Synthesis of Polytitanocarbosilane and Preparation of Si–C–Ti–B Fibers
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Characterization
2.3. Synthesis of Polytitanocarbosilane
2.4. Preparation of Si–C–Ti–B Fibers
2.5. High–Temperature Resistance Testing of Si–C–Ti–B Fibers
3. Results and Discussion
3.1. Synthesis and Characterization of the PTCS Precursor
3.2. Preparation and Characterization of the Si–C–Ti–B Fibers Derived from PTCS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Liu, F.; Wang, H.; Li, H.; Gou, Y. A Review of Third Generation SiC Fibers and SiCf/SiC Composites. J. Mater. Sci. Technol. 2019, 35, 2743–2750. [Google Scholar] [CrossRef]
- Wang, P.; Gou, Y.; Wang, H. Third Generation SiC Fibers for Nuclear Applications. J. Inorg. Mater. 2020, 35, 525. [Google Scholar] [CrossRef]
- Gou, Y.; Wang, H.; Jian, K. Formation of Carbon–Rich Layer on the Surface of SiC Fiber by Sintering under Vacuum for Superior Mechanical and Thermal Properties. J. Eur. Ceram. Soc. 2017, 37, 907–914. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, S.; He, A. Application Requirements and Challenges of CMC–SiC Composites on Aero–Engine. J. Mater. Eng. 2019, 47, 1–10. [Google Scholar] [CrossRef]
- Yin, X.W.; Cheng, L.F.; Zhang, L.T.; Travitzky, N.; Greil, P. Fibre–Reinforced Multifunctional SiC Matrix Composite Materials. Int. Mater. Rev. 2017, 62, 117–172. [Google Scholar] [CrossRef]
- Okada, K.; Kato, H.; Nakajima, K. Preparation of Silicon Carbide Fiber from Activated Carbon Fiber and Gaseous Silicon Monoxide. J Am. Ceram. Soc. 1994, 77, 1691–1693. [Google Scholar] [CrossRef]
- Liu, S.; Luo, X.; Huang, B.; Li, P.; Yang, Y. Role of H2 and Ar as the Diluent Gas in Continuous Hot–Wire CVD Synthesis of SiC Fiber. J. Eur. Ceram. Soc. 2022, 42, 3135–3147. [Google Scholar] [CrossRef]
- Flores, O.; Bordia, R.K.; Nestler, D.; Krenkel, W.; Motz, G. Ceramic Fibers Based on SiC and SiCN Systems: Current Research, Development, and Commercial Status. Adv. Eng. Mater. 2014, 16, 621–636. [Google Scholar] [CrossRef]
- Chu, Z.; Feng, C.; Song, Y.; Li, X.; Xiao, J.; Wang, Y. Research and Development of SiC Using the Precursor Conversion Method and Continuous Fiber Technology Both Domestically and Internationally. J. Inorg. Mater. 2002, 17, 193–201. [Google Scholar]
- Yajima, S.; Hayashi, J.; Omori, M. Continuous Silicon Carbide Fiber of High Tensile Strength. Chem. Lett. 1975, 4, 931–934. [Google Scholar] [CrossRef]
- Yajima, S.; Hayashi, J.; Omori, M.; Okamura, K. Development of a Silicon Carbide Fibre with High Tensile Strength. Nature 1976, 261, 683–685. [Google Scholar] [CrossRef]
- Bunsell, A.R.; Piant, A. A Review of the Development of Three Generations of Small Diameter Silicon Carbide Fibres. J. Mater. Sci. 2006, 41, 823–839. [Google Scholar] [CrossRef]
- Li, L.; Jian, K.; Wang, Y. Study of Oxidation Resistance of KD–I and KD–II Continuous SiC Fibers in Air. Mater. Rev. 2016, 30, 308–312. [Google Scholar]
- Vahlas, C.; Rocabois, P.; Bernard, C. Thermal Degradation Mechanisms of Nicalon Fibre:A Thermodynamic Simulation. J. Mater. Sci. 1994, 29, 5839–5846. [Google Scholar] [CrossRef]
- Vahlas, C.; Laanani, F. Thermodynamic Study of the Thermal Degradation of SiC–Based Fibres: Influence of SiC Grain Size. J. Mater. Sci. Lett. 1995, 14, 1558–1561. [Google Scholar] [CrossRef]
- Chollon, G.; Pailler, R.; Naslain, R.; Olry, P. Correlation between Microstructure and Mechanical Behaviour at High Temperatures of a SiC Fibre with a Low Oxygen Content (Hi–Nicalon). J. Mater. Sci. 1997, 32, 1133–1147. [Google Scholar] [CrossRef]
- Yun, H.M.; DiCarlo, J.A. Comparison of the Tensile, Creep, and Rupture Strength Properties of Stoichiometric SiC Fibers. Ceram. Eng. Sci. Proc. 1999, 20, 259–272. [Google Scholar]
