Chemical Composition of the Essential Oil of Catha edulis Forsk from Djibouti and Its Toxicological Investigations In Vivo and In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Sample Collection
2.2. Botanical Description of Catha edulis Forsk
2.3. Extraction and Analysis of Essential Oil
2.4. Toxicity Study
2.4.1. Experimental Animals
2.4.2. Study of the Acute Toxicity of the Essential Oil of Catha edulis Forsk
2.4.3. Study of the Chronic Toxicity of the Essential Oil of Catha edulis Forsk
2.4.4. Hematological Tests
2.4.5. Biochemical Tests
2.5. In Vivo Activities of Catha edulis Forsk Essential Oil
2.5.1. Traction Test
2.5.2. Chimney Test
2.5.3. Hole-Board Test
2.5.4. Rota-Rod Test
2.6. Evaluation of the Antibacterial Activity
Antimicrobial Tests
2.7. Statistical Analysis
3. Results and Discussion
3.1. Extraction and Analysis of Essential Oil
3.2. Acute Toxicity of Catha edulis
3.3. Chronic Toxicity of Catha edulis Forsk
3.3.1. Animal Behavior
3.3.2. Weight Change
3.3.3. Hematological Parameters
3.3.4. Biochemical Parameters
3.3.5. Anatomopathological Exam
3.4. In Vivo Activities of Aqueous Extracts and Essential Oils of Catha edulis
3.4.1. Psychotropic Activity
3.4.2. Traction Test
3.4.3. Chimney Test
3.4.4. Hole-Board Test
3.4.5. Rotarod Test
3.5. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ngeny, L.C.; Keter, L.K.; Irungu, B.N.; Kuria, J.M.; Mwikwabe, N.M.; Ondicho, J.M.; Korir, R.K.; Mwitari, P.G.; Tolo, F.M.; Orwa, J.A. In vitro Cytotoxic Activities of Catha edulis (Vahl) Forssk. Ex Endl.(Khat) Varieties from Kenya on Select Cancer Cell Lines. EAS J. Pharm. Pharmacol. 2023, 5, 8–13. [Google Scholar] [CrossRef]
- Ademe, B.W.; Brimer, L.; Dalsgaard, A.; Belachew, T. Chemical and microbiological hazards of Khat (Catha edulis) from field to chewing in Ethiopia. GSC Biol. Pharm. Sci. 2020, 11, 24–35. [Google Scholar] [CrossRef]
- Ahsan, W.; Al Bratty, M.; Alhazmi, H.A.; Attafi, I.M.; Khardali, I.A.; Abdelwahab, S.I. Determination of trace metal concentrations in different parts of the khat varieties (Catha edulis) using inductively coupled plasma-mass spectroscopy technique and their human exposure assessment. Pharmacogn. Mag. 2019, 15, 449–458. [Google Scholar] [CrossRef]
- Jones, N.; Baird, S.; Hicks, J.; Devonald, M.; Neumeister, E.; Presler-Marshall, E.; Iyasu, A.; Yadete, W. Autonomisation Economique des Adolescents en Éthiopie; Genre et Adolescence: Données Mondiales: London, UK, 2019. [Google Scholar]
- Abdoul-Latif, F.M.; Elmi, A.; Merito, A.; Nour, M.; Risler, A.; Ainane, A.; Bignon, J.; Ainane, T. Essential oils of Tagetes minuta and Lavandula coronopifolia from Djibouti: Chemical composition, antibacterial activity and cytotoxic activity against various human cancer cell lines. Int. J. Plant Biol. 2022, 13, 315–329. [Google Scholar] [CrossRef]
- Abdoul-Latif, F.M.; Elmi, A.; Merito, A.; Nour, M.; Risler, A.; Ainane, A.; Bignon, J.; Ainane, T. Chemical Analysis of Essential Oils of Cymbopogon schoenanthus (L.) Spreng. and Nepeta azurea R. Br. ex Benth from Djbouti, In-Vitro Cytotoxicity against Cancer Cell Lines and Antibacterial Activities. Appl. Sci. 2022, 12, 8699. [Google Scholar] [CrossRef]
