Separation of Critical Metals by Membrane Technology under a Circular Economy Framework: A Review of the State-of-the-Art
Abstract
:1. Introduction
2. Membrane Technology
3. Review Methodology
4. Results and Discussion
4.1. Bibliometric Analysis between Keywords and “Membrane Separation”
4.2. Application of Membranes for Ores/Primary Sources
4.3. Application of Membranes for AMD and Industrial Wastes
4.4. Application of Membranes for the Recycling of e-Waste and Li-ion Battery
4.5. Application of Membranes for Brines Processing
4.6. Application of Membranes for Separation and Purification Processing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bobba, S.; Carrara, S.; Huisman, J.; Mathieux, F.; Pavel, C. Critical Raw Materials for Strategic Technologies and Sectors in the EU—A Foresight Study; European Union: Luxembourg, 2020; ISBN 9789276153375. [Google Scholar]
- Sovacool, B.K.; Ali, S.H.; Bazilian, M.; Radley, B.; Nemery, B.; Okatz, J.; Mulvaney, D. Sustainable Minerals and Metals for a Low-Carbon Future. Science 2020, 367, 30–33. [Google Scholar] [CrossRef] [PubMed]
- European Commision Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability. Available online: https://ec.europa.eu/docsroom/documents/42849 (accessed on 6 October 2020).
- Cordier, D.J. Rare Earths. Available online: https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-rare-earths.pdf (accessed on 22 January 2023).
- Shedd, K.B. Cobalt. Available online: https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-cobalt.pdf (accessed on 31 January 2023).
- Jaskula, B.W. Lithium. Available online: https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-lithium.pdf (accessed on 31 January 2023).
- Islam, K.; Murakami, S. Global-Scale Impact Analysis of Mine Tailings Dam Failures: 1915–2020. Glob. Environ. Chang. 2021, 70, 102361. [Google Scholar] [CrossRef]
- Circle Economy. The Circularity Gap Report 2023. 2023. Available online: https://www.circularity-gap.world/ (accessed on 7 March 2023).
- Botelho Junior, A.B.; Espinosa, D.C.R.; Vaughan, J.; Tenório, J.A.S. Recovery of Scandium from Various Sources: A Critical Review of the State of the Art and Future Prospects. Min. Eng. 2021, 172, 107148. [Google Scholar] [CrossRef]
- Matinde, E.; Simate, G.S.; Ndlovu, S. Mining and Metallurgical Wastes: A Review of Recycling and Re-Use Practices. J. S. Afr. Inst. Min. Met. 2018, 118, 825–844. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; Espinosa, D.C.R.; Tenório, J.A.S. Selective Separation of Sc(III) and Zr(IV) from the Leaching of Bauxite Residue Using Trialkylphosphine Acids, Tertiary Amine, Tri-Butyl Phosphate and Their Mixtures. Sep. Purif. Technol. 2021, 279, 119798. [Google Scholar] [CrossRef]
- Martins, L.S.; Guimarães, L.F.; Botelho Junior, A.B.; Tenório, J.A.S.; Espinosa, D.C.R. Electric Car Battery: An Overview on Global Demand, Recycling and Future Approaches towards Sustainability. J. Environ. Manag. 2021, 295, 113091. [Google Scholar] [CrossRef]
- Perez, J.P.H.; Folens, K.; Leus, K.; Vanhaecke, F.; Van Der Voort, P.; Du Laing, G. Progress in Hydrometallurgical Technologies to Recover Critical Raw Materials and Precious Metals from Low-Concentrated Streams. Resour. Conserv. Recycl. 2019, 142, 177–188. [Google Scholar] [CrossRef]
- Georgi-Maschler, T.; Friedrich, B.; Weyhe, R.; Heegn, H.; Rutz, M. Development of a Recycling Process for Li-Ion Batteries. J. Power Sources 2012, 207, 173–182. [Google Scholar] [CrossRef]
- Guimarães, L.F.; Botelho Junior, A.B.; Espinosa, D.C.R. Sulfuric Acid Leaching of Metals from Waste Li-Ion Batteries without Using Reducing Agent. Min. Eng. 2022, 183, 107597. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; Espinosa, D.C.R.; Tenório, J.A.S. The Use of Computational Thermodynamic for Yttrium Recovery from Rare Earth Elements-Bearing Residue. J. Rare Earths 2021, 39, 201–207. [Google Scholar] [CrossRef]
- de Oliveira, R.P.; Benvenuti, J.; Espinosa, D.C.R. A Review of the Current Progress in Recycling Technologies for Gallium and Rare Earth Elements from Light-Emitting Diodes. Renew. Sustain. Energy Rev. 2021, 145, 111090. [Google Scholar] [CrossRef]
