Enhanced Activation of Peroxymonosulfate via Sulfate Radicals and Singlet Oxygen by SrCoxMn1−xO3 Perovskites for the Degradation of Rhodamine B
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Preparation of Catalysts
2.3. Characterization of Catalysts
2.4. Catalytic Activity Measurements
3. Results and Discussion
3.1. Characterization of Catalysts
3.2. Active Oxygen Species Analysis
3.3. The Catalytic Activity of Catalysts
3.4. Effect of Reaction Parameters on RhB Degradation
3.5. Identification of Mainly Reactive Species in the SrCo0.5Mn0.5O3–PMS System
3.6. Catalytic Mechanism in the SrCo0.5Mn0.5O3–PMS System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz-García, A.B.; Benesperi, I.; Boschloo, G.; Concepcion, J.J.; Delcamp, J.H.; Gibson, E.A.; Meyer, G.J.; Pavone, M.; Pettersson, H.; Hagfeldt, A.; et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 2021, 50, 12450–12550. [Google Scholar] [CrossRef]
- Dutta, S.; Gupta, B.; Srivastava, S.K.; Gupta, A.K. Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Mater. Adv. 2021, 2, 4497–4531. [Google Scholar] [CrossRef]
- Ardila-Leal, L.D.; Poutou-Pinales, R.A.; Pedroza-Rodriguez, A.M.; Quevedo-Hidalgo, B.E. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021, 26, 3813. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Mohd-Setapar, S.H.; Chuong, C.S.; Khatoon, A.; Wani, W.A.; Kumar, R.; Rafatullah, M. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Adv. 2015, 5, 30801–30818. [Google Scholar] [CrossRef]
- Rafaqat, S.; Ali, N.; Torres, C.; Rittmann, B. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv. 2022, 12, 17104–17137. [Google Scholar] [CrossRef] [PubMed]
- Muraro, P.C.L.; Mortari, S.R.; Vizzotto, B.S.; Chuy, G.; Dos Santos, C.; Brum, L.F.W.; da Silva, W.L. Iron oxide nanocatalyst with titanium and silver nanoparticles: Synthesis, characterization and photocatalytic activity on the degradation of Rhodamine B dye. Sci. Rep. 2020, 10, 3055. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, G.; Yi, J.; Cheng, M.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y.; Zhou, C.; Xue, W.; et al. Progress and challenges of metal-organic frameworks-based materials for SR-AOPs applications in water treatment. Chemosphere 2021, 263, 127672. [Google Scholar] [CrossRef]
- Gallego-Ramírez, C.; Chica, E.; Rubio-Clemente, A. Coupling of Advanced Oxidation Technologies and Biochar for the Removal of Dyes in Water. Water 2022, 14, 2531. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Z.; Zhang, J.; Shan, D.; Wu, Y.; Bai, L.; Wang, B. Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. J. Water Process Eng. 2021, 42, 102122. [Google Scholar] [CrossRef]
- Chen, Q.; Ji, F.; Guo, Q.; Guan, W.; Yan, P.; Pei, L.; Xu, X. Degradation of Phenol by Vis/Co-TiO2/KHSO5 Hybrid Co/SR–Photoprocess at Neutral pH. Ind. Eng. Chem. Res. 2013, 52, 12540–12549. [Google Scholar] [CrossRef]