- Mohamed Abdoul-Latif, F.; Elmi, A.; Merito, A.; Nour, M.; Risler, A.; Ainane, A.; Bignon, J.; Ainane, T. Essential Oils of Ocimum basilicum L. and Ocimum americanum L. from Djibouti: Chemical Composition, Antimicrobial and Cytotoxicity Evaluations. Processes 2022, 10, 1785. [Google Scholar] [CrossRef]
- Alemu, A.; Tegegne, A. Assessment of chromium contamination in the soil and khat leaves (Catha edulis Forsk) and its health risks located in the vicinity of tannery industries; A case study in Bahir Dar City, Ethiopia. Heliyon 2022, 8, e11914. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Mohamed, M.M.E.T. A comprehensive bibliometric analysis of Catha edulis (Vahl) Endli (Khat) research (1961–2021). Bull. Natl. Res. Cent. 2022, 46, 279. [Google Scholar] [CrossRef]
- Asfaw, G.; Abebe, M.G.; Senbeta, E.K. Evaluation of dried Khat (Catha Edulis) leaf as natural additives on egg quality, embryonic mortality, and chick quality of white leghorn layers. J. Indones. Trop. Anim. Agric. 2022, 47, 168–176. [Google Scholar] [CrossRef]
- Al-Qadhi, G.; Mohammed, M.M.A.; Al-Ak’Hali, M.; Al-Moraissi, E.A. Khat (Catha Edulis Forsk) induced apoptosis and cytotoxicity in cultured cells: A scoping review. Heliyon 2021, 7, e08466. [Google Scholar] [CrossRef]
- Abou-Elhamd, A.S.; Sumayli, S.; Steger, K.; Ali, A.K.M.; Zayed, A.E. Effect of khat (Catha edulis forsk) extract on testicular maturation in pre-pubertal and pubertal rats: A morphological and biochemical study. Anat. Histol. Embryol. 2021, 50, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Chong, Z.X.; Ho, W.Y.; Yan, P.; Alshagga, M.A. Evaluation of khat (Catha edulis) use as a risk factor of cancer: A systematic review. Asian Pac. J. Cancer Prev. 2020, 21, 881. [Google Scholar] [CrossRef]
- Abdoul-Latif, F.M.; El Montassir, Z.; Ainane, A.; Gharby, S.; Sakar, E.H.; Merito, A.; Mohamed, J.; Ainane, T. Use of Thymus Plants as an Ecological Filler in Urea-Formaldehyde Adhesives Intended for Bonding Plywood. Processes 2022, 10, 2209. [Google Scholar] [CrossRef]
- Abdoul-Latif, F.M.; Ainane, A.; Abdoul-Latif, T.M.; Ainane, T. Chemical study and evaluation of insectical properties of African Lippia citriodora essential oil. J. Biopestic. 2020, 13, 119–126. [Google Scholar] [CrossRef]
- Abdoul-Latif, F.M.; Ainane, A.; Mohamed, J.; Attahar, W.; Ouassil, M.; Ainane, T. Essential oil of Thymus zygis: Chemical composition and biological valorization proposals. AMA Agric. Mech. Asia Afr. Lat. Am. 2021, 51, 801–810. [Google Scholar]
- Ainane, A.; Abdoul-Latif, F.M.; Abdoul-Latif, T.M.; Ainane, T. Feasibility study of a project to produce an insecticide formulation based on the essential oil of Rosmarinus officinalis. Environ. Asia 2021, 14, 33–40. [Google Scholar]