- Free, M.L. Hydrometallurgy: Fundamentals and Applications, 2nd ed.; Springer: Cham, Switzerland, 2022; ISBN 978-3-030-88087-3. [Google Scholar]
- Xu, Z.G.; Zhou, T.; Zou, Q.; Yang, F.; Wang, Y.X.; Wang, S.C.; Wang, C.H. Solvent Extraction of Ni and Co from Ni-Laterite Leach Solutions Using a New Synergistic System Consisting of Versatic 10 Acid, Mextral 6103H and Aliquat 336 with Elemental Mass Balance for Leaching, Precipitation, Solvent Extraction, Scrubbing and Stripp. Hydrometallurgy 2022, 208, 105822. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, K.; Wu, Y.; Lei, Q.; Peng, C.; Chen, W. Separation and Recovery of Iron and Scandium from Acid Leaching Solution of Red Mud Using D201 Resin. J. Rare Earths 2020, 38, 1322–1329. [Google Scholar] [CrossRef]
- Han, K.N. Characteristics of Precipitation of Rare Earth Elements with Various Precipitants. Minerals 2020, 10, 178. [Google Scholar] [CrossRef]
- Swain, B.; Shim, H.W.; Lee, C.G. Extraction/Separations of Cobalt by Supported Liquid Membrane: A Review. Korean Chem. Eng. Res. 2019, 57, 313–320. [Google Scholar]
- Mwewa, B.; Tadie, M.; Ndlovu, S.; Simate, G.S.; Matinde, E. Recovery of Rare Earth Elements from Acid Mine Drainage: A Review of the Extraction Methods. J. Environ. Chem. Eng. 2022, 10, 107704. [Google Scholar] [CrossRef]
- Lightfoot, E.N. Membrane Separations Technology: Principles and Applications. Chem. Eng. Sci. 1996, 51, 325–326. [Google Scholar] [CrossRef]
- Chen, L.; Wu, Y.; Dong, H.; Meng, M.; Li, C.; Yan, Y.; Chen, J. An Overview on Membrane Strategies for Rare Earths Extraction and Separation. Sep. Purif. Technol. 2018, 197, 70–85. [Google Scholar] [CrossRef]
- Deemter, D.; Oller, I.; Amat, A.M.; Malato, S. Advances in Membrane Separation of Urban Wastewater Effluents for (Pre)Concentration of Microcontaminants and Nutrient Recovery: A Mini Review. Chem. Eng. J. Adv. 2022, 11, 100298. [Google Scholar] [CrossRef]
- Ismail, A.F.; Rahman, M.A.; Dzarfan, M.H.; Matsuura, O.T. Membrane Separation: Handbooks in Separation Science; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-0-12-812815-2. [Google Scholar]
- Zydney, A.L. Membrane Handbook; Springer: Berlin/Heidelberg, Germany, 1995; Volume 41, ISBN 9781461365754. [Google Scholar]
- Scott, K.; Hughes, R. Industrial Membrane Separation Technology; Springer: Berlin/Heidelberg, Germany, 1996; ISBN 9789401042741. [Google Scholar]
- Moreno, C.; Valiente, M. Studies on the Mechanism of Transport of Lanthanide Ions through Supported Liquid Membranes Containing Di-(2-Ethylhexyl) Phosphoric Acid (D2EHPA) as a Carrier. J. Memb. Sci. 1999, 155, 155–162. [Google Scholar] [CrossRef]
- Sharaf, M.; Yoshida, W.; Kubota, F.; Kolev, S.D.; Goto, M. A Polymer Inclusion Membrane Composed of the Binary Carrier PC-88A and Versatic 10 for the Selective Separation and Recovery of Sc. RSC Adv. 2018, 8, 8631–8637. [Google Scholar] [CrossRef] [PubMed]
- Zante, G.; Boltoeva, M.; Masmoudi, A.; Barillon, R.; Trébouet, D. Selective Separation of Cobalt and Nickel Using a Stable Supported Ionic Liquid Membrane. Sep. Purif. Technol. 2020, 252, 117477. [Google Scholar] [CrossRef]
- Zante, G.; Boltoeva, M.; Masmoudi, A.; Barillon, R.; Trébouet, D. Lithium Extraction from Complex Aqueous Solutions Using Supported Ionic Liquid Membranes. J. Memb. Sci. 2019, 580, 62–76. [Google Scholar] [CrossRef]
- Klinger, J.M. Rare Earth Elements: Development, Sustainability and Policy Issues. Extr. Ind. Soc. 2018, 5, 1–7. [Google Scholar] [CrossRef]
- Scarazzato, T.; Panossian, Z.; Tenório, J.A.S.; Pérez-Herranz, V.; Espinosa, D.C.R. A Review of Cleaner Production in Electroplating Industries Using Electrodialysis. J. Clean. Prod. 2016, 168, 1590–1602. [Google Scholar] [CrossRef]
- Monteiro, N.B.R.; da Silva, E.A.; Moita Neto, J.M. Sustainable Development Goals in Mining. J. Clean. Prod. 2019, 228, 509–520. [Google Scholar] [CrossRef]
- Jiang, J.; Ni, N.; Xiao, W.; Zhao, X.; Guo, F.; Fan, X.; Ding, Q.; Hao, W.; Xiao, P. Robust Ceramic Nanofibrous Membranes with Ultra-High Water Flux and Nanoparticle Rejection for Self-Standing Ultrafiltration. J. Eur. Ceram. Soc. 2021, 41, 4264–4272. [Google Scholar] [CrossRef]
