile Nanofibers. Nanomaterials 2022, 12, 412. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Cheng, Y.; Chen, C.; Kosari, M.; Jiang, Z.; He, C. Taming Structure and Modulating Carbon Dioxide (CO2) Adsorption Isosteric Heat of Nickel-Based Metal Organic Framework (MOF-74(Ni)) for Remarkable CO2 Capture. J. Colloid Interface Sci. 2022, 612, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Thallapally, P.K.; Grate, J.W.; Motkuri, R.K. Facile Xenon Capture and Release at Room Temperature Using a Metal–Organic Framework: A Comparison with Activated Charcoal. Chem. Commun. 2012, 48, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Ghose, S.K.; Li, Y.; Yakovenko, A.; Dooryhee, E.; Ehm, L.; Ecker, L.E.; Dippel, A.-C.; Halder, G.J.; Strachan, D.M.; Thallapally, P.K. Understanding the Adsorption Mechanism of Xe and Kr in a Metal–Organic Framework from X-Ray Structural Analysis and First-Principles Calculations. J. Phys. Chem. Lett. 2015, 6, 1790–1794. [Google Scholar] [CrossRef]
- Riley, B.J.; Chong, S.; Kuang, W.; Varga, T.; Helal, A.S.; Galanek, M.; Li, J.; Nelson, Z.J.; Thallapally, P.K. Metal–Organic Framework–Polyacrylonitrile Composite Beads for Xenon Capture. ACS Appl. Mater. Interfaces 2020, 12, 45342–45350. [Google Scholar] [CrossRef]
- Peterson, G.W.; Lee, D.T.; Barton, H.F.; Epps, T.H.; Parsons, G.N. Fibre-Based Composites from the Integration of Metal–Organic Frameworks and Polymers. Nat. Rev. Mater. 2021, 6, 605–621. [Google Scholar] [CrossRef]
- Feng, W.; Wu, H.; Jin, J.; Liu, D.; Meng, H.; Yun, J.; Mi, J. Transformation of Al-CDC from 3D Crystals to 2D Nanosheets in Macroporous Polyacrylates with Enhanced CH4/N2 Separation Efficiency and Stability. Chem. Eng. J. 2022, 429, 132285. [Google Scholar] [CrossRef]
- Nie, L.; Bai, L.; Chen, J.; Jin, J.; Mi, J. Grafting Poly(Ethyleneimine) on the Pore Surface of Poly(Glycidyl Methacrylate-Trimethylolpropane Triacrylate) for Preparation of the CO2 Sorbent. Energy Fuels 2019, 33, 12610–12620. [Google Scholar] [CrossRef]
- Yang, C.; Du, Z.; Jin, J.; Chen, J.; Mi, J. Epoxide-Functionalized Tetraethylenepentamine Encapsulated into Porous Copolymer Spheres for CO2 Capture with Superior Stability. Appl. Energy 2020, 260, 114265. [Google Scholar] [CrossRef]
- Chaudhary, V.; Sharma, S. Suspension polymerization technique: Parameters affecting polymer properties and application in oxidation reactions. J. Polym Res. 2019, 26, 102. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Ma, H.; Zhang, L.; Sun, C.; Guo, Q. Radon Dynamic Adsorption Coefficients of Two Activated Charcoals at Different Temperatures in Nitrogen Environment. Appl. Radiat. Isot. 2023, 191, 110564. [Google Scholar] [CrossRef]
- Ungár, T. Microstructural Parameters from X-Ray Diffraction Peak Broadening. Scr. Mater. 2004, 51, 777–781. [Google Scholar] [CrossRef]
- Guo, C.; Luo, X.; Zhou, X.; Shi, B.; Wang, J.; Zhao, J.; Zhang, X. Quantitative Analysis of Binary Polymorphs Mixtures of Fusidic Acid by Diffuse Reflectance FTIR Spectroscopy, Diffuse Reflectance FT-NIR Spectroscopy, Raman Spectroscopy and Multivariate Calibration. J. Pharm. Biomed. Anal. 2017, 140, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wu, H.; Lv, L.; Meng, H.; Yun, J.; Jin, J.; Mi, J. A Highly Efficient and Stable Composite of Polyacrylate and Metal–Organic Framework Prepared by Interface Engineering for Direct Air Capture. ACS Appl. Mater. Interfaces 2021, 13, 21775–21785. [Google Scholar] [CrossRef]
- Sun, W.; Guo, J.; Ou, H.; Zhang, L.; Wang, D.; Ma, Z.; Zhu, B.; Ali, I.; Naz, I. Facile Synthesis of Highly Moisture-Resistant Mg-MOF-74 by Coating Hexagonal Boron Nitride (h-BN). J. Solid State Chem. 2022, 311, 123073. [Google Scholar] [CrossRef]
- Liu, S.-F.; Hou, Z.-W.; Lin, L.; Li, F.; Zhao, Y.; Li, X.-Z.; Zhang, H.; Fang, H.-H.; Li, Z.; Sun, H.-B. 3D Nanoprinting of Semiconductor Quantum Dots by Photoexcitation-Induced Chemical Bonding. Science 2022, 377, 1112–1116. [Google Scholar] [CrossRef]