- Mohamed, J.; Ainane, T. Evaluation of the antibacterial activity of the essential oil of Rosmarinus officinalis L. from Khenifra (middle atlas of Morocco). PharmacologyOnLine 2021, 3, 847–856. [Google Scholar]
- Ainane, A.; Mohamed Abdoul-Latif, F.; Mohamed Abdoul-Latif, T.; Ainane, T. Evaluation of biological activities of two essential oils as a safe environmental bioinsecticides: Case of Eucalyptus globulus and Rosmarinus officinalis. Przegląd Naukowy. Inżynieria I Kształtowanie Sr. 2020, 29, 544–556. [Google Scholar] [CrossRef]
- Abdoul-Latif, F.M.; Ainane, A.; Merito, A.; Ainane, T. Chemical composition and biological activities of essential oils from Djibouti. J. Anal. Sci. Appl. Biotechnol. 2022, 4, 1–9. [Google Scholar]
- Caballero-Eraso, C.; Colinas, O.; Sobrino, V.; González-Montelongo, R.; Cabeza, J.M.; Gao, L.; Pardal, R.; López-Barneo, J.; Ortega-Sáenz, P. Réarrangement des types de cellules chez le rat niche neurogène du corps carotidien induite par une hypoxie intermittente chronique. J. Physiol. 2023, 601, 1017–1036. [Google Scholar] [CrossRef]
- Wu, L.; Cen, Y.; Feng, M.; Zhou, Y.; Tang, H.; Liao, X.; Wang, Y.; Wang, M.; Zhou, M. La metformine active les effets protecteurs de la voie AMPK dans les lésions pulmonaires aiguës causées par un empoisonnement au paraquat. Médecine Oxydative Et Longévité Cell. 2019, 2019, 1709718. [Google Scholar]
- Plata-Rueda, A.; Rolim, G.D.S.; Wilcken, C.F.; Zanuncio, J.C.; Serrão, J.E.; Martínez, L.C. Acute toxicity and sublethal effects of lemongrass essential oil and their components against the granary weevil, Sitophilus granarius. Insects 2020, 11, 379. [Google Scholar] [CrossRef]
- Ainane, T.; Abourriche, A.; Kabbaj, M.; Elkouali, M.; Bennamara, A.; Charrouf, M.; Talbi, M. Removal of hexavalent chromium from aqueous solution by raw and chemically modified seaweed Bifurcaria bifurcata. J. Mat. Env. Sci. 2014, 5, 975–982. [Google Scholar]
- Tabarraei, H.; Hassan, J.; Parvizi, M.R.; Golshahi, H.; Keshavarz-Tarikhi, H. Evaluation of the acute and sub-acute toxicity of the black caraway seed essential oil in Wistar rats. Toxicol. Rep. 2019, 6, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Adokoh, C.K.; Asante, D.-B.; Acheampong, D.O.; Kotsuchibashi, Y.; Armah, F.A.; Sirikyi, I.H.; Kimura, K.; Gmakame, E.; Abdul-Rauf, S. Chemical profile and in vivo toxicity evaluation of unripe Citrus aurantifolia essential oil. Toxicol. Rep. 2019, 6, 692–702. [Google Scholar] [CrossRef]
- Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol. 2019, 229, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Lulekal, E.; Tesfaye, S.; Gebrechristos, S.; Dires, K.; Zenebe, T.; Zegeye, N.; Feleke, G.; Kassahun, A.; Shiferaw, Y.; Mekonnen, A. Phytochemical analysis and evaluation of skin irritation, acute and sub-acute toxicity of Cymbopogon citratus essential oil in mice and rabbits. Toxicol. Rep. 2019, 6, 1289–1294. [Google Scholar] [CrossRef]