- Koh, K.Y.; Zhang, S.; Paul Chen, J. Incorporation of Lanthanum Particles to Polyethersulfone Ultrafiltration Membrane for Specific Phosphorus Uptake: Method Comparison and Performance Assessment. J. Colloid Interface Sci. 2021, 601, 242–253. [Google Scholar] [CrossRef]
- Aslanoglu, M. Ultrasonication-Assisted Construction of Neodymium Oxide Nanoparticles-Carbon Nanotubes Based Voltammetric Platform for the Sensitive Determination of Chlorogenic Acid in Tomato Juice and Fizzy Drink. Mater. Chem. Phys. 2022, 290, 126651. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Tan, M.; Xue, C.; Zhou, W.; Bao, H.; Hon Lau, C.; Yang, X.; Ma, J.; Shao, L. Recent Advances in Monovalent Ion Selective Membranes towards Environmental Remediation and Energy Harvesting. Sep. Purif. Technol. 2022, 297, 121520. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; Dreisinger, D.B.; Espinosa, D.C.R. A Review of Nickel, Copper, and Cobalt Recovery by Chelating Ion Exchange Resins from Mining Processes and Mining Tailings—Extended Abstract. Min. Eng. 2019, 71, 37–38. [Google Scholar]
- Botelho Junior, A.B.; Espinosa, D.C.R.; Dreisinger, D.; Tenório, J.A.S. Recovery of Nickel and Cobalt from Nickel Laterite Leach Solution Using Chelating Resins and Pre-reducing Process. Can. J. Chem. Eng. 2019, 97, 1181–1190. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, W.; Chen, Z.; Zhai, X.; Ma, J.; Zhang, T. Selective Oxidation of Water Pollutants by Surface-Complexed Peroxymonosulfate during Filtration with Highly Dispersed Co(II)-Doped Ceramic Membrane. Chem. Eng. J. 2022, 448, 137686. [Google Scholar] [CrossRef]
- Starykevich, M.; Jamale, A.; Yasakau, K.A.; Marques, F.M.B. Novel Molten Phase Route for Composite CO2 Separation Membranes. J. Memb. Sci. 2022, 659, 120806. [Google Scholar] [CrossRef]
- Fosu, A.Y.; Kanari, N.; Vaughan, J.; Chagnes, A. Literature Review and Thermodynamic Modelling of Roasting Processes for Lithium Extraction from Spodumene. Metals 2020, 10, 1312. [Google Scholar] [CrossRef]
- Gao, L.; Wang, H.; Li, J.; Wang, M. Recovery of Lithium from Lepidolite by Sulfuric Acid and Separation of Al/Li by Nanofiltration. Minerals 2020, 10, 981. [Google Scholar] [CrossRef]
- Alessia, A.; Alessandro, B.; Maria, V.-G.; Carlos, V.-A.; Francesca, B. Challenges for Sustainable Lithium Supply: A Critical Review. J. Clean. Prod. 2021, 300, 126954. [Google Scholar] [CrossRef]
- Gao, L.; Wang, H.; Zhang, Y.; Wang, M. Nanofiltration Membrane Characterization and Application: Extracting Lithium in Lepidolite Leaching Solution. Membranes 2020, 10, 178. [Google Scholar] [CrossRef]
- Gao, L.; Wang, H.; Zhao, Y.; Wang, M. The Application of Nanofiltration for Separating Aluminium and Lithium from Lepidolite Leaching Solution. ChemistrySelect 2020, 5, 4979–4987. [Google Scholar] [CrossRef]
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A Critical Review on Remediation, Reuse, and Resource Recovery from Acid Mine Drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef]
- Buzzi, D.C.; Viegas, L.S.; Rodrigues, M.A.S.; Bernardes, A.M.; Tenório, J.A.S. Water Recovery from Acid Mine Drainage by Electrodialysis. Min. Eng. 2013, 40, 82–89. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, S.; Shimko, J.; Dengler, R.W. Mine Drainage: Treatment Technologies and Rare Earth Elements. Water Environ. Res. 2019, 91, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Royer-Lavallée, A.; Neculita, C.M.; Coudert, L. Removal and Potential Recovery of Rare Earth Elements from Mine Water. J. Ind. Eng. Chem. 2020, 89, 47–57. [Google Scholar] [CrossRef]
- López, J.; Reig, M.; Gibert, O.; Torres, E.; Ayora, C.; Cortina, J.L. Application of Nanofiltration for Acidic Waters Containing Rare Earth Elements: Influence of Transition Elements, Acidity and Membrane Stability. Desalination 2018, 430, 33–44. [Google Scholar] [CrossRef]
- López, J.; Reig, M.; Gibert, O.; Cortina, J.L. Integration of Nanofiltration Membranes in Recovery Options of Rare Earth Elements from Acidic Mine Waters. J. Clean. Prod. 2019, 210, 1249–1260. [Google Scholar] [CrossRef]
