Analysis of Dynamic Load Characteristics of Accelerated Pavement Testing Equipment Based on Virtual Prototype Model
Abstract
:1. Introduction
2. Evaluation Indicators and Methods
2.1. Dynamic Axle Load Characteristic Evaluation Indicators
2.2. Establishment of Virtual Prototype Model
2.3. Validation of the Virtual Prototype Model
2.3.1. Validation of Speed Control Parameters
2.3.2. Validation of Static Axle Load Control Parameters
2.3.3. Measurement of Dynamic Axle Load
2.3.4. Measurement of Road Roughness
3. Results and Analysis
3.1. Effect of Speed on Dynamic Axle Load
3.2. Effect of Hydraulic Pressure on Dynamic Axle Load
3.3. Effect of Road Roughness on Dynamic Axle Load
3.4. Comparison of DLC between Device and Truck
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, L.; Deng, X. Predicting vertical dynamic loads caused by vehicle-pavement interaction. J. Transp. Eng. 1998, 124, 470–478. [Google Scholar] [CrossRef]
- Chen, H.; He, Z. A Study on Simulation of Road Roughness Based on International Roughness Index. Highway 2008, 12, 155–160. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=GLGL200811034&DbName=CJFQ2008 (accessed on 25 November 2022). (In Chinese).
- Yang, S.; Lu, Y.; Li, S. An overview on vehicle dynamics. Int. J. Dyn. Control 2013, 1, 385–395. [Google Scholar] [CrossRef]
- Abbaspour-Gilandeh, Y.; Rashidi-Mohammadabad, F. Evaluation of dynamic load equations through continuous measurement of some tractor tractive performance parameters. Int. J. Heavy Veh. Syst. 2013, 20, 222–235. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Bai, L.; Liu, L.A.; Ni, Y.B. Measurement and analysis of dynamic loading of trucks. J. Hunan Univ. 2014, 41, 129–132. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=HNDX201411018&DbName=CJFQ2014 (accessed on 25 November 2022). (In Chinese).
- Zhang, S.; Liu, Y.; Wang, Z.; Li, G.; Chen, S.; Liu, M. Effects of slope and flow depth on the roughness coefficient of lodged vegetation. Environ. Earth Sci. 2020, 79, 155. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, S.; Li, S.; Chen, L. Numerical and experimental investigation on stochastic dynamic load of a heavy duty vehicle. Appl. Math. Model. 2010, 34, 2698–2710. [Google Scholar] [CrossRef]
- Buhari, R.; Rohani, M.M.; Abdullah, M.E. Dynamic Load Coefficient of Tyre Forces from Truck Axles. In Applied Mechanics and Materials; Trans Tech Publications, Ltd.: Wollerau, Switzerland, 2013; Volume 405–408, pp. 1900–1911. [Google Scholar] [CrossRef]
- Lin, J.-H. Variations in dynamic vehicle load on road pavement. Int. J. Pavement Eng. 2014, 15, 558–563. [Google Scholar] [CrossRef]
- Ka’Ka, S.; Himran, S.; Renreng, I.; Sutresman, O. The pneumatic actuators as vertical dynamic load simulators on medium weighted wheel suspension mechanism. In Journal of Physics: Conference Series, Volume 962, International Conference on Nuclear Technologies and Sciences (ICoNETS 2017); IOP Publishing: Makassar, Indonesia, 2018; Volume 962, p. 012022. [Google Scholar] [CrossRef]
- Navarrina, F.; Ramírez, L.; París, J.; Nogueira, X.; Colominas, I.; Casteleiro, M.; Fernández-de-Mesa, J.R. Comprehensive Model for Fatigue Analysis of Flexible Pavements considering Effects of Dynamic Axle Loads. Transp. Res. Rec. 2015, 2524, 110–118. [Google Scholar] [CrossRef]
- Sarkar, A. Numerical comparison of flexible pavement dynamic response under different axles. Int. J. Pavement Eng. 2016, 17, 377–387. [Google Scholar] [CrossRef]
- Jiang, J.; Ni, F.; Gao, L.; Lou, S. Developing an optional multiple repeated load test to evaluate permanent deformation of asphalt mixtures based on axle load spectrum. Constr. Build. Mater. 2016, 122, 254–263. [Google Scholar] [CrossRef]
- Xu, F.; Yang, Q.; Liu, W.; Leng, W.; Nie, R.; Mei, H. Dynamic stress of subgrade bed layers subjected to train vehicles with large axle loads. Shock. Vib. 2018, 2018, 2916096. [Google Scholar] [CrossRef]
