Applications of Terrestrial Laser Scanner in Detecting Pavement Surface Defects
Abstract
:1. Introduction
- (a)
- Detect and estimate the flexible pavement surface defects and the geometric characteristics of the investigated road based on the TLS observations.
- (b)
- Compare the measurement of pavement distresses by traditional techniques (visual inspection) with the prediction of defects by TLS.
- (c)
- Finally, determine the pavement condition index (PCI) for the investigated road using the TLS technique.
2. Research Methodology
2.1. Analysis of Terrestrial Laser Scanner Observations
2.2. Calculating Flexible Pavement Deformation Using Equation of Plane
3. Field Data Collection
4. Results and Discussion
4.1. Flexible Pavement Defects
4.2. Geometric Properties of Road Cross Section
4.3. Pavement Conditions Index
4.4. Surface Deformation of Pavement
5. Conclusions
- The proposed applied technique of employing TLS for observing and monitoring the pavement surface conditions and determining the surface distresses has proven effective, significant, and accurate compared to the traditional evaluation methods. It represents an effective method for data collection to detect pavement distress As a result, TLS can be a good alternative to traditional techniques and visual inspection for detecting flexible pavement defects, as it saves effort and money and does not cause any traffic disruption. For visual inspection, the work can take a long time, approaching several days, in addition to the involvement of several technicians to complete the visual examination and measure the defects manually. However, the use of the laser scanner took place in a few hours and provided an acceptable accuracy of determining the defects and their dimensions compared to the traditional methods. Consequently, the reliability of the work is improved and helpful in determining the optimal methods for maintaining these defects.
- The monitored road (a case study for flexible pavement) has several apparent defects in the upper surface. Therefore, these defects must be repaired using an engineering and technical technique following international specifications. The maximum deformation value in the investigated road reaches 50.74 mm, and the minimum value is 2.05 mm, with an average value of 19.4 mm along the longitudinal section of the road (through 20 km long).Using the plane equation method and finding the distortion of each point represents an effective technique for calculating the deformation of any vertical or horizontal surface, particularly from TLS observations, as long as the observations are treated by applying the least square estimation technique, as described in this research.
- The findings of this study will be helpful for decision-makers, especially in the case of conducting pavement maintenance on the investigated road. In addition, using this device (laser scanner) saves time and effort with acceptable accuracy in identifying pavement defects.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arab, M.G.; Alzara, M.; Zeiada, W.; Omar, M.; Azam, A. Combined effect of compaction level and matric suction conditions on flexible pavement performance using construction and demolition waste. Constr. Build. Mater. 2020, 261, 119792. [Google Scholar] [CrossRef]
- Mousa, E.; El-Badawy, S.; Azam, A. Effect of reclaimed asphalt pavement in granular base layers on predicted pavement performance in Egypt. Innov. Infrastruct. Solut. 2020, 5, 57. [Google Scholar] [CrossRef]
- Baldo, N.; Miani, M.; Rondinella, F.; Manthos, E.; Valentin, J. Road Pavement Asphalt Concretes for Thin Wearing Layers: A Machine Learning Approach towards Stiffness Modulus and Volumetric Properties Prediction. Period. Polytechnica. Civ. Eng. 2022, 66, 1087–1097. [Google Scholar] [CrossRef]
- Ragnoli, A.; De Blasiis, M.R.; Di Benedetto, A. Pavement Distress Detection Methods: A Review. Infrastructures 2018, 3, 58. [Google Scholar] [CrossRef]
- Bella, F.; Calvi, A.; D’amico, F. Impact of Pavement Defects on Motorcycles’ Road Safety. Procedia Soc. Behav. Sci. 2012, 53, 942–951. [Google Scholar] [CrossRef]
- Simões, D.; Almeida-Costa, A.; Benta, A. Preventive maintenance of road pavement with microsurfacing—An economic and sustainable strategy. Int. J. Sustain. Transp. 2017, 11, 670–680. [Google Scholar] [CrossRef]
- Issa, A.; Samaneh, H.; Ghanim, M. Predicting pavement condition index using artificial neural networks approach. Ain Shams Eng. J. 2021, 13, 101490. [Google Scholar] [CrossRef]
- Schwartz, C.W.; Li, R.; Ceylan, H.; Kim, S.; Gopalakrishnan, K. Global Sensitivity Analysis of Mechanistic–Empirical Performance Predictions for Flexible Pavements. Transp. Res. Rec. 2013, 2368, 12–23. [Google Scholar] [CrossRef]
- Kim, M.-K.; Sohn, H.; Chang, C.-C. Localization and Quantification of Concrete Spalling Defects Using Terrestrial Laser Scanning. J. Comput. Civ. Eng. 2015, 29, 04014086. [Google Scholar] [CrossRef]
- Azam, A.M.; El-Badawy, S.M.; Alabasse, R.M. Evaluation of asphalt mixtures modified with polymer and wax. Innov. Infrastruct. Solut. 2019, 4, 43. [Google Scholar] [CrossRef]
- Tarbay, E.W.; Azam, A.M.; El-Badawy, S.M. Waste materials and by-products as mineral fillers in asphalt mixtures. Innov. Infrastruct. Solut. 2019, 4, 5. [Google Scholar] [CrossRef]
- Yang, X.; You, Z.; Hiller, J.; Watkins, D. Sensitivity of flexible pavement design to Michigan’s climatic inputs using pavement ME design. Int. J. Pavement Eng. 2015, 18, 622–632. [Google Scholar] [CrossRef]
- Zapata, C.E.; Salim, R.A. Impact of Environmental Site Location and Groundwater Table Depth on Thickness of Flexible Airfield Pavements. Transp. Res. Rec. 2012, 2282, 22–33. [Google Scholar] [CrossRef]
- Zapata, C.; Andrei, D.; Witczak, M.; Houston, W. Incorporation of Environmental Effects in