- Wu, X.; Bao, Z.; Yuan, B.; Wang, J.; Sun, Y.; Luo, H.; Deng, S. Microwave Synthesis and Characterization of MOF-74 (M=Ni, Mg) for Gas Separation. Microporous Mesoporous Mater. 2013, 180, 114–122. [Google Scholar] [CrossRef]
- Chen, T.; Wang, F.; Cao, S.; Bai, Y.; Zheng, S.; Li, W.; Zhang, S.; Hu, S.; Pang, H. In Situ Synthesis of MOF-74 Family for High Areal Energy Density of Aqueous Nickel–Zinc Batteries. Adv. Mater. 2022, 34, 2201779. [Google Scholar] [CrossRef]
- Jiao, C.; Majeed, Z.; Wang, G.-H.; Jiang, H. A Nanosized Metal–Organic Framework Confined inside a Functionalized Mesoporous Polymer: An Efficient CO2 Adsorbent with Metal Defects. J. Mater. Chem. A 2018, 6, 17220–17226. [Google Scholar] [CrossRef]
- Crivello, C.; Sevim, S.; Graniel, O.; Franco, C.; Pané, S.; Puigmartí-Luis, J.; Muñoz-Rojas, D. Advanced Technologies for the Fabrication of MOF Thin Films. Mater. Horiz. 2021, 8, 168–178. [Google Scholar] [CrossRef]
- Pan, Y.; Han, Y.; Chen, Y.; Li, D.; Tian, Z.; Guo, L.; Wang, Y. Benzoic Acid-Modified 2D Ni-MOF for High-Performance Supercapacitors. Electrochim. Acta 2022, 403, 139679. [Google Scholar] [CrossRef]
- Wang, X.; Guan, D.; Li, F.; Li, M.; Zheng, L.; Xu, J. Magnetic and Optical Field Multi-Assisted Li–O2 Batteries with Ultrahigh Energy Efficiency and Cycle Stability. Adv. Mater. 2022, 34, 2104792. [Google Scholar] [CrossRef]
- Jayaramulu, K.; Masa, J.; Tomanec, O.; Peeters, D.; Ranc, V.; Schneemann, A.; Zboril, R.; Schuhmann, W.; Fischer, R.A. Nanoporous Nitrogen-Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metal-Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution. Adv. Funct. Mater. 2017, 27, 1700451. [Google Scholar] [CrossRef]
- Chen, L.; Reiss, P.S.; Chong, S.Y.; Holden, D.; Jelfs, K.E.; Hasell, T.; Little, M.A.; Kewley, A.; Briggs, M.E.; Stephenson, A.; et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nature Mater. 2014, 13, 954–960. [Google Scholar] [CrossRef]
- Wang, Q.; Qu, J.; Zhu, W.; Zhou, B.; Cheng, J. An Experimental Study on Radon Adsorption Ability and Microstructure of Activated Carbon. Nucl. Sci. Eng. 2011, 168, 287–292. [Google Scholar] [CrossRef]
- Noël, R.; Busto, J.; Fierro, V. Measurements and Understanding of Radon Adsorption in Nanoporous Materials. In Proceedings of the Low Radioactivity Techniques 2015 (LRT 2015): Proceedings of the 5th International Workshop in Low Radioactivity Techniques, Seattle, WA, USA, 18–20 March 2015. [Google Scholar]
- Liu, L.; Deng, X.; Liao, Y.; Xiao, D.; Wang, M. Activated Carbon/Attapulgite Composites for Radon Adsorption. Mater. Lett. 2021, 285, 129177. [Google Scholar] [CrossRef]
Sample | Bulk Density (g/cm3) | BET Surface Area (m2/g) | Micropore Volume (cm3/g) | Pore Volume (cm3/g) | Average Pore Width (nm) |
---|---|---|---|---|---|
PA | 0.18 | 30.3 | – | 0.09 | 12.82 |
PA−PEI | 0.21 | 33.7 | – | 0.10 | 12.73 |
Ni−MOF−74 | 1.19 | 785.1 | 0.25 | 0.26 | 1.77 |
Ni−MOF−74@PA−PEI | 0.32 | 210.7 | 0.06 | 0.24 | 6.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Sun, Y.; Wang, C.; Lv, L.; Liang, Y. Fabrication of Ni−MOF−74@PA−PEI for Radon Removal under Ambient Conditions. Processes 2023, 11, 1069. https://doi.org/10.3390/pr11041069
Liu X, Sun Y, Wang C, Lv L, Liang Y. Fabrication of Ni−MOF−74@PA−PEI for Radon Removal under Ambient Conditions. Processes. 2023; 11(4):1069. https://doi.org/10.3390/pr11041069
Chicago/Turabian StyleLiu, Xi, Yuan Sun, Chunlai Wang, Li Lv, and Yun Liang. 2023. "Fabrication of Ni−MOF−74@PA−PEI for Radon Removal under Ambient Conditions" Processes 11, no. 4: 1069. https://doi.org/10.3390/pr11041069
APA StyleLiu, X., Sun, Y., Wang, C., Lv, L., & Liang, Y. (2023). Fabrication of Ni−MOF−74@PA−PEI for Radon Removal under Ambient Conditions. Processes, 11(4), 1069. https://doi.org/10.3390/pr11041069