- Lian, Q.; Roy, A.; Kizilkaya, O.; Gang, D.D.; Holmes, W.; Zappi, M.E.; Zhang, X.; Yao, H. Uniform Mesoporous Amorphous Cobalt-Inherent Silicon Oxide as a Highly Active Heterogeneous Catalyst in the Activation of Peroxymonosulfate for Rapid Oxidation of 2,4-Dichlorophenol: The Important Role of Inherent Cobalt in the Catalytic Mechanism. ACS Appl. Mater. Interfaces 2020, 12, 57190–57206. [Google Scholar] [CrossRef] [PubMed]
- Barndõk, H.; Hermosilla, D.; Negro, C.; Blanco, Á. Comparison and Predesign Cost Assessment of Different Advanced Oxidation Processes for the Treatment of 1,4-Dioxane-Containing Wastewater from the Chemical Industry. ACS Sustain. Chem. Eng. 2018, 6, 5888–5894. [Google Scholar] [CrossRef]
- Qu, J.; Dai, X.; Hu, H.-Y.; Huang, X.; Chen, Z.; Li, T.; Cao, Y.; Daigger, G.T. Emerging Trends and Prospects for Municipal Wastewater Management in China. ACS EST Eng. 2022, 2, 323–336. [Google Scholar] [CrossRef]
- Oh, W.-D.; Dong, Z.; Lim, T.-T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B Environ. 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Jin, C.; Kang, J.; Liu, J.; Yang, H.; Zhang, Y.; Pu, Q.; Zhao, Y.; You, M.; et al. Synthesis of novel Co3O4 hierarchical porous nanosheets via corn stem and MOF-Co templates for efficient oxytetracycline degradation by peroxymonosulfate activation. Chem. Eng. J. 2020, 392, 123789. [Google Scholar] [CrossRef]
- Lee, Y.C.; Lo, S.L.; Kuo, J.; Huang, C.P. Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon. J. Hazard. Mater. 2013, 261, 463–469. [Google Scholar] [CrossRef]
- Antoniou, M.G.; de la Cruz, A.A.; Dionysiou, D.D. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e− transfer mechanisms. Appl. Catal. B Environ. 2010, 96, 290–298. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, L.; Liu, S.; Li, R.; Wang, N.; Tang, H. Efficient degradation of organic pollutants by low-level Co2+ catalyzed homogeneous activation of peroxymonosulfate. J. Hazard. Mater. 2019, 371, 456–462. [Google Scholar] [CrossRef]
- So, H.-L.; Lin, K.-Y.; Chu, W.; Gong, H. Degradation of Triclosan by Recyclable MnFe2O4-Activated PMS: Process Modification for Reduced Toxicity and Enhanced Performance. Ind. Eng. Chem. Res. 2020, 59, 4257–4264. [Google Scholar] [CrossRef]
- Yao, Y.; Yang, Z.; Zhang, D.; Peng, W.; Sun, H.; Wang, S. Magnetic CoFe2O4–Graphene Hybrids: Facile Synthesis, Characterization, and Catalytic Properties. Ind. Eng. Chem. Res. 2012, 51, 6044–6051. [Google Scholar] [CrossRef]
- Lin, N.; Gong, Y.; Wang, R.; Wang, Y.; Zhang, X. Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: Design, applications and mechanisms. J. Hazard. Mater. 2022, 424, 127637. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Chen, J.; Liu, T.; Zhou, X.; Zhang, Y. Critical review of perovskites-based advanced oxidation processes for wastewater treatment: Operational parameters, reaction mechanisms, and prospects. Chin. Chem. Lett. 2022, 33, 643–652. [Google Scholar] [CrossRef]
- Duan, X.; Su, C.; Miao, J.; Zhong, Y.; Shao, Z.; Wang, S.; Sun, H. Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals. Appl. Catal. B Environ. 2018, 220, 626–634. [Google Scholar] [CrossRef]