- Hirotsu, Y.; Wakoh, K.; Suzuki, K.; Sumiyama, K.; Yamamuro, S.; Kamiyama, T.; Shibuya, M.; Yamamura, T. High–Resolution TEM Observation of β–SiC Nano–Crystallite Evolution in Si–C–Ti–O Fibers Pyrolyzed from Polytitanocarbosilane Precursor. Mater. Trans. JIM 1997, 38, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, T.; Kohtoku, Y.; Kumagawa, K.; Yamamura, T.; Nagasawa, T. High–Strength Alkali–Resistant Sintered SiC Fibre Stable to 2200 °C. Nature 1998, 391, 773–775. [Google Scholar] [CrossRef]
- Hochet, N.; Berger, M.H.; Bunsell, A.R. Microstructural Evolution of the Latest Generation of Small-diameter SiC-based Fibres Tested at High Temperatures. J. Microsc. 1997, 185, 243–258. [Google Scholar] [CrossRef]
- Ishikawa, T.; Kohtoku, Y.; Kumagawa, K. Production Mechanism of Polyzirconocarbosilane Using Zirconium(IV)Acetylacetonate and Its Conversion of the Polymer into Inorganic Materials. J. Mater. Sci. 1998, 33, 161–166. [Google Scholar] [CrossRef]
- Shimoo, T.; Hayatsu, T.; Narisawa, M.; Takeda, M.; Ichikawa, H.; Seguchi, T.; Okamura, K. Pyrolysis of Low–Oxygen Sic Fiber Prepared by Electron–Irradiation Curing Method. J. Ceram. Soc. Jpn. 1993, 101, 1379–1383. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, M.; Shimoo, T.; Okamura, K.; Seguchi, T. Reaction Mechanisms of Silicon Carbide Fiber Synthesis by Heat Treatment of Polycarbosilane Fibers Cured by Radiation: II, Free Radical Reaction. J. Am. Ceram. Soc. 1995, 78, 1849–1852. [Google Scholar] [CrossRef]
- Lipowitz, J.; Rabe, J.A.; Zangvil, A. Structure and Properties of Sylramic TM Silicon Carbide Fiber—A Polycrystalline, Stoichiometric B-Sic Composition. Ceram. Eng. Sci. Proc. 1997, 18, 147–157. [Google Scholar]
- Yun, H.M.; DiCarlo, J.A.; Chen, Y.L.; Wheeler, D.R. Thermo–Mechanical Properties of Super Sylramic SiC Fibers. In Proceedings of the Mechanical Properties and Performance of Engineering Ceramics and Composites, Cocoa Beach, FL, USA, 1 January 2005. [Google Scholar]
- Song, Y.; Feng, C.; Liu, Y.; Lu, Y. Synthesis of Precursors PTC–III of SiC Fibers Containing Ti. Mater. Sci. Prog. 1992, 6, 250–255. [Google Scholar]
- Yajima, S.; Iwai, T.; Yamamura, T. Synthesis of a Polytitanocarbosilane and Its Conversion into Inorganic Compounds. J. Mater. Sci. 1981, 16, 1349–1355. [Google Scholar] [CrossRef]
- Song, Y.; Lu, Y.; Feng, C. Synthesis of Precursors of SiC Fibers Containing Ti. Mater. Sci. Prog. 1990, 4, 436–440. [Google Scholar]
- Yang, Y.; Feng, C.; Lu, Y.; Zhang, W. Preparation of Polytitanocarbosilane and Titanium-–Containing Carbon Fiber. Aerosp. Mater. Technol. 1991, 3, 20–25. [Google Scholar]
- Wang, Y.; Feng, C.; Song, Y. Preparation and Property of Si–Ti–C–O Fibers with Adjustable Electric Resistivity. Aerosp. Mater. Technol. 1999, 29, 28–31. [Google Scholar]
- Wang, Y.; Zhao, P.; Song, Y.; Feng, C. Syntheses of Precursors of Si–Ti–C–O Fibers with Rich Carbon. Aerosp. Mater. Technol. 2001, 2, 24–27. [Google Scholar]
- Amorós, P.; Beltrán, D.; Guillem, C.; Latorre, J. Synthesis and Characterization of SiC/MC/C Ceramics (M = Ti, Zr, Hf) Starting from Totally Non–Oxidic Precursors. Chem. Mater. 2002, 14, 1585–1590. [Google Scholar] [CrossRef]
- Peng, C.H.; Hwang, C.C. Synthesis and Characteristics of Polycarbomethylsilane via a One–Pot Approach. J. Mater. Res. Technol. 2020, 9, 15838–15848. [Google Scholar] [CrossRef]
- Yu, Z.; Zhan, J.; Zhou, C.; Yang, L.; Li, R.; Xia, H. Synthesis and Characterization of SiC(Ti) Ceramics Derived from a Hybrid Precursor of Titanium–Containing Polycarbosilane. J. Inorg. Organomet. Polym. 2011, 21, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Yang, L.; Min, H.; Zhang, P.; Liu, A.; Riedel, R. High–Ceramic–Yield Precursor to SiC–Based Ceramic: A Hyperbranched Polytitaniumcarbosilane Bearing Self–Catalyzing Units. J. Eur. Ceram. Soc. 2015, 35, 851–858. [Google Scholar] [CrossRef]