- Kaid, F.; Alabsi, A.M.; Alafifi, N.; Ali-Saeed, R.; Ameen Al-koshab, M.; Ramanathan, A.; Ali, A.M. Histological, biochemical, and hematological effects of goniothalamin on selective internal organs of male sprague-dawley rats. J. Toxicol. 2019, 2019, 6493286. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, F.; Yesmine, S.; Banu, S.G.; Chowdhury, I.A.; Hasan, R.; Chatterjee, T.K. Renoprotective effects of stevia (Stevia rebaudiana Bertoni), amlodipine, valsartan, and losartan in gentamycin-induced nephrotoxicity in the rat model: Biochemical, hematological and histological approaches. Toxicol. Rep. 2019, 6, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Ezealisiji, K.M.; Siwe-Noundou, X.; Maduelosi, B.; Nwachukwu, N.; Krause, R.W.M. Green synthesis of zinc oxide nanoparticles using Solanum torvum (L.) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats. Int. Nano Lett. 2019, 9, 99–107. [Google Scholar] [CrossRef]
- Tancheva, L.P.; Lazarova, M.I.; Alexandrova, A.V.; Dragomanova, S.T.; Nicoletti, F.; Tzvetanova, E.R.; Hodzhev, Y.K.; Kalfin, R.E.; Miteva, S.A.; Mazzon, E.; et al. Neuroprotective mechanisms of three natural antioxidants on a rat model of parkinson’s disease: A comparative study. Antioxidants 2020, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Moline, M.; Asakura, S.; Beuckman, C.; Landry, I.; Setnik, B.; Ashworth, J.; Henningfield, J.E. The abuse potential of lemborexant, a dual orexin receptor antagonist, according to the 8 factors of the Controlled Substances Act. Psychopharmacology 2023, 240, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Froger-Colléaux, C.; Esneault, E.; Hernier, A.M.; Goineau, S.; Castagné, V. Central Nervous System (CNS) Safety Pharmacology Studies. In Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–69. [Google Scholar]
- Correll, C.U.; Solmi, M.; Cortese, S.; Fava, M.; Højlund, M.; Kraemer, H.C.; McIntyre, R.S.; Pine, D.S.; Schneider, L.S.; Kane, J.M. The future of psychopharmacology: A critical appraisal of ongoing phase 2/3 trials, and of some current trends aiming to de-risk trial programmes of novel agents. World Psychiatry 2023, 22, 48–74. [Google Scholar] [CrossRef]
- Byun, S.H.; Ahn, K.M. Functional and electron-microscopic changes after differential traction injury in the sciatic nerve of a rat. Maxillofac. Plast. Reconstr. Surg. 2021, 43, 12. [Google Scholar] [CrossRef] [PubMed]
- Karbowska, M.; Hermanowicz, J.M.; Tankiewicz-Kwedlo, A.; Kalaska, B.; Kaminski, T.W.; Nosek, K.; Wisniewska, R.J.; Pawlak, D. Neurobehavioral effects of uremic toxin–indoxyl sulfate in the rat model. Sci. Rep. 2020, 10, 9483. [Google Scholar] [CrossRef] [PubMed]
- Boissier, J.R.; Simon, P.; Lwoff, J.M. L’utilisation d’une réaction particulière de la souris (méthode de la planche à trous) pour l’étude des médicaments psychotropes. Therapie 1964, 19, 571–589. [Google Scholar]
- Krall, R.L.; Penry, J.K.; White, B.G.; Kupferberg, H.J.; Swinyard, E.A. Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 1978, 19, 409–428. [Google Scholar] [CrossRef]
- Jacob, M.; Pellecuer, J.; Tomei, R. Centre régional d’étude et de développement des plantes à usage pharmaceutique. Riv. Ital. EPPOS 1979, 11, 26–30. [Google Scholar]