- Xu, X.; Wang, W.; Zhou, W.; Shao, Z. Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy-Related Applications. Small Methods 2018, 2, 1800071. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Ge, L.; Chen, Y.; Mao, X.; Guan, D.; Li, M.; Zhong, Y.; Hu, Z.; Peterson, V.K.; et al. High-Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. Small 2021, 17, e2101573. [Google Scholar] [CrossRef]
- Hammouda, S.B.; Zhao, F.; Safaei, Z.; Srivastava, V.; Lakshmi Ramasamy, D.; Iftekhar, S.; Kalliola, S.; Sillanpää, M. Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO3 (A = La, Ba, Sr and Ce): Characterization, kinetics and mechanism study. Appl. Catal. B Environ. 2017, 215, 60–73. [Google Scholar] [CrossRef]
- Pang, X.; Guo, Y.; Zhang, Y.; Xu, B.; Qi, F. LaCoO3 perovskite oxide activation of peroxymonosulfate for aqueous 2-phenyl-5-sulfobenzimidazole degradation: Effect of synthetic method and the reaction mechanism. Chem. Eng. J. 2016, 304, 897–907. [Google Scholar] [CrossRef]
- Luo, X.; Bai, L.; Xing, J.; Zhu, X.; Xu, D.; Xie, B.; Gan, Z.; Li, G.; Liang, H. Ordered Mesoporous Cobalt Containing Perovskite as a High-Performance Heterogeneous Catalyst in Activation of Peroxymonosulfate. ACS Appl. Mater. Interfaces 2019, 11, 35720–35728. [Google Scholar] [CrossRef]
- Jing, J.; Pervez, M.N.; Sun, P.; Cao, C.; Li, B.; Naddeo, V.; Jin, W.; Zhao, Y. Highly efficient removal of bisphenol A by a novel Co-doped LaFeO3 perovskite/PMS system in salinity water. Sci. Total Environ. 2021, 801, 149490. [Google Scholar] [CrossRef]
- Koo, P.-L.; Jaafar, N.F.; Yap, P.-S.; Oh, W.-D. A review on the application of perovskite as peroxymonosulfate activator for organic pollutants removal. J. Environ. Chem. Eng. 2022, 10, 107093. [Google Scholar] [CrossRef]
- Najjar, H.; Batis, H. Development of Mn-based perovskite materials: Chemical structure and applications. Catal. Rev. 2016, 58, 371–438. [Google Scholar] [CrossRef]
- Wang, T.; Qian, X.; Yue, D.; Yan, X.; Yamashita, H.; Zhao, Y. CaMnO3 perovskite nanocrystals for efficient peroxydisulfate activation. Chem. Eng. J. 2020, 398, 125638. [Google Scholar] [CrossRef]
- Lu, S.; Wang, G.; Chen, S.; Yu, H.; Ye, F.; Quan, X. Heterogeneous activation of peroxymonosulfate by LaCo1−xCuxO3 perovskites for degradation of organic pollutants. J. Hazard. Mater. 2018, 353, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Xu, X.; Zhong, Y.; Ge, L.; Chen, Y.; Veder, J.M.; Guan, D.; O’Hayre, R.; Li, M.; Wang, G.; et al. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 2020, 11, 2002. [Google Scholar] [CrossRef] [PubMed]
- Jeerh, G.; Zou, P.; Zhang, M.; Tao, S. Perovskite oxide LaCr0.25Fe0.25Co0.5O3−δ as an efficient non-noble cathode for direct ammonia fuel cells. Appl. Catal. B: Environ. 2022, 319, 121919. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, C.; Zhu, J.; Wang, L.; Gao, S.; Xia, X. Enhanced degradation of atrazine by nanoscale LaFe1−xCuxO3-delta perovskite activated peroxymonosulfate: Performance and mechanism. Sci. Total Environ. 2019, 673, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jiao, Y.; Xu, X.; Pan, Y.; Su, C.; Duan, X.; Sun, H.; Liu, S.; Wang, S.; Shao, Z. Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustain. Chem. Eng. 2022, 10, 1899–1909. [Google Scholar] [CrossRef]