- Rys, D. Consideration of dynamic loads in the determination of axle load spectra for pavement design. Road Mater. Pavement Des. 2021, 22, 1309–1328. [Google Scholar] [CrossRef]
- Mshali, M.; Steyn, W.J. Incorporating truck speed effect on evaluation and design of flexible pavement systems. Int. J. Pavement Res. Technol. 2020, 13, 55–63. [Google Scholar] [CrossRef]
- Ye, Z.; Miao, Y.; Zhang, W.; Wang, L. Effects of random non-uniform load on asphalt pavement dynamic response. Int. J. Pavement Res. Technol. 2021, 14, 299–308. [Google Scholar] [CrossRef]
- Yan, G.; Ye, Z.; Wang, W.; Wang, L. Numerical analysis on distribution and response of acceleration field of pavement under moving load. Int. J. Pavement Res. Technol. 2021, 14, 519–529. [Google Scholar] [CrossRef]
- Joumblat, R.; Al Basiouni Al Masri, Z.; Al Khateeb, G.; Elkordi, A.; El Tallis, A.R.; Absi, J. State-of-the-Art Review on Permanent Deformation Characterization of Asphalt Concrete Pavements. Sustainability 2023, 15, 1166. [Google Scholar] [CrossRef]
- Hussain, J.; Wilson, D.J.; Henning, T.F.P.; Alabaster, D. Comparing results between the repeated load triaxial test and accelerated pavement test on unbound aggregate. J. Mater. Civ. Eng. 2014, 26, 476–483. [Google Scholar] [CrossRef]
- Abubeker, W. Ahmed and Sigurdur Erlingsson. Numerical validation of viscoelastic responses of a pavement structure in a full-scale accelerated pavement test. Int. J. Pavement Eng. 2017, 18, 47–59. [Google Scholar] [CrossRef]
- Ling, J.; Wei, F.; Chen, H.; Zhao, H.; Tian, Y.; Han, B. Accelerated pavement testing for rutting evaluation of hot-mix asphalt overlay under high tire pressure. J. Transp. Eng. Part B Pavements 2020, 46, 04020009. [Google Scholar] [CrossRef]
- Lv, S.; Hu, L.; Xia, C.; Wang, X.; Borges Cabrera, M.; Guo, S.; Chen, J. Development of fatigue damage model of asphalt mixtures based on small-scale accelerated pavement test. Constr. Build. Mater. 2020, 260, 119930. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, X.; Wang, X. Research progress of long-life asphalt pavement behavior based on the riohtrack full-scale accelerated loading test. Chin. Sci. Bull. 2020, 65, 3247–3258. (In Chinese) [Google Scholar] [CrossRef]
- Harvey, J.; Popescu, L. Rutting of Caltrans Asphalt Concrete and Asphalt-Rubber Hot Mix under Different Wheels, Tires and Temperatures–Accelerated Pavement Testing Evaluation; University of California: Berkeley, CA, USA, 2000; Available online: http://www.ucprc.ucdavis.edu/PDF/Rutting%20of%20Caltrans%20AC.pdf (accessed on 29 March 2023).
- Harvey, J.; Bejarano, M.; Popescu, L. Accelerated Pavement Testing of Rutting and Cracking Performance of Asphalt-Rubber and Conventional Asphalt Concrete Overlay Strategies. Road Mater. Pavement Des. 2021, 2, 229–262. [Google Scholar] [CrossRef]
- Yang, H.; Wang, S.; Miao, Y.; Wang, L.; Sun, F. Effects of accelerated loading on the stress response and rutting of pavements. J. Zhejiang Univ. Sci. A 2021, 22, 514–527. [Google Scholar] [CrossRef]
- Ungureanu, D.; Țăranu, N.; Hoha, D.; Zghibarcea, Ș.; Isopescu, D.N.; Boboc, V.; Opri, G.; Scutaru, M.C.; Boboc, A.; Hudi, I. Accelerated testing of a recycled road structure made with reclaimed asphalt pavement material. Constr. Build. Mater. 2020, 262, 120658. [Google Scholar] [CrossRef]
- Li, J.; Zhu, L.; Yu, M.; Zuo, S.; Cui, X.; Liu, P. Long-Term Performance of Recycled Asphalt Pavement with Recycled Engine Oil Bottom Based on Accelerated Loading Test. Coatings 2022, 12, 522. [Google Scholar] [CrossRef]
- Jiang, X.; Titi, H.; Ma, Y.; Polaczyk, P.; Zhang, M.; Gabrielson, J.; Bai, Y.; Huang, B. Evaluating the performance of inverted pavement structure using the accelerated pavement test (APT). Constr. Build. Mater. 2022, 346, 128489. [Google Scholar] [CrossRef]