- Algabr, M.N.; Al-Wadhaf, H.A.; Ameddah, S.; Menad, A.; Mekkiou, R.; Chalchat, J.C.; Benayache, S.; Benayache, F. Analysis of the essential oil of Catha edulis leaves from Yemen. Int. J. Appl. Res. Nat. Prod. 2014, 7, 21–24. [Google Scholar]
- Hailu, Y.M.; Atlabachew, M.; Chandravanshi, B.S.; Redi-Abshiro, M. Composition of essential oil and antioxidant activity of Khat (Catha edulis Forsk), Ethiopia. Chem. Int. 2017, 3, 25. [Google Scholar]
- Kalix, P. The pharmacology of psychoactive alkaloids from ephedra and catha. J. Ethnopharmacol. 1991, 32, 201–208. [Google Scholar] [CrossRef]
- Faro, A.F.L.; Di Trana, A.; La Maida, N.; Tagliabracci, A.; Giorgetti, R.; Busardò, F.P. Biomedical analysis of New Psychoactive Substances (NPS) of natural origin. J. Pharm. Biomed. Anal. 2020, 179, 112945. [Google Scholar] [CrossRef]
- Balint, E.E.; Falkay, G.; Balint, G.A. Khat—A controversial plant. Wien. Klin. Wochenschr. 2009, 121, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Kargarfard, M.; Shariat, A.; Shaw, B.S.; Shaw, I.; Lam, E.T.C.; Kheiri, A.; Eatemadyboroujeni, A.; Tamrin, S.B.M. Effects of polluted air on cardiovascular and hematological parameters after progressive maximal aerobic exercise. Lung 2015, 193, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Saygin, M.; Ozturk, O.; Ozguner, M.F.; Akkaya, A.; Varol, E. Hematological parameters as predictors of cardiovascular disease in obstructive sleep apnea syndrome patients. Angiology 2016, 67, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, M.H.; Lake, E.A.; Gebrekirstos, L.G. Heavy khat (Catha edulis) chewing and dyslipidemia as modifiable hypertensive risk factors among patients in Southwest, Ethiopia: Unmatched case-control study. PLoS ONE 2021, 16, e0259078. [Google Scholar] [CrossRef]
- Amin, A.R.; Kassab, R.B.; Abdel Moneim, A.E.; Amin, H.K. Comparison among garlic, berberine, resveratrol, Hibiscus sabdariffa, Genus zizyphus, hesperidin, red beetroot, Catha edulis, Portulaca oleracea, and mulberry leaves in the treatment of hypertension and type 2 DM: A comprehensive review. Nat. Prod. Commun. 2020, 15, 1934578X20921623. [Google Scholar]
- Maral, H.; Ulupınar, S.; Türk Baydır, A.; Özbay, S.; Altınkaynak, K.; Şebin, E.; Şiktar, E.; Kishalı, N.F.; Buzdağlı, Y.; Gençoğlu, C.; et al. Effect of Origanum dubium, Origanum vulgare subsp. hirtum, and Lavandula angustifolia essential oils on lipid profiles and liver biomarkers in athletes. Z. Für Nat. C 2022, 77, 177–187. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.G.; Hu, F.; Wei, Z.J. Antibacterial activity and mechanism of ginger essential oil against Escherichia coli and Staphylococcus aureus. Molecules 2020, 25, 3955. [Google Scholar] [CrossRef]
Peak | Retention Time | Compound | Percentage (%) |
---|---|---|---|
1 | 9.88 | Dehydrocineole | 0.03 |
2 | 10.04 | A-Phellandrene | 0.03 |
3 | 10.23 | Dolcymene | 0.10 |
4 | 10.29 | Β-Phellandrene | 0.07 |
5 | 10.31 | Eucalyptol | 0.02 |