- He, L.; Zhang, Y. Singlet oxygen produced SrCoO2.5 in environmental protection: Extraordinary electronic properties and promoted catalytic performance. J. Sol-Gel Sci. Technol. 2021, 99, 391–401. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, R.; Wu, Z.; Yang, F.; Luo, M.; Yao, G.; Ao, Z.; Lai, B. Cobalt-doped boosted the peroxymonosulfate activation performance of LaFeO3 perovskite for atrazine degradation. Chem. Eng. J. 2023, 452, 139427. [Google Scholar] [CrossRef]
- Chen, H.; Lim, C.; Zhou, M.; He, Z.; Sun, X.; Li, X.; Ye, Y.; Tan, T.; Zhang, H.; Yang, C.; et al. Activating Lattice Oxygen in Perovskite Oxide by B-Site Cation Doping for Modulated Stability and Activity at Elevated Temperatures. Adv. Sci. 2021, 8, e2102713. [Google Scholar] [CrossRef]
- Khazaei, M.; Malekzadeh, A.; Amini, F.; Mortazavi, Y.; Khodadadi, A. Effect of citric acid concentration as emulsifier on perovskite phase formation of nano-sized SrMnO3 and SrCoO3 samples. Cryst. Res. Technol. 2010, 45, 1064–1068. [Google Scholar] [CrossRef]
- Giroir-Fendler, A.; Alves-Fortunato, M.; Richard, M.; Wang, C.; Díaz, J.A.; Gil, S.; Zhang, C.; Can, F.; Bion, N.; Guo, Y. Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion. Appl. Catal. B Environ. 2016, 180, 29–37. [Google Scholar] [CrossRef]
- Zhao, L.; Han, T.; Wang, H.; Zhang, L.; Liu, Y. Ni-Co alloy catalyst from LaNi1−xCoxO3 perovskite supported on zirconia for steam reforming of ethanol. Appl. Catal. B: Environ. 2016, 187, 19–29. [Google Scholar] [CrossRef]
- Mao, W.; Fan, Y.; Hu, X. Degradation of tetrabromobisphenol A through peroxymonaosulfate oxidation activated by La0.5Sr0.5CoxMn1−xO3-delta perovskite. Environ. Sci. Pollut. Res. Int. 2021, 28, 65814–65821. [Google Scholar] [CrossRef]
- Yang, L.; Hu, R.; Li, H.; Jia, Y.; Zhou, Q.; Wang, H. The effect of interaction between La2AlCoO6 and CuCl2 on ethane oxychlorination. J. Ind. Eng. Chem. 2017, 56, 120–128. [Google Scholar] [CrossRef]
- Roozbahani, H.; Maghsoodi, S.; Raei, B.; Kootenaei, A.S.; Azizi, Z. Effects of catalyst preparation methods on the performance of La2MMnO6 (M=Co, Ni) double perovskites in catalytic combustion of propane. Korean J. Chem. Eng. 2022, 39, 586–595. [Google Scholar] [CrossRef]
- Li, R.; Zhang, L.; Zhu, S.; Fu, S.; Dong, X.; Ida, S.; Zhang, L.; Guo, L. Layered δ-MnO2 as an active catalyst for toluene catalytic combustion. Appl. Catal. A Gen. 2020, 602, 117715. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Yang, H.; Wang, H.; Li, H.; Wu, S.; Yang, W. PMS activation by magnetic cobalt-N-doped carbon composite for ultra-efficient degradation of refractory organic pollutant: Mechanisms and identification of intermediates. Chemosphere 2022, 287, 132074. [Google Scholar] [CrossRef]
- Miao, J.; Li, J.; Dai, J.; Guan, D.; Zhou, C.; Zhou, W.; Duan, X.; Wang, S.; Shao, Z. Postsynthesis Oxygen Nonstoichiometric Regulation: A New Strategy for Performance Enhancement of Perovskites in Advanced Oxidation. Ind. Eng. Chem. Res. 2019, 59, 99–109. [Google Scholar] [CrossRef]