- López, J.; Reig, M.; Gibert, O.; Cortina, J.L. Recovery of Sulphuric Acid and Added Value Metals (Zn, Cu and Rare Earths) from Acidic Mine Waters Using Nanofiltration Membranes. Sep. Purif. Technol. 2019, 212, 180–190. [Google Scholar] [CrossRef]
- López, J.; Reig, M.; Vecino, X.; Gibert, O.; Cortina, J.L. Comparison of Acid-Resistant Ceramic and Polymeric Nanofiltration Membranes for Acid Mine Waters Treatment. Chem. Eng. J. 2020, 382, 122786. [Google Scholar] [CrossRef]
- López, J.; Reig, M.; Vecino, X.; Gibert, O.; Cortina, J.L. From Nanofiltration Membrane Permeances to Design Projections for the Remediation and Valorisation of Acid Mine Waters. Sci. Total Environ. 2020, 738, 139780. [Google Scholar] [CrossRef]
- Fonseka, C.; Ryu, S.; Naidu, G.; Kandasamy, J.; Vigneswaran, S. Recovery of Water and Valuable Metals Using Low Pressure Nanofiltration and Sequential Adsorption from Acid Mine Drainage. Environ. Technol. Innov. 2022, 28, 102753. [Google Scholar] [CrossRef]
- López, J.; Gibert, O.; Cortina, J.L. The Role of Nanofiltration Modelling Tools in the Design of Sustainable Valorisation of Metal-Influenced Acidic Mine Waters: The Aznalcóllar Open-Pit Case. Chem. Eng. J. 2023, 451, 138947. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, S.J.; Hyeon, S.; Kang, H.H.; Lee, K.Y. Application of Desalination Membranes to Nuclide (Cs, Sr, and Co) Separation. ACS Omega 2020, 5, 20261–20269. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Chen, D.; Zhao, X. The Application of Polyethylenimine Grafting Reverse Osmosis Membrane in Treating Boron-Containing Low-Level Radioactive Wastewaters. J. Chem. Technol. Biotechnol. 2020, 95, 1085–1092. [Google Scholar] [CrossRef]
- Lazarev, S.I.; Khorokhorina, I.v.; Shestakov, K.v.; Lazarev, D.S. Recovery of Zinc, Copper, Nickel, and Cobalt from Electroplating Wastewater by Electro-Nanofiltration. Russ. J. Appl. Chem. 2021, 94, 1105–1110. [Google Scholar] [CrossRef]
- Alkhadra, M.A.; Conforti, K.M.; Gao, T.; Tian, H.; Bazant, M.Z. Continuous Separation of Radionuclides from Contaminated Water by Shock Electrodialysis. Environ. Sci. Technol. 2020, 54, 527–536. [Google Scholar] [CrossRef]
- Gao, R.; Benetton, X.D.; Varia, J.; Mees, B.; du Laing, G.; Rabaey, K. Membrane Electrolysis for Separation of Cobalt from Terephthalic Acid Industrial Wastewater. Hydrometallurgy 2020, 191, 105216. [Google Scholar] [CrossRef]
- Kedari, C.S.; Yadav, J.S.; Kaushik, C.P. TALSPEAK Process on Hollow Fiber Renewable Liquid Membrane apropos to the Remedial Maneuver of High Level Nuclear Waste. J. Hazard. Mater. 2020, 399, 123050. [Google Scholar] [CrossRef]
- Jha, M.K.; Kumari, A.; Panda, R.; Rajesh Kumar, J.; Yoo, K.; Lee, J.Y. Review on Hydrometallurgical Recovery of Rare Earth Metals. Hydrometallurgy 2016, 165, 2–26. [Google Scholar] [CrossRef]
- Jyothi, R.K.; Thenepalli, T.; Ahn, J.W.; Parhi, P.K.; Chung, K.W.; Lee, J.Y. Review of Rare Earth Elements Recovery from Secondary Resources for Clean Energy Technologies: Grand Opportunities to Create Wealth from Waste. J. Clean. Prod. 2020, 267, 122048. [Google Scholar] [CrossRef]
- Rybak, A.; Rybak, A. Characteristics of Some Selected Methods of Rare Earth Elements Recovery from Coal Fly Ashes. Metals 2021, 11, 142. [Google Scholar] [CrossRef]
- Kose Mutlu, B.; Cantoni, B.; Turolla, A.; Antonelli, M.; Hsu-Kim, H.; Wiesner, M.R. Application of Nanofiltration for Rare Earth Elements Recovery from Coal Fly Ash Leachate: Performance and Cost Evaluation. Chem. Eng. J. 2018, 349, 309–317. [Google Scholar] [CrossRef]
- Couto, N.; Ferreira, A.R.; Lopes, V.; Peters, S.C.; Mateus, E.P.; Ribeiro, A.B.; Pamukcu, S. Electrodialytic Recovery of Rare Earth Elements from Coal Ashes. Electrochim. Acta 2020, 359, 136934. [Google Scholar] [CrossRef]
- Smith, R.C.; Taggart, R.K.; Hower, J.C.; Wiesner, M.R.; Hsu-Kim, H. Selective Recovery of Rare Earth Elements from Coal Fly Ash Leachates Using Liquid Membrane Processes. Environ. Sci. Technol. 2019, 53, 4490–4499. [Google Scholar] [CrossRef] [PubMed]