6 | 10.97 | Linalol | 0.13 |
7 | 11.23 | Cis-2-Menthenol | 0.08 |
8 | 11.42 | Menth-2-En-1-Ol Trans | 0.06 |
9 | 11.47 | Camphre | 0.19 |
10 | 11.70 | Isoborneol | 0.07 |
11 | 11.72 | Endo Borneol | 0.35 |
12 | 11.96 | A-Terpineol | 0.12 |
13 | 12.02 | Tetrahydrocarvone | 0.29 |
14 | 12.10 | Trans Pulegol | 0.16 |
15 | 12.27 | Thymol Methyl Ether | 0.56 |
16 | 12.37 | Cis Carvotanacetol | 0.78 |
17 | 12.56 | Cathinone | 81.40 |
18 | 12.59 | Carvenone | 0.92 |
19 | 12.85 | Acetate De Bornyle | 0.04 |
20 | 12.90 | Thymol | 0.08 |
21 | 12.96 | Carvacrol | 0.48 |
22 | 13.50 | Eugenol | 0.32 |
23 | 13.78 | Damascenone | 0.07 |
24 | 14.01 | Thymoquinol Dimethylether | 0.59 |
25 | 14.21 | Β-Caryophyllene | 0.05 |
26 | 14.45 | Geranyl Acetone | 0.04 |
27 | 14.74 | Minacide | 0.75 |
28 | 14.77 | (E)-Β-Ionone | 0.10 |
29 | 14.82 | Neryl Isobutyrate | 0.48 |
30 | 15.18 | ∆-Cadinene | 0.08 |
31 | 15.59 | (E)-Nerolidol | 0.04 |
32 | 15.68 | Geranyl Isobutyrate | 0.22 |
33 | 15.76 | Neryl 2-Methylbutyrate | 0.07 |
34 | 15.84 | Oxide De Caryophyllene | 0.30 |
35 | 16.42 | Epi-A-Cadinol | 0.04 |
36 | 16.44 | Epi-A-Muurolol | 0.03 |
37 | 16.55 | A-Cadinol | 0.14 |
38 | 19.53 | Phthalate | 0.12 |
39 | 19.67 | Cathine | 10.55 |
Total | 99.95% |
Weeks | Control | 100 mg/kg | 200 mg/kg | ANOVA | |
---|---|---|---|---|---|
F-Ratio | p-Value | ||||
W0 | 184.54 ± 10.11 | 184.27 ± 10.94 | 184.62 ± 12.06 | 0.02 | 0.71 |
W1 | 200.21 ± 9.55 | 195.38 ± 9.67 | 195.02 ± 12.58 | 0.59 | 0.50 |
W2 | 217.49 ± 8.93 | 206.64 ± 8.45 | 206.37 ± 12.36 | 3.12 | 0.11 |
W3 | 226.55 ± 9.68 | 220.73 ± 9.37 | 220.11 ± 12.64 | 0.36 | 0.57 |
W4 | 231.39 ± 10.74 | 227.41 ± 10.69 | 226.19 ± 13.25 | 1.14 | 0.36 |
W5 | 235.91 ± 12.11 | 229.79 ± 12.67 | 228.38 ± 13.80 | 1.25 | 0.33 |
S6 | 239.75 ± 12.96 | 234.43 ± 12.73 | 232.97 ± 13.52 | 0.24 | 0.62 |
W7 | 248.30 ± 12.64 | 239.11 ± 12.36 | 238.76 ± 13.34 | 1.08 | 0.37 |
W8 | 255.63 ± 12.45 | 249.71 ± 12.49 | 248.67 ± 13.67 | 0.50 | 0.51 |
W9 | 261.11 ± 12.95 | 257.11 ± 12.39 | 256.19 ± 13.74 | 0.41 | 0.56 |
W10 | 268.25 ± 13.45 | 265.37 ± 13.97 | 262.74 ± 13.67 | 0.34 | 0.58 |
W11 | 272.81 ± 13.15 | 268.46 ± 13.89 | 266.61 ± 13.79 | 0.63 | 0.49 |
W12 | 278.44 ± 13.67 | 274.85 ± 13.81 | 269.82 ± 13.26 | 0.74 | 0.45 |
Weight gain | 93.90 ± 0.5 a | 90.58 ± 0.45 b | 85.2 ± 0.48 c | 10.21 | <0.05 * |
Settings | Control | Processing Time | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|
30 Days | 60 Days | 90 Days | F-Ratio | p-Value | |||||
100 (mg/kg) | 200 (mg/kg) | 100 (mg/kg) | 200 (mg/kg) | 100 (mg/kg) | 200 (mg/kg) | ||||
HGB (g/dL) | 14.21 ± 0.46 | 14.38 ± 0.94 | 14.56 ± 0.95 | 14.59 ± 0.95 | 14.85 ± 0.93 | 14.77 ± 0.94 | 15.21 ± 0.95 | 0.22 | 0.62 |
GR (106/µL) | 7.45 ± 0.64 | 7.52 ± 0.34 | 7.58 ± 0.72 | 7.83 ± 0.36 | 8.21 ± 0.43 | 8.08 ± 0.70 | 8.84 ± 0.53 | 3.02 | 0.11 |
HCT (%) | 40.11 ± 0.52 | 41.16 ± 3.44 | 42.31 ± 2.83 | 41.35 ± 3.71 | 42.41 ± 3.99 | 42.70 ± 3.35 | 42.49 ± 3.41 | 3.21 | 0.10 |