- Zhang, W.; Su, Y.; Zhang, X.; Yang, Y.; Guo, X. Facile synthesis of porous NiCo2O4 nanoflakes as magnetic recoverable catalysts towards the efficient degradation of RhB. RSC Adv. 2016, 6, 64626–64633. [Google Scholar] [CrossRef]
- Yu, H.; Ding, D.; Zhao, S.; Faheem, M.; Mao, W.; Yang, L.; Chen, L.; Cai, T. Co/N co-doped porous carbon as a catalyst for the degradation of RhB by efficient activation of peroxymonosulfate. Environ. Sci. Pollut. Res. 2022, 30, 10969–10981. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wu, Y.; Ji, Q.; Li, T.; Xu, C.; Qi, C.; He, H.; Yang, S.; Li, S.; Yan, S.; et al. Understanding spatial effects of tetrahedral and octahedral cobalt cations on peroxymonosulfate activation for efficient pollution degradation. Appl. Catal. B Environ. 2021, 291, 120072. [Google Scholar] [CrossRef]
- Tan, J.; Xu, C.; Zhang, X. MOFs-derived defect carbon encapsulated magnetic metallic Co nanoparticles capable of efficiently activating PMS to rapidly degrade dyes. Sep. Purif. Technol. 2022, 289, 120812. [Google Scholar] [CrossRef]
- Wang, L.; Di, J.; Nie, J.; Ma, G. Multicomponent Doped Sugar-Coated Nanofibers for Peroxymonosulfate Activation. ACS Appl. Nano Mater. 2019, 2, 6998–7007. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, X.; Xiong, W.; Nie, G.; Xiao, L. Prussian blue analogs derived nanostructured Mn/Fe bimetallic carbon materials for organic pollutants degradation via peroxymonosulfate activation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657, 130592. [Google Scholar] [CrossRef]
- Fan, J.; Zhao, Z.; Ding, Z.; Liu, J. Synthesis of different crystallographic FeOOH catalysts for peroxymonosulfate activation towards organic matter degradation. RSC Adv. 2018, 8, 7269–7279. [Google Scholar] [CrossRef]
- Yang, Z.; Duan, X.; Wang, J.; Li, Y.; Fan, X.; Zhang, F.; Zhang, G.; Peng, W. Facile Synthesis of High-Performance Nitrogen-Doped Hierarchically Porous Carbon for Catalytic Oxidation. ACS Sustain. Chem. Eng. 2020, 8, 4236–4243. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, C.; Zeng, H.; Shi, Z.; Wu, H.; Deng, L. Novel sulfur vacancies featured MIL-88A(Fe)@CuS rods activated peroxymonosulfate for coumarin degradation: Different reactive oxygen species generation routes under acidic and alkaline pH. Process Saf. Environ. Prot. 2022, 166, 11–22. [Google Scholar] [CrossRef]
- Liang, P.; Zhang, C.; Duan, X.; Sun, H.; Liu, S.; Tade, M.O.; Wang, S. N-Doped Graphene from Metal–Organic Frameworks for Catalytic Oxidation of p-Hydroxylbenzoic Acid: N-Functionality and Mechanism. ACS Sustain. Chem. Eng. 2017, 5, 2693–2701. [Google Scholar] [CrossRef]
- Zhu, M.; Miao, J.; Duan, X.; Guan, D.; Zhong, Y.; Wang, S.; Zhou, W.; Shao, Z. Postsynthesis Growth of CoOOH Nanostructure on SrCo0.6Ti0.4O3−δ Perovskite Surface for Enhanced Degradation of Aqueous Organic Contaminants. ACS Sustain. Chem. Eng. 2018, 6, 15737–15748. [Google Scholar] [CrossRef]