- Botelho Junior, A.B.; Espinosa, D.C.R.; Tenório, J.A.S. Characterization of Bauxite Residue from a Press Filter System: Comparative Study and Challenges for Scandium Extraction. Min. Met. Explor. 2021, 38, 161–176. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; Espinosa, D.C.R.; Tenório, J.A.S. Extraction of Scandium from Critical Elements-Bearing Mining Waste: Silica Gel Avoiding in Leaching Reaction of Bauxite Residue. J. Sustain. Metall. 2021, 7, 1627–1642. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, Y.; Xiao, Y.; Fan, Y. Recovery of Gallium from Bayer Liquor: A Review. Hydrometallurgy 2012, 125–126, 115–124. [Google Scholar] [CrossRef]
- Wang, W.; Pranolo, Y.; Cheng, C.Y. Metallurgical Processes for Scandium Recovery from Various Resources: A Review. Hydrometallurgy 2011, 108, 100–108. [Google Scholar] [CrossRef]
- Hedwig, S.; Kraus, M.; Amrein, M.; Stiehm, J.; Constable, E.C.; Lenz, M. Recovery of Scandium from Acidic Waste Solutions by Means of Polymer Inclusion Membranes. Hydrometallurgy 2022, 213, 105916. [Google Scholar] [CrossRef]
- Hedwig, S.; Yagmurlu, B.; Huang, D.; von Arx, O.; Dittrich, C.; Constable, E.C.; Friedrich, B.; Lenz, M. Nanofiltration-Enhanced Solvent Extraction of Scandium from TiO2 Acid Waste. ACS Sustain. Chem. Eng. 2022, 10, 6063–6071. [Google Scholar] [CrossRef]
- Feijoo, G.C.; Barros, K.S.; Scarazzato, T.; Espinosa, D.C.R. Electrodialysis for Concentrating Cobalt, Chromium, Manganese, and Magnesium from a Synthetic Solution Based on a Nickel Laterite Processing Route. Sep. Purif. Technol. 2021, 275, 119192. [Google Scholar] [CrossRef]
- Gidarakos, E.; Akcil, A. WEEE under the Prism of Urban Mining. Waste Manag. 2020, 102, 950–951. [Google Scholar] [CrossRef]
- Castro, F.D.; Botelho Júnior, A.B.; Bassin, J.P.; Tenório, J.; Cutaia, L.; Vaccari, M.; Espinosa, D. E-Waste Policies and Implementation: A Global Perspective. In Waste Management and Resource Recycling in the Developing World; Singh, P., Verma, P., Singh, R., Ahamad, A., Batalhão, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 271–307. [Google Scholar]
- Andrade, L.M.; Botelho Junior, A.B.; Rosario, C.G.A.; Hashimoto, H.; Andrade, C.J.; Tenório, J.A.S. Copper Recovery through Biohydrometallurgy Route: Chemical and Physical Characterization of Magnetic (m), Non-Magnetic (Nm) and Mix Samples from Obsolete Smartphones. Bioprocess. Biosyst. Eng. 2022. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, D.M.; Buzzi, D.C.; Botelho Junior, A.B.; Espinosa, D.C.R. Recycling of Printed Circuit Boards: Ultrasound-Assisted Comminution and Leaching for Metals Recovery. J. Mater. Cycles Waste Manag. 2022, 24, 1991–2001. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; Stopic, S.; Friedrich, B.; Tenório, J.A.S.; Espinosa, D.C.R. Cobalt Recovery from Li-Ion Battery Recycling: A Critical Review. Metals 2021, 11, 1999. [Google Scholar] [CrossRef]
- Shedd, K.B. Cobalt; USGS. 2021. Available online: https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-cobalt.pdf (accessed on 5 March 2023).
- Korkmaz, K.; Alemrajabi, M.; Rasmuson, Å.C.; Forsberg, K.M. Sustainable Hydrometallurgical Recovery of Valuable Elements from Spent Nickel-Metal Hydride HEV Batteries. Metals 2018, 8, 1062. [Google Scholar] [CrossRef]
- Yuksekdag, A.; Kose-Mutlu, B.; Wiesner, M.R.; Koyuncu, I. Effect of Pre-Concentration on Membrane Solvent Extraction Process for the Recovery of Rare Earth Elements from Dilute Acidic Leachate. Process Saf. Environ. Prot. 2022, 161, 210–220. [Google Scholar] [CrossRef]
- Ni’am, A.C.; Wang, Y.F.; Chen, S.W.; Chang, G.M.; You, S.J. Simultaneous Recovery of Rare Earth Elements from Waste Permanent Magnets (WPMs) Leach Liquor by Solvent Extraction and Hollow Fiber Supported Liquid Membrane. Chem. Eng. Process. Process Intensif. 2020, 148, 107831. [Google Scholar] [CrossRef]
- Islam, S.Z.; Wagh, P.; Jenkins, J.E.; Zarzana, C.; Foster, M.; Bhave, R. Process Scale-Up of an Energy-Efficient Membrane Solvent Extraction Process for Rare Earth Recycling from Electronic Wastes. Adv. Eng. Mater. 2022, 24, 2200390. [Google Scholar] [CrossRef]