PLQ (103/µL) | 625 ± 57 | 634 ± 59 | 648 ± 61 | 641 ± 60 | 652 ± 59 | 645 ± 57 | 657 ± 60 | 0.17 | 0.64 |
GB (103/µL) | 10.63 ± 2.37 | 10.59 ± 2.29 | 10.47 ± 2.31 | 10.56 ± 2.46 | 10.55 ± 2.17 | 10.49 ± 2.29 | 10.49 ± 2.64 | 0.12 | 0.67 |
NEUT (%) | 20.11 ± 0.05 a | 20.11 ± 0.09 a | 20.01 ± 0.09 a | 21.03 ± 0.1 b | 20.12 ± 0.08 a | 20.15 ± 0.1 a | 20.09 ± 0.1 a | 6.11 | <0.05 * |
LYMPH (%) | 69.99 ± 1.34 | 69.72 ± 2.72 | 69.55 ± 3.22 | 69.98 ± 1.91 | 69.21 ± 3.17 | 69.54 ± 2.43 | 69.75 ± 3.21 | 0.15 | 0.66 |
MONO (%) | 2.03 ± 0.99 | 1.97 ± 0.98 | 1.97 ± 0.99 | 1.83 ± 1.03 | 1.99 ± 1.00 | 1.82± 1.04 | 2.02 ± 1.02 | 0.94 | 0.40 |
EO (%) | 1.69 ± 0.41 | 1.69 ± 0.53 | 1.70 ± 0.50 | 1.71 ± 0.73 | 1.69 ± 0.88 | 1.68 ± 1.16 | 1.70 ± 1.31 | 0.77 | 0.45 |
MCV (fL) | 51.22 ± 3.41 | 52.72 ± 2.37 | 52.75 ± 1.93 | 52.15 ± 2.18 | 50.23 ± 2.34 | 52.17 ± 2.64 | 52.16 ± 3.43 | 0.71 | 0.46 |
MCHC (g/dL) | 36.09 ± 0.94 | 36.15 ± 1.00 | 36.25 ± 1.01 | 36.21 ± 0.59 | 36.17 ± 1.11 | 36.19 ± 1.05 | 36.18 ± 1.00 | 0.07 | 0.68 |
MCH (pg) | 18.42 ± 0.94 | 17.68 ± 0.61 | 18.47 ± 0.79 | 17.68 ± 0.97 | 18.43 ± 0.85 | 18.00 ± 0.67 | 18.32 ± 1.00 | 0.34 | 0.59 |
Settings | Control | Processing Time | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|
30 Days | 60 Days | 90 Days | F-Ratio | p-Value | |||||
100 (mg/kg) | 200 (mg/kg) | 100 (mg/kg) | 200 (mg/kg) | 100 (mg/kg) | 200 (mg/kg) | ||||
ALAT (U/I) | 67.89 ± 4.81 | 67.75 ± 2.31 | 66.85 ± 4.75 | 67.57 ± 1.75 | 66.99 ± 3.34 | 67.87 ± 2.97 | 67.68 ± 3.55 | 0.24 | 0.62 |
ASAT (U/I) | 223.66 ± 15.24 | 220 ± 25.17 | 221 ± 20.67 | 222 ± 26.37 | 223 ± 25.87 | 221 ± 25.37 | 222 ± 23.37 | 0.37 | 0.56 |
Cholesterol (g/L) | 0.86 ± 0.51 | 0.86 ± 0.53 | 0.86 ± 0.56 | 0.81 ± 0.37 | 0.79 ± 0.39 | 0.80 ± 0.25 | 0.77 ± 0.24 | 0.33 | 0.58 |
Triglycerides (g/L) | 0.66 ± 0.52 | 0.66 ± 0.54 | 0.66 ± 0.67 | 0.66 ± 0.57 | 0.66 ± 0.49 | 0.66 ± 0.47 | 0.66 ± 0.61 | 0.04 | 0.71 |
Creatinine (mg/L) | 4.91 ± 0.52 a | 5.1 ± 0.59 a | 5.5 ± 0.81 a | 6.28 ± 0.69 b | 6.32 ± 0.82 b | 6.71 ±0.53 b | 6.83 ± 0.73 b | 5.22 | <0.05 * |
Urea (mg/L) | 0.25 ± 0.05 a | 0.32 ± 0.05 b | 0.36 ± 0.05 b | 0.36 ± 0.05 b | 0.41 ± 0.05 b | 0.40 ± 0.05 b | 0.45 ± 0.05 b | 5.47 | <0.05 * |
Protein T (g/dL) | 67.65 ± 4.26 | 67.83 ± 3.65 | 67.16 ± 3.06 | 66.35 ± 6.62 | 67.67 ± 3.34 | 67.73 ± 1.51 | 67.83 ± 1.83 | 0.33 | 0.57 |
Glucose (g/L) | 1.33 ± 0.12 a | 1.19 ± 0.09 a | 1.19 ± 0.05 a | 1.10 ± 0.02 b | 1.10 ± 0.01 b | 1.10 ± 0.01 b | 1.10 ± 0.01 b | 5.03 | <0.05 * |
Organs | Control | 100 (mg/kg) | 200 (mg/kg) | ANOVA | |
---|---|---|---|---|---|
F-Ratio | p-Value | ||||
Heart | 0.85 ± 0.06 | 0.85 ± 0.07 | 0.86 ± 0.07 | 0.24 | 0.60 |
Liver | 10.52 ± 0.24 | 10.50 ± 0.07 | 10.53 ± 0.12 | 0.28 | 0.59 |
Spleen | 0.72 ± 0.05 | 0.73 ± 0.05 | 0.73 ± 0.05 | 0.01 | 0.79 |
Lungs | 1.79 ± 0.05 | 1.80 ± 0.05 | 1.79 ± 0.05 | 0.14 | 0.66 |
Kidneys | 0.82 ± 0.01 | 0.83 ± 0.01 | 0.82 ± 0.01 | 0.03 | 0.71 |
Behavioral Tests | Control | Bromazepam (20 mg/kg; VO) | Catha edulis Forsk Essential Oil in (mg/kg; VO) | |||
---|---|---|---|---|---|---|