- Wang, L.; Fu, Y.; Li, Q.; Wang, Z. EPR Evidence for Mechanistic Diversity of Cu(II)/Peroxygen Oxidation Systems by Tracing the Origin of DMPO Spin Adducts. Environ. Sci. Technol. 2022, 56, 8796–8806. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.C.; Huang, G.X.; Jiang, J.; Liu, W.J.; Yu, H.Q. Carbon-Based Catalyst Synthesized and Immobilized under Calcium Salt Assistance To Boost Singlet Oxygen Evolution for Pollutant Degradation. ACS Appl. Mater. Interfaces 2019, 11, 43180–43187. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; He, J.; Xie, T.; Yang, J.; Wang, J.; Xie, J.; Shi, H.; Gao, Z.; Xiang, B.; Dionysiou, D.D. Boosting catalytic activity of SrCoO2.52 perovskite by Mn atom implantation for advanced peroxymonosulfate activation. J. Hazard. Mater. 2023, 442, 130085. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, E.; Xu, D.; Guo, Q. Activation of peroxymonosulfate by bimetallic CoMn oxides loaded on coal fly ash-derived SBA-15 for efficient degradation of Rhodamine B. Sep. Purif. Technol. 2021, 274, 119081. [Google Scholar] [CrossRef]
- Zhu, M.; Miao, J.; Guan, D.; Zhong, Y.; Ran, R.; Wang, S.; Zhou, W.; Shao, Z. Efficient Wastewater Remediation Enabled by Self-Assembled Perovskite Oxide Heterostructures with Multiple Reaction Pathways. ACS Sustain. Chem. Eng. 2020, 8, 6033–6042. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Guo, Y.; Song, W.; Li, Y.; Yan, L. Goethite-MoS2 hybrid with dual active sites boosted peroxymonosulfate activation for removal of tetracycline: The vital roles of hydroxyl radicals and singlet oxygen. Chem. Eng. J. 2022, 450, 138104. [Google Scholar] [CrossRef]
- Shao, S.; Li, X.; Gong, Z.; Fan, B.; Hu, J.; Peng, J.; Lu, K.; Gao, S. A new insight into the mechanism in Fe3O4@CuO/PMS system with low oxidant dosage. Chem. Eng. J. 2022, 438, 135474. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, J.; Gao, Y.; Ma, J.; Pang, S.Y.; Li, J.; Lu, X.T.; Yuan, L.P. Activation of Peroxymonosulfate by Benzoquinone: A Novel Nonradical Oxidation Process. Environ. Sci. Technol. 2015, 49, 12941–12950. [Google Scholar] [CrossRef]
- Zhu, S.; Li, X.; Kang, J.; Duan, X.; Wang, S. Persulfate Activation on Crystallographic Manganese Oxides: Mechanism of Singlet Oxygen Evolution for Nonradical Selective Degradation of Aqueous Contaminants. Environ. Sci. Technol. 2019, 53, 307–315. [Google Scholar] [CrossRef]
- Bu, Y.; Li, H.; Yu, W.; Pan, Y.; Li, L.; Wang, Y.; Pu, L.; Ding, J.; Gao, G.; Pan, B. Peroxydisulfate Activation and Singlet Oxygen Generation by Oxygen Vacancy for Degradation of Contaminants. Environ. Sci. Technol. 2021, 55, 2110–2120. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, S.; Li, X.; Du, Y.; Xing, Y.; Xu, Q.; Wang, Z.; Li, L.; Zhu, X. One-step pyrolysis for the preparation of sulfur-doped biochar loaded with iron nanoparticles as an effective peroxymonosulfate activator for RhB degradation. New J. Chem. 2022, 46, 5678–5689. [Google Scholar] [CrossRef]
- Zhao, P.; Fang, F.; Feng, N.; Chen, C.; Liu, G.; Chen, L.; Zhu, Z.; Meng, J.; Wan, H.; Guan, G. Self-templating construction of mesopores on three dimensionally ordered macroporous La0.5Sr0.5MnO3 perovskite with enhanced performance for soot combustion. Catal. Sci. Technol. 2019, 9, 1835–1846. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, L.; Wang, Y.; Li, X. Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO. J. Phys. Chem. Solids 2018, 116, 43–49. [Google Scholar] [CrossRef]
