Secondary Motion of Non-Spherical Particles in Gas Solid Flows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Force Balance Calculations
2.2. Modelling of Multiphase Flow
2.3. Case Study
3. Results
3.1. Effect of Secondary Motion on Single Particles
- Given PSD, shape and flow conditions; how likely is it to experience the impact of secondary motion?
- Can we use force balance as an indicator for dilute flow conditions?
3.2. Effect of Orientation on Particle Distribution at Low Velocities
3.3. Effect of Orientation on Particle Distribution near Entrainment Velocities
3.4. Effect of Secondary Motion Tendencies on Particle Segregation
3.5. Effect of Particle Shape on Particle Segregation
3.6. Effect of Secondary Motion on Flow at Macro Scale
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Greek letters | |
volume fraction | |
rate of dissipation of turbulent kinetic energy | |
nutation angle | |
sphericity | |
Dynamic viscosity | |
Kinematic viscosity | |
Density | |
particle relaxation time | |
Latin letters | |
Aspect ratio of cylindrical particles | |
Drag coefficient | |
d | diameter |
F | forces affecting the particle trajectory |
g | Gravitational acceleration |
R | Force ratio |
Reynolds number | |
u | velocity |
Subscripts and superscripts | |
dr | drift velocity |
eq | equivalent |
f | fluid |
m | mixture |
n | number of phases |
p | particle |
References
- Ergun, S.; Orning, A.A. Fluid Flow through Randomly Packed Columns and Fluidized Beds. Ind. Eng. Chem. 1949, 41, 1179–1184. [Google Scholar] [CrossRef]
- Wen, C.Y.; Yu, Y.H. A generalized method for predicting the minimum fluidization velocity. AIChE J. 1966, 12, 610–612. [Google Scholar] [CrossRef]
- Syamlal, M.; O’Brien, T.J. Computer simulation of bubbles in a fluidized bed. AIChE Symp. Ser. 1989, 85, 22–31. [Google Scholar]
- Huilin, L.; Gidaspow, D. Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures. Chem. Eng. Sci. 2003, 58, 3777–3792. [Google Scholar] [CrossRef]
- Hill, R.J.; Koch, D.L.; Ladd, A.J.C. Moderate-Reynolds-number flows in ordered and random arrays of spheres. J. Fluid Mech. 2001, 448, 243–278. [Google Scholar] [CrossRef]
- Beetstra, R.; van der Hoef, M.A.; Kuipers, J.A.M. Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres. AIChE J. 2007, 53, 489–501. [Google Scholar] [CrossRef]
- Tenneti, S.; Garg, R.; Subramaniam, S. Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int. J. Multiph. Flow 2011, 37, 1072–1092. [Google Scholar] [CrossRef]
- Tang, Y.; Peters, E.A.J.F.; Kuipers, J.A.M. Direct numerical simulations of dynamic gas-solid suspensions. AIChE J. 2016, 62, 1958–1969. [Google Scholar] [CrossRef] [Green Version]
- Stanly, R.; Shoev, G. Detailed analysis of recent drag models using multiple cases of mono-disperse fluidized beds with Geldart-B and Geldart-D particles. Chem. Eng. Sci. 2018, 188, 132–149. [Google Scholar] [CrossRef]
- Mandø, M.; Rosendahl, L. On the motion of non-spherical particles at high Reynolds number. Powder Technol. 2010, 202, 1–13. [Google Scholar] [CrossRef]
- Castang, C.; Laín, S.; Sommerfeld, M. Pressure center determination for regularly shaped non-spherical particles at intermediate Reynolds number range. Int. J. Multiph. Flow 2021, 137, 103565. [Google Scholar] [CrossRef]
- Richter, A.; Nikrityuk, P.A. New correlations for heat and fluid flow past ellipsoidal and cubic particles at different angles of attack. Powder Technol. 2013, 249, 463–474. [Google Scholar] [CrossRef]
- Zastawny, M.; Mallouppas, G.; Zhao, F.; van Wachem, B. Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Int. J. Multiph. Flow 2012, 39, 227–239. [Google Scholar] [CrossRef]
- Ouchene, R.; Khalij, M.; Arcen, B.; Tanière, A. A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technol. 2016, 303, 33–43. [Google Scholar] [CrossRef]
- Guan, Y.; Guadarrama-Lara, R.; Jia, X.; Zhang, K.; Wen, D. Lattice Boltzmann simulation of flow past a non-spherical particle. Adv. Powder Technol. 2017, 28, 1486–1494. [Google Scholar] [CrossRef]