- Ni’Am, A.C.; Liu, Y.H.; Wang, Y.F.; Chen, S.W.; Chang, G.M.; You, S.J. Recovery of Neodymium from Waste Permanent Magnets by Hydrometallurgy Using Hollow Fibre Supported Liquid Membranes. Solvent Extr. Res. Dev. 2020, 27, 69–80. [Google Scholar] [CrossRef]
- Yadav, K.K.; Anitha, M.; Singh, D.K.; Kain, V. NdFeB Magnet Recycling: Dysprosium Recovery by Non-Dispersive Solvent Extraction Employing Hollow Fibre Membrane Contactor. Sep. Purif. Technol. 2018, 194, 265–271. [Google Scholar] [CrossRef]
- Bridge, G.; Faigen, E. Towards the Lithium-Ion Battery Production Network: Thinking beyond Mineral Supply Chains. Energy Res. Soc. Sci. 2022, 89, 102659. [Google Scholar] [CrossRef]
- Swain, B. Cost Effective Recovery of Lithium from Lithium Ion Battery by Reverse Osmosis and Precipitation: A Perspective. J. Chem. Technol. Biotechnol. 2018, 93, 311–319. [Google Scholar] [CrossRef]
- Gao, J.; Qiu, Y.; Li, M.; Le, H. Separation of Valuable Metals in Spent LiNi0.46Co0.2Mn0.34O2 Battery by Shear Induced Dissociation Coupling with Ultrafiltration. Hydrometallurgy 2019, 189, 105127. [Google Scholar] [CrossRef]
- Kumar, R.; Liu, C.; Ha, G.S.; Park, Y.K.; Ali Khan, M.; Jang, M.; Kim, S.H.; Amin, M.A.; Gacem, A.; Jeon, B.H. Downstream Recovery of Li and Value-Added Metals (Ni, Co, and Mn) from Leach Liquor of Spent Lithium-Ion Batteries Using a Membrane-Integrated Hybrid System. Chem. Eng. J. 2022, 447, 137507. [Google Scholar] [CrossRef]
- Villen-Guzman, M.; Arhoun, B.; Vereda-Alonso, C.; Gomez-Lahoz, C.; Rodriguez-Maroto, J.M.; Paz-Garcia, J.M. Electrodialytic Processes in Solid Matrices. New Insights into Battery Recycling. A Review. J. Chem. Technol. Biotechnol. 2019, 94, 1727–1738. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, Z. Recovery of Lithium from Spent Lithium-Ion Batteries Using Precipitation and Electrodialysis Techniques. Sep. Purif. Technol. 2018, 206, 335–342. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.F.; Xiong, J.; He, L.; Zhao, Z.; Wang, D. Selective Recovery of Lithium and Iron Phosphate/Carbon from Spent Lithium Iron Phosphate Cathode Material by Anionic Membrane Slurry Electrolysis. Waste Manag. 2020, 107, 1–8. [Google Scholar] [CrossRef]
- He, L.; Li, Z.; Zhu, Y.; Yang, C. A Green and Cost-Effective Method for Production of LiOH from Spent LiFePO4. ACS Sustain. Chem. Eng. 2020, 8, 15915–15926. [Google Scholar] [CrossRef]
- Cerrillo-Gonzalez, M.M.; Villen-Guzman, M.; Vereda-Alonso, C.; Gomez-Lahoz, C.; Rodriguez-Maroto, J.M.; Paz-Garcia, J.M. Recovery of Li and Co from LiCoO2 via Hydrometallurgical–Electrodialytic Treatment. Appl. Sci. 2020, 10, 2367. [Google Scholar] [CrossRef]
- Gmar, S.; Chagnes, A.; Lutin, F.; Muhr, L. Application of Electrodialysis for the Selective Lithium Extraction towards Cobalt, Nickel and Manganese from Leach Solutions Containing High Divalent Cations/Li Ratio. Recycling 2022, 7, 14. [Google Scholar] [CrossRef]
- Chan, K.H.; Malik, M.; Azimi, G. Separation of Lithium, Nickel, Manganese, and Cobalt from Waste Lithium-Ion Batteries Using Electrodialysis. Resour. Conserv. Recycl. 2022, 178, 106076. [Google Scholar] [CrossRef]
- Keller, A.; Sterner, P.L.; Hlawitschka, M.W.; Bart, H.J. Extraction Kinetics of Cobalt and Manganese with D2EHPA from Lithium-Ion Battery Recyclate. Chem. Eng. Res. Des. 2022, 179, 16–26. [Google Scholar] [CrossRef]
- Li, Z.; Guo, Y.; Wang, X.; Li, P.; Ying, W.; Chen, D.; Ma, X.; Deng, Z.; Peng, X. Simultaneous Recovery of Metal Ions and Electricity Harvesting via K-Carrageenan@ZIF-8 Membrane. ACS Appl. Mater. Interfaces 2019, 11, 34039–34045. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, B.K.; Nghiem, L.D.; Hai, F.I. Extraction of Strategically Important Elements from Brines: Constraints and Opportunities. Water Res. 2020, 168, 115149. [Google Scholar] [CrossRef] [PubMed]
- Díaz Nieto, C.H.; Flexer, V. Is It Possible to Recover Lithium Compounds from Complex Brines Employing Electromembrane Processes Exclusively? Curr. Opin. Electrochem. 2022, 35, 101087. [Google Scholar] [CrossRef]
- Liu, J.; Martin, P.F.; Peter McGrail, B. Rare-Earth Element Extraction from Geothermal Brine Using Magnetic Core-Shell Nanoparticles-Techno-Economic Analysis. Geothermics 2021, 89, 101938. [Google Scholar] [CrossRef]