- Demirel, S.; Oz, E.; Altin, S.; Bayri, A.; Baglayan, O.; Altin, E.; Avci, S. Structural, magnetic, electrical and electrochemical properties of SrCoO2.5, Sr9Co2Mn5O21 and SrMnO3 compounds. Ceram. Int. 2017, 43, 14818–14826. [Google Scholar] [CrossRef]
Perovskites | Metal Content (Atomic) | |
---|---|---|
Co | Mn | |
SrCo0.7Mn0.3O3 | 0.71 | 0.29 |
SrCo0.5Mn0.5O3 | 0.52 | 0.48 |
SrCo0.3Mn0.7O3 | 0.33 | 0.67 |
Perovskites | SSR (m2/g) | Pore Volume (cm3/g) | Average Pore Size (nm) |
---|---|---|---|
SrCoO3 | 0.63 | 0.002 | 12.2 |
SrCo0.7Mn0.3O3 | 3.05 | 0.011 | 13.9 |
SrCo0.5Mn0.5O3 | 3.33 | 0.009 | 11.9 |
SrCo0.3Mn0.7O3 | 4.21 | 0.016 | 17.2 |
SrMnO3 | 4.11 | 0.016 | 17.2 |
Catalysts | Conditions | Degradation | Main Active Species | Ion Leaching/mg L−1 | Ref. | ||
---|---|---|---|---|---|---|---|
PMS Conc/mM | RhB Conc/mg L−1 | Catalyst Dose/g L−1 | |||||
Co-NC-850 | 0.800 | 80.00 | 0.025 | 20 min 100% | Co | 25 | [48] |
LMO-5bar-600 | 4.900 | 20.00 | 0.200 | 45 min 100% | Mn | 0.200 | [49] |
NiCo2O4 | 0.500 | 23.95 | 0.200 | 20 min 95% | Co Ni | - | [50] |
Co/N-NPC0.5/900 | 1.250 | 9.58 | 0.005 | 10 min 100% | Co | 0.408 | [51] |
ZnCo2O4 | 0.049 | 10.00 | 0.030 | 30 min 100% | Co | 0.220 | [52] |
Co@DC | 0.160 | 10.00 | 0.020 | 5 min 100% | Co | 0.840 | [53] |
Fe/Co-N/P-9 | 0.650 | 40.00 | 0.060 | 35 min 98.31% | C-π, Co, Fe. | - | [54] |
Mn-Fe-CN | 0.320 | 25.00 | 0.100 | 12 min 100% | Fe | 0.600 | [55] |
SrCo0.5Mn0.5O3 | 0.060 | 40.00 | 0.060 | 15 min 100% | Co Mn | 0.220 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, P.; Yin, X.; Yu, C.; Han, S.; Zhao, B.; Li, K.; Li, X.; Yang, Z.; Yuan, Z.; Shi, Q.; et al. Enhanced Activation of Peroxymonosulfate via Sulfate Radicals and Singlet Oxygen by SrCoxMn1−xO3 Perovskites for the Degradation of Rhodamine B. Processes 2023, 11, 1279. https://doi.org/10.3390/pr11041279
Shao P, Yin X, Yu C, Han S, Zhao B, Li K, Li X, Yang Z, Yuan Z, Shi Q, et al. Enhanced Activation of Peroxymonosulfate via Sulfate Radicals and Singlet Oxygen by SrCoxMn1−xO3 Perovskites for the Degradation of Rhodamine B. Processes. 2023; 11(4):1279. https://doi.org/10.3390/pr11041279
Chicago/Turabian StyleShao, Penghui, Xiping Yin, Chenyu Yu, Shuai Han, Baohuai Zhao, Kezhi Li, Xiang Li, Zhenyu Yang, Zhiwei Yuan, Qinzhi Shi, and et al. 2023. "Enhanced Activation of Peroxymonosulfate via Sulfate Radicals and Singlet Oxygen by SrCoxMn1−xO3 Perovskites for the Degradation of Rhodamine B" Processes 11, no. 4: 1279. https://doi.org/10.3390/pr11041279
APA StyleShao, P., Yin, X., Yu, C., Han, S., Zhao, B., Li, K., Li, X., Yang, Z., Yuan, Z., Shi, Q., Ren, J., Hu, H., Cui, K., Li, T., & Jiang, J. (2023). Enhanced Activation of Peroxymonosulfate via Sulfate Radicals and Singlet Oxygen by SrCoxMn1−xO3 Perovskites for the Degradation of Rhodamine B. Processes, 11(4), 1279. https://doi.org/10.3390/pr11041279