- Tang, X.; Yu, Y.; Yang, D. SiO2/TiO2 Fibers from Titanium–Modified Polycarbosilane. J. Mater. Sci. 2010, 45, 2670–2674. [Google Scholar] [CrossRef]
- He, G.; Zhang, B.; Wang, B.; Xu, D.; Li, S.; Yu, Z.; Chen, J. Amorphous Fine–Diameter SiC–Based Fiber from a Boron–Modified Polytitanocarbosilane Precursor. J. Eur. Ceram. Soc. 2018, 38, 1079–1086. [Google Scholar] [CrossRef]
- Vijay, V.V.; Nair, S.G.; Sreejith, K.J.; Devasia, R. Synthesis, Ceramic Conversion and Microstructure Analysis of Zirconium Modified Polycarbosilane. J. Inorg. Organomet. Polym. 2016, 26, 302–311. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Wang, H. Synthesis, Characterization and Pyrolysis of a High Zirconium Content Zirconocene–Polycarbosilane Precursor without Zr–O Bond. Mater. Des. 2016, 90, 84–90. [Google Scholar] [CrossRef]
- Gou, Y.; Wang, H.; Jian, K.; Wang, Y.; Wang, J.; Song, Y.; Xie, Z. Facile Synthesis of Melt–Spinnable Polyaluminocarbosilane Using Low–Softening–Point Polycarbosilane for Si–C–Al–O Fibers. J. Mater. Sci. 2016, 51, 8240–8249. [Google Scholar] [CrossRef]
- Su, G.; Ban, Z.; Li, Y.; Li, W.; Zhang, Z. Preparation, Characterization, and Pyrolysis of Polycarbosilane with High Ceramic Yield and High Viscosity. Polym. Sci. Ser. B 2022, 64, 598–605. [Google Scholar] [CrossRef]
- Wang, Y.; Pei, X.; Li, H.; Xu, X.; He, L.; Huang, Z.; Huang, Q. Preparation of SiC Ceramic Fiber from a Photosensitive Polycarbosilane. Ceram. Int. 2020, 46, 28300–28307. [Google Scholar] [CrossRef]
- Chen, D.; Mo, G.; Qian, J.; He, L.; Huang, Q.; Huang, Z. Synthesis of Cyano–Polycarbosilane and Investigation of Its Pyrolysis Process. J. Eur. Ceram. Soc. 2020, 40, 5226–5237. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, J.; Pei, X.; He, L.; Huang, Z.; Huang, Q. Preparation of Liquid Polycarbosilane Containing Vinyl Ether Group and Its Rapid Curing through Thiol-ene Click Reaction. J. Am. Ceram. Soc. 2022, 105, 7122–7131. [Google Scholar] [CrossRef]
- Yao, B.; Lu, B.; Huang, Q.; Huang, Z.-R.; Yuan, Q. The Preparation of SiC Ultrafine Fibers Containing Low Amount of Oxygen by the Electrospinning and Pyrolysis of Vinyl–Modified Polycarbosilane. Ceram. Int. 2020, 46, 9894–9900. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Yan, D.; Wang, S.; Li, G.; Gou, Y. Conversion of Silicon Carbide Fibers to Continuous Graphene Fibers by Vacuum Annealing. Carbon 2021, 182, 435–444. [Google Scholar] [CrossRef]
- Gou, Y.; Jian, K.; Wang, H.; Wang, J. Fabrication of Nearly Stoichiometric Polycrystalline SiC Fibers with Excellent High–Temperature Stability up to 1900 °C. J. Am. Ceram. Soc. 2018, 101, 2050–2059. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Chen, T.; Kang, W.; Xing, X.; Wu, S.; Gou, Y. Synthesis of Polytitanocarbosilane and Preparation of Si–C–Ti–B Fibers. Processes 2023, 11, 1189. https://doi.org/10.3390/pr11041189
Zhang Q, Chen T, Kang W, Xing X, Wu S, Gou Y. Synthesis of Polytitanocarbosilane and Preparation of Si–C–Ti–B Fibers. Processes. 2023; 11(4):1189. https://doi.org/10.3390/pr11041189
Chicago/Turabian StyleZhang, Qingyu, Tianxie Chen, Weifeng Kang, Xin Xing, Shuang Wu, and Yanzi Gou. 2023. "Synthesis of Polytitanocarbosilane and Preparation of Si–C–Ti–B Fibers" Processes 11, no. 4: 1189. https://doi.org/10.3390/pr11041189
APA StyleZhang, Q., Chen, T., Kang, W., Xing, X., Wu, S., & Gou, Y. (2023). Synthesis of Polytitanocarbosilane and Preparation of Si–C–Ti–B Fibers. Processes, 11(4), 1189. https://doi.org/10.3390/pr11041189