- Wang, W.; Yan, G.; Zhao, K.; Wang, L. Numerical Simulation and Experimental Measurements of Dynamic Responses of Asphalt Pavement in Dry and Saturated Conditions under Full-Scale Accelerated Loading. Appl. Sci. 2022, 12, 12291. [Google Scholar] [CrossRef]
- Cebon, D. Heavy vehicle vibration—A case study. Veh. Syst. Dyn. 1986, 15 (Suppl. S1), 30–43. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, C.; Shi, X.; Wang, C. Vehicle-induced dynamic performance of frp versus concrete slab bridge. J. Bridge Eng. 2006, 11, 410–419. [Google Scholar] [CrossRef]
- Luo, R.; Shi, H.; Teng, W.; Song, C. Prediction of wheel profile wear and vehicle dynamics evolution considering stochastic parameters for high-speed train. Wear 2017, 392–393, 126–138. [Google Scholar] [CrossRef]
- Farhat, N.; Ward, C.P.; Goodall, R.M.; Dixon, R. The benefits of mechatronically guided railway vehicles: A multi-body physics simulation study. Mechatronics 2018, 51, 115–126. [Google Scholar] [CrossRef]
- Pacejka, H.B.; Bakker, E. The Magic Formula Tyre Model. Veh. Syst. Dyn. 1992, 21 (Suppl. S1), 1–18. [Google Scholar] [CrossRef]
- Shi, S.J. Discrete Beam Modeling of the Leaf Spring in Adams and Simulation of Suspension k&c Characteristics for Heavy-Duty Rail. Master’s Thesis, Jilin University, Changchun, China, 2012. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD2012&filename=1012368097.nh (accessed on 1 November 2022). (In Chinese).
- Zhao, Q.; Wang, L.; Zhao, K.; Yang, H. Development of a novel piezoelectric sensing system for pavement dynamic load identification. Sensors 2019, 19, 4668. [Google Scholar] [CrossRef] [PubMed]
Motor Speed/(r/min) | Measured/(m/s) | Simulated/(m/s) | Relative Error |
---|---|---|---|
310 | 2.93 | 2.98 | 1.67% |
410 | 4.16 | 4.20 | 1.03% |
510 | 5.58 | 5.62 | 0.67% |
610 | 6.91 | 6.98 | 1.07% |
710 | 8.28 | 8.43 | 1.81% |
Hydraulic Pressure (MPa) | Front Axle (kN) | Rear Axle (kN) | Total Axle (kN) | |
---|---|---|---|---|
Measured | 8 | 100.98 | 102.91 | 203.90 |
Simulated | 102.60 | 100.72 | 203.32 | |
Relative error | 1.58% | −2.17% | −0.29% | |
Measured | 9 | 107.95 | 111.93 | 219.86 |
Simulated | 112.47 | 110.54 | 223.21 | |
Relative error | 4.02% | −1.26% | 1.50% | |
Measured | 10 | 119.12 | 121.72 | 240.84 |
Simulated | 122.34 | 120.37 | 242.70 | |
Relative error | 2.63% | −1.12% | 0.77% | |
Measured | 11 | 128.04 | 128.85 | 256.89 |
Simulated | 132.05 | 130.25 | 262.29 | |
Relative error | 3.04% | 1.07% | 2.06% | |
Measured | 12 | 137.27 | 138.08 | 275.35 |
Simulated | 142.03 | 139.99 | 282.03 | |
Relative error | 3.35% | 1.36% | 2.37% |
Road Grade | A | B | C | |
---|---|---|---|---|
Gq (n0) (10−6 m3) | Lower Limit | 8 | 32 | 128 |
Upper Limit | 32 | 128 | 512 | |
IRI (m/km) | Lower Limit | 2.21 | 4.42 | 8.84 |
Upper Limit | 4.42 | 8.84 | 17.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Huang, X.; Ye, Z.; Wang, L.; Sun, F. Analysis of Dynamic Load Characteristics of Accelerated Pavement Testing Equipment Based on Virtual Prototype Model. Processes 2023, 11, 1239. https://doi.org/10.3390/pr11041239
Yang H, Huang X, Ye Z, Wang L, Sun F. Analysis of Dynamic Load Characteristics of Accelerated Pavement Testing Equipment Based on Virtual Prototype Model. Processes. 2023; 11(4):1239. https://doi.org/10.3390/pr11041239
Chicago/Turabian StyleYang, Hailu, Xiaohui Huang, Zhoujing Ye, Linbing Wang, and Fengyan Sun. 2023. "Analysis of Dynamic Load Characteristics of Accelerated Pavement Testing Equipment Based on Virtual Prototype Model" Processes 11, no. 4: 1239. https://doi.org/10.3390/pr11041239
APA StyleYang, H., Huang, X., Ye, Z., Wang, L., & Sun, F. (2023). Analysis of Dynamic Load Characteristics of Accelerated Pavement Testing Equipment Based on Virtual Prototype Model. Processes, 11(4), 1239. https://doi.org/10.3390/pr11041239