- Mahajan, V.V.; Nijssen, T.M.; Kuipers, J.A.; Padding, J.T. Non-spherical particles in a pseudo-2D fluidised bed: Modelling study. Chem. Eng. Sci. 2018, 192, 1105–1123. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, P.; Xiong, T.; Wei, W.; Fang, Z.; Wang, B. Drag and heat transfer coefficients for axisymmetric nonspherical particles: A LBM study. Chem. Eng. J. 2021, 424, 130391. [Google Scholar] [CrossRef]
- Buettner, K.E.; Curtis, J.S.; Sarkar, A. Fluid-particle drag force measurements from particle-resolved CFD simulations of flow past random arrays of ellipsoidal particles. Chem. Eng. Sci. 2021, 235, 116469. [Google Scholar] [CrossRef]
- van Wachem, B.; Zastawny, M.; Zhao, F.; Mallouppas, G. Modelling of gas-solid turbulent channel flow with non-spherical particles with large Stokes numbers. Int. J. Multiph. Flow 2015, 68, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Haider, A.; Levenspiel, O. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 1989, 58, 63–70. [Google Scholar] [CrossRef]
- Ganser, G.H. A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol. 1993, 77, 143–152. [Google Scholar] [CrossRef]
- Tran-Cong, S.; Gay, M.; Michaelides, E.E. Drag coefficients of irregularly shaped particles. Powder Technol. 2004, 139, 21–32. [Google Scholar] [CrossRef]
- Dioguardi, F.; Mele, D. A new shape dependent drag correlation formula for non-spherical rough particles. Experiments and results. Powder Technol. 2015, 277, 222–230. [Google Scholar] [CrossRef]
- Bagheri, G.; Bonadonna, C. On the drag of freely falling non-spherical particles. Powder Technol. 2016, 301, 526–544. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Peng, Z.; Wu, C.; Zhao, X.; Yuan, Z.; Moghtaderi, B.; Doroodchi, E. Numerical Study of the Orientation of Cylindrical Particles in a Circulating Fluidized Bed. Ind. Eng. Chem. Res. 2016, 55, 12806–12817. [Google Scholar] [CrossRef]
- Hölzer, A.; Sommerfeld, M. New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol. 2008, 184, 361–365. [Google Scholar] [CrossRef]
- Krueger, B.; Wirtz, S.; Scherer, V. Measurement of drag coefficients of non-spherical particles with a camera-based method. Powder Technol. 2015, 278, 157–170. [Google Scholar] [CrossRef]
- Sanjeevi, S.K.; Kuipers, J.A.; Padding, J.T. Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers. Int. J. Multiph. Flow 2018, 106, 325–337. [Google Scholar] [CrossRef]
- Hilton, J.E.; Cleary, P.W. The influence of particle shape on flow modes in pneumatic conveying. Chem. Eng. Sci. 2011, 66, 231–240. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, Y. Investigating the fluidization of disk-like particles in a fluidized bed using CFD-DEM simulation. Adv. Powder Technol. 2018, 29, 2380–2393. [Google Scholar] [CrossRef]
- Mema, I.; Wagner, E.C.; van Ommen, J.R.; Padding, J.T. Fluidization of spherical versus elongated particles—Experimental investigation using X-ray tomography. Chem. Eng. J. 2020, 397, 125203. [Google Scholar] [CrossRef]
- Roostaee, A.; Vaezi, M. Developing a standard platform to predict the drag coefficient of irregular shape particles. Powder Technol. 2022, 395, 314–337. [Google Scholar] [CrossRef]
- Zhou, H.; Flamant, G.; Gauthier, D.; Lu, J. Numerical simulation of the turbulent gas-particle flow in a fluidized bed by an LES-DPM model. Chem. Eng. Res. Des. 2004, 82, 918–926. [Google Scholar] [CrossRef]
- Toschi, F.; Bodenschatz, E. Lagrangian Properties of Particles in Turbulence. Annu. Rev. Fluid Mech. 2009, 41, 375–404. [Google Scholar] [CrossRef]
- Balachandar, S.; Eaton, J.K. Turbulent Dispersed Multiphase Flow. Annu. Rev. Fluid Mech. 2010, 42, 111–133. [Google Scholar] [CrossRef]
- Mallouppas, G.; van Wachem, B. Large Eddy Simulations of turbulent particle-laden channel flow. Int. J. Multiph. Flow 2013, 54, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Andersson, H.I.; Zhao, L.; Challabotla, N.R.; Deng, J. Dynamics of disk-like particles in turbulent vertical channel flow. Int. J. Multiph. Flow 2017, 96, 86–100. [Google Scholar] [CrossRef]