100 (mg/kg) | 200 (mg/kg) | 400 (mg/kg) | 500 (mg/kg) | |||
Traction | 0.15 ± 0.05 s n = 5 | 12.00 ± 0.50 s n = 5 | 0.15 ± 0.01 s n = 5 | 0.09 ± 0.02 s n = 5 | 0.09 ± 0.02 s n = 5 | 0.09 ± 0.01 s n = 5 |
Chimney | 5.00 ± 0.50 s n = 5 | >2 min n = 5 | 4.70 ± 0.20 s n = 5 | 4.30 ± 0.20 s n = 5 | 3.00 ± 0.20 s n = 5 | 3.00 ± 0.20 s n = 5 |
Hole board | 5.00 ± 1.00 n = 5 | 0.00 ± 0.00 n = 5 | 7.00 ± 1.00 n = 5 | 8.00 ± 1.00 n = 5 | 10.00 ± 1.00 n = 5 | 10.00 ± 1.00 n = 5 |
Behavioral Tests | Dose (mg/kg) | Time in Seconds | ||
---|---|---|---|---|
30 Min after Administration | 60 Min after Administration | 120 Min after Administration | ||
Control | - | 120 ± 1 | 120 ± 1 | 120 ± 1 |
Catha edulis Forsk (VO) | 100 | 125 ± 2.54 | 127 ± 2.46 | 131 ± 2.41 |
200 | 128 ± 2.84 | 130 ± 2.31 | 135 ± 2.19 | |
400 | 133 ± 3.49 | 136 ± 3.19 | 139 ± 3.15 | |
500 | 140 ± 3.67 | 140 ± 3.94 | 140 ± 3.99 | |
Bromazepam (VO) | 20 | 7 ± 0.05 | 22 ± 0.80 | 45 ± 0.3 |
Strains | Inhibition Zone Diameters in (mm) | ||||
---|---|---|---|---|---|
1/1 | 1/2 | 1/4 | 1/8 | 1/16 | |
E. coli | 23.78 ± 1.34 | 11.95 ± 1.03 | 4.88 ± 0.85 | 2.50 ± 0.56 | 1.99 ± 0.21 |
P. mirabilis | 31.15 ± 1.49 | 15.22 ± 1.00 | 10.01 ± 0.65 | 7.5 ± 0.48 | 3.89 ± 0.25 |
P. aeruginosa | 27.65 ± 1.61 | 14.53 ± 0.99 | 8.47 ± 0.75 | 6.1 ± 0.42 | 3.36 ± 0.36 |
E. cloaceae | 31.06 ± 1.34 | 16.41 ± 0.86 | 10.28 ± 0.66 | 7.65 ± 0.38 | 4.99 ± 0.74 |
S. pneumoniae | 25.44 ± 1.86 | 12.84 ± 1.31 | 6.31 ± 0.84 | 3.16 ± 0.57 | 2.33 ± 0.29 |
S. aureus | 45.33 ± 1.96 | 25.25 ± 1.22 | 10.34 ± 0.64 | 9.01 ± 0.37 | 5.24 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed Abdoul-Latif, F.; Ainane, A.; Houmed Aboubaker, I.; Merito Ali, A.; El Montassir, Z.; Kciuk, M.; Mohamed, J.; Ainane, T. Chemical Composition of the Essential Oil of Catha edulis Forsk from Djibouti and Its Toxicological Investigations In Vivo and In Vitro. Processes 2023, 11, 1324. https://doi.org/10.3390/pr11051324
Mohamed Abdoul-Latif F, Ainane A, Houmed Aboubaker I, Merito Ali A, El Montassir Z, Kciuk M, Mohamed J, Ainane T. Chemical Composition of the Essential Oil of Catha edulis Forsk from Djibouti and Its Toxicological Investigations In Vivo and In Vitro. Processes. 2023; 11(5):1324. https://doi.org/10.3390/pr11051324
Chicago/Turabian StyleMohamed Abdoul-Latif, Fatouma, Ayoub Ainane, Ibrahim Houmed Aboubaker, Ali Merito Ali, Zineb El Montassir, Mateusz Kciuk, Jalludin Mohamed, and Tarik Ainane. 2023. "Chemical Composition of the Essential Oil of Catha edulis Forsk from Djibouti and Its Toxicological Investigations In Vivo and In Vitro" Processes 11, no. 5: 1324. https://doi.org/10.3390/pr11051324
APA StyleMohamed Abdoul-Latif, F., Ainane, A., Houmed Aboubaker, I., Merito Ali, A., El Montassir, Z., Kciuk, M., Mohamed, J., & Ainane, T. (2023). Chemical Composition of the Essential Oil of Catha edulis Forsk from Djibouti and Its Toxicological Investigations In Vivo and In Vitro. Processes, 11(5), 1324. https://doi.org/10.3390/pr11051324