- Baudino, L.; Pedico, A.; Bianco, S.; Periolatto, M.; Pirri, C.F.; Lamberti, A. Crown-Ether Functionalized Graphene Oxide Membrane for Lithium Recovery from Water. Membranes 2022, 12, 233. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, Y.J.; Wang, H.; Wang, M. The Application of Nanofiltration Membrane for Recovering Lithium from Salt Lake Brine. Desalination 2019, 468, 114081. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Li, T.; Ren, X.K.; Wang, J.; Wang, Z.; Zhao, S. Nanofiltration Membrane with Crown Ether as Exclusive Li+ Transport Channels Achieving Efficient Extraction of Lithium from Salt Lake Brine. Chem. Eng. J. 2022, 438, 135658. [Google Scholar] [CrossRef]
- Soyekwo, F.; Wen, H.; Liao, D.; Liu, C. Nanofiltration Membranes Modified with a Clustered Multiquaternary Ammonium-Based Ionic Liquid for Improved Magnesium/Lithium Separation. ACS Appl. Mater. Interfaces 2022, 14, 32420–32432. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, H.; Wang, X.; Wu, L.; Wang, Y.; Xu, T. Electrodialytic Concentrating Lithium Salt from Primary Resource. Desalination 2018, 425, 30–36. [Google Scholar] [CrossRef]
- Ying, J.; Luo, M.; Jin, Y.; Yu, J. Selective Separation of Lithium from High Mg/Li Ratio Brine Using Single-Stage and Multi-Stage Selective Electrodialysis Processes. Desalination 2020, 492, 114621. [Google Scholar] [CrossRef]
- Wen, W.F.; Wang, J.; Zhong, C.Y.; Chen, Q.; Zhang, W.M. Direct Production of Lithium Nitrate from the Primary Lithium Salt by Electrodialysis Metathesis. J. Memb. Sci. 2022, 654, 120555. [Google Scholar] [CrossRef]
- Zhang, X.C.; Wang, J.; Ji, Z.Y.; Ji, P.Y.; Liu, J.; Zhao, Y.Y.; Li, F.; Yuan, J.S. Preparation of Li2CO3 from High Mg2+/Li+ Brines Based on Selective-Electrodialysis with Feed and Bleed Mode. J. Environ. Chem. Eng. 2021, 9, 106635. [Google Scholar] [CrossRef]
- Khaless, K.; Chanouri, H.; Amal, S.; Ouaattou, A.; Mounir, E.M.; Haddar, H.; Benhida, R. Wet Process Phosphoric Acid Purification Using Functionalized Organic Nanofiltration Membrane. Separations 2022, 9, 100. [Google Scholar] [CrossRef]
- Mans, N.; Van Der Westhuizen, D.; Bruinsma, D.; Cole, P.; Du Toit, J.; Munnik, E.; Coates, A.; Coetzee, V.; Krieg, H. Cobalt–Nickel Pertraction Refinery to Process Pregnant Leach Solution from Recycled Spent Catalysts Part 1: Cobalt Extraction from a Binary System. Solvent Extr. Ion Exch. 2020, 38, 441–454. [Google Scholar] [CrossRef]
- Elbashier, E.; Mussa, A.; Hafiz, M.A.; Hawari, A.H. Recovery of Rare Earth Elements from Waste Streams Using Membrane Processes: An Overview. Hydrometallurgy 2021, 204, 105706. [Google Scholar] [CrossRef]
- Yuksekdag, A.; Kose-Mutlu, B.; Siddiqui, A.F.; Wiesner, M.R.; Koyuncu, I. A Holistic Approach for the Recovery of Rare Earth Elements and Scandium from Secondary Sources under a Circular Economy Framework—A Review. Chemosphere 2022, 293, 133620. [Google Scholar] [CrossRef]
- Croft, C.F.; Almeida, M.I.G.S.; Kolev, S.D. Development of Micro Polymer Inclusion Beads (ΜPIBs) for the Extraction of Lanthanum. Sep. Purif. Technol. 2022, 285, 120342. [Google Scholar] [CrossRef]
- Zarei, P.; Asl, A.H.; Torkaman, R.; Asadollahzadeh, M. Synergistic Interaction between Organophosphorus Extractants for Facilitated Lanthanum Transport through Supported Liquid Membrane. Env. Technol. Innov. 2021, 24, 101969. [Google Scholar] [CrossRef]
- Rout, P.C.; Sarangi, K. A Systematic Study on Extraction and Separation of Scandium Using Phosphinic Acid by Both Solvent Extraction and Hollow Fibre Membrane. Miner. Process. Extr. Metall. Trans. Inst. Min. Metall. 2022, 131, 166–176. [Google Scholar] [CrossRef]
- Souza, A.G.O.; Aliprandini, P.; Espinosa, D.C.R.; Tenório, J.A.S. Scandium Extraction from Nickel Processing Waste Using Cyanex 923 in Sulfuric Medium. JOM 2019, 71, 2003–2009. [Google Scholar] [CrossRef]