- Mathai, V.; Lohse, D.; Sun, C. Bubbly and Buoyant Particle–Laden Turbulent Flows. Annu. Rev. Condens. Matter Phys. 2020, 11, 529–559. [Google Scholar] [CrossRef] [Green Version]
- Zhong, W.; Yu, A.; Liu, X.; Tong, Z.; Zhang, H. DEM/CFD-DEM Modelling of Non-spherical Particulate Systems: Theoretical Developments and Applications. Powder Technol. 2016, 302, 108–152. [Google Scholar] [CrossRef]
- Ke, C.; Shu, S.; Zhang, H.; Yuan, H.; Yang, D. On the drag coefficient and averaged Nusselt number of an ellipsoidal particle in a fluid. Powder Technol. 2018, 325, 134–144. [Google Scholar] [CrossRef]
- Liu, R.J.; Xiao, R.; Ye, M.; Liu, Z. Analysis of particle rotation in fluidized bed by use of discrete particle model. Adv. Powder Technol. 2018, 29, 1655–1663. [Google Scholar] [CrossRef]
- Kuang, S.; Zhou, M.; Yu, A. CFD-DEM modelling and simulation of pneumatic conveying: A review. Powder Technol. 2020, 365, 186–207. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Chang, Q.; Zhao, P.; Wang, J.; Ge, W. Numerical simulation of fluidization: Driven by challenges. Powder Technol. 2022, 414, 118092. [Google Scholar] [CrossRef]
- Morsi, S.A.; Alexander, A.J. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 1972, 55, 193–208. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z.; Wang, M. Effect of non-spherical particles on burning behavior during aluminum combustion. Particuology 2020, 51, 173–183. [Google Scholar] [CrossRef]
- Ates, C.; Selçuk, N.; Kulah, G. Significance of particle concentration distribution on radiative heat transfer in circulating fluidized bed combustors. Int. J. Heat Mass Transf. 2018, 117, 58–70. [Google Scholar] [CrossRef]
Model Selections | |
---|---|
RANS Model | k- Realizable |
Granular viscosity | Gidaspow |
Granular bulk viscosity | Lun et al. |
Frictional viscosity in particulate phase | neglected |
Granular Temperature | Algebraic |
Solid pressure | Lun et al. |
Radial distribution | Lun et al. |
Elasticity modulus | derived |
Turbulent dispersion | DPM averaged |
Restitution coefficient | 0.97 |
Specularity coefficient | 0.97 |
Solver settings | |
Scheme | Phase Coupled SIMPLE |
Gradient | Least Squared Cell Based |
Pressure | PRESTO! |
Momentum | Second Order Upwind |
Volume fraction | Second Order Upwind |
TKE | Second Order Upwind |
Turbulent dissipation rate | Second Order Upwind |
Transient formulation | Second Order Implicit |
Phase 1 (air) | |
---|---|
Density | 1.225 kg |
Viscosity | 1.789 × kg |
Phase 2 (secondary, sand) | |
Density | 2500 kg |
Particle shape | spherical |
Minimum diameter | 0.001 m |
Mean diameter | 0.003 m |
Maximum diameter | 0.01 m |
Mass flow rate | 0.0075 kg |
Spread parameter | 9.6 |
Number of diameters | 30 |
Phase 3 (secondary, wood) | |
Density | 400 kg |
Particle shape | cylindrical |
Minimum equivalent diameter | 0.001 m |
Mean equivalent diameter | 0.01 m |
Maximum equivalent diameter | 0.02 m |
Mass flow rate | 0.0075 kg |
Spread parameter | 9.6 |
Number of diameters | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ates, C.; Arweiler, J.; Hadad, H.; Koch, R.; Bauer, H.-J. Secondary Motion of Non-Spherical Particles in Gas Solid Flows. Processes 2023, 11, 1369. https://doi.org/10.3390/pr11051369
Ates C, Arweiler J, Hadad H, Koch R, Bauer H-J. Secondary Motion of Non-Spherical Particles in Gas Solid Flows. Processes. 2023; 11(5):1369. https://doi.org/10.3390/pr11051369
Chicago/Turabian StyleAtes, Cihan, Joel Arweiler, Habeb Hadad, Rainer Koch, and Hans-Jörg Bauer. 2023. "Secondary Motion of Non-Spherical Particles in Gas Solid Flows" Processes 11, no. 5: 1369. https://doi.org/10.3390/pr11051369
APA StyleAtes, C., Arweiler, J., Hadad, H., Koch, R., & Bauer, H. -J. (2023). Secondary Motion of Non-Spherical Particles in Gas Solid Flows. Processes, 11(5), 1369. https://doi.org/10.3390/pr11051369