- Yoshida, W.; Kubota, F.; Baba, Y.; Kolev, S.D.; Goto, M. Separation and Recovery of Scandium from Sulfate Media by Solvent Extraction and Polymer Inclusion Membranes with Amic Acid Extractants. ACS Omega 2019, 4, 21122–21130. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Davis, K.; King, A.; Dal-Cin, M.; Nicalek, A.; Yu, B. Efficient Separation of Nd(III) and La(III) Via Supported Liquid Membrane Using EHEHPA (P507) as a Carrier. J. Sustain. Metall. 2022, 8, 1215–1224. [Google Scholar] [CrossRef]
- Raji, M.; Abolghasemi, H.; Safdari, J.; Kargari, A. Selective Extraction of Dysprosium from Acidic Solutions Containing Dysprosium and Neodymium through Emulsion Liquid Membrane by Cyanex 572 as Carrier. J. Mol. Liq. 2018, 254, 108–119. [Google Scholar] [CrossRef]
- Davoodi-Nasab, P.; Rahbar-Kelishami, A.; Safdari, J.; Abolghasemi, H. Selective Separation and Enrichment of Neodymium and Gadolinium by Emulsion Liquid Membrane Using a Novel Extractant CYANEX® 572. Min. Eng. 2018, 117, 63–73. [Google Scholar] [CrossRef]
- Davarkhah, R.; Farahmand Asl, E.; Samadfam, M.; Tavasoli, M.; Zaheri, P.; Shamsipur, M. Selective Separation of Yttrium(III) through a Liquid Membrane System Using 2-Thenoyltrifluoroacetone as an Extractant Carrier. Chem. Pap. 2018, 72, 1487–1497. [Google Scholar] [CrossRef]
- Swain, B.; Tanaka, M. Separation of Yttrium from Europium Using a Hollow Fiber-Supported Liquid Membrane with 2-Ethylhexyl Phosphonic Acid Mono-2-Ethylhexyl Ester as an Extractant. Chem. Eng. Commun. 2018, 205, 1484–1493. [Google Scholar] [CrossRef]
- Meng, X.; Long, Y.; Tian, Y.; Li, W.; Liu, T.; Huo, S. Electro-Membrane Extraction of Lithium with D2EHPA/TBP Compound Extractant. Hydrometallurgy 2021, 202, 105615. [Google Scholar] [CrossRef]
- Zante, G.; Boltoeva, M.; Masmoudi, A.; Barillon, R.; Trébouet, D. Highly Selective Transport of Lithium across a Supported Liquid Membrane. J. Fluorine Chem. 2020, 236, 109593. [Google Scholar] [CrossRef]
- Kazemzadeh, H.; Karimi-Sabet, J.; Towfighi Darian, J.; Adhami, A. Evaluation of Polymer Inclusion Membrane Efficiency in Selective Separation of Lithium Ion from Aqueous Solution. Sep. Purif. Technol. 2020, 251, 117298. [Google Scholar] [CrossRef]
- Xu, L.; Zeng, X.; He, Q.; Deng, T.; Zhang, C.; Zhang, W. Stable Ionic Liquid-Based Polymer Inclusion Membranes for Lithium and Magnesium Separation. Sep. Purif. Technol. 2022, 288, 120626. [Google Scholar] [CrossRef]
- Zhang, C.; Mu, Y.; Zhang, W.; Zhao, S.; Wang, Y. PVC-Based Hybrid Membranes Containing Metal-Organic Frameworks for Li+/Mg2+ Separation. J. Memb. Sci. 2020, 596, 117724. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, S.; Guo, Y.; Liu, G.; Jin, W. Separation of Mono-/Di-Valent Ions via Charged Interlayer Channels of Graphene Oxide Membranes. J. Memb. Sci. 2022, 645, 120212. [Google Scholar] [CrossRef]
- Afifah, D.N.; Ariyanto, T.; Supranto, S.; Prasetyo, I. Separation of Lithium Ion from Lithium-Cobalt Mixture Using Electrodialysis Monovalent Membrane. Eng. J. 2018, 22, 165–179. [Google Scholar] [CrossRef]
- Huang, T.; Song, J.; He, S.; Li, T.; Li, X.M.; He, T. Enabling Sustainable Green Close-Loop Membrane Lithium Extraction by Acid and Solvent Resistant Poly (Ether Ether Ketone) Membrane. J. Memb. Sci. 2019, 589, 117273. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botelho Junior, A.B.; Tenório, J.A.S.; Espinosa, D.C.R. Separation of Critical Metals by Membrane Technology under a Circular Economy Framework: A Review of the State-of-the-Art. Processes 2023, 11, 1256. https://doi.org/10.3390/pr11041256
Botelho Junior AB, Tenório JAS, Espinosa DCR. Separation of Critical Metals by Membrane Technology under a Circular Economy Framework: A Review of the State-of-the-Art. Processes. 2023; 11(4):1256. https://doi.org/10.3390/pr11041256
Chicago/Turabian StyleBotelho Junior, Amilton Barbosa, Jorge Alberto Soares Tenório, and Denise Crocce Romano Espinosa. 2023. "Separation of Critical Metals by Membrane Technology under a Circular Economy Framework: A Review of the State-of-the-Art" Processes 11, no. 4: 1256. https://doi.org/10.3390/pr11041256
APA StyleBotelho Junior, A. B., Tenório, J. A. S., & Espinosa, D. C. R. (2023). Separation of Critical Metals by Membrane Technology under a Circular Economy Framework: A Review of the State-of-the-Art. Processes, 11(4), 1256. https://doi.org/10.3390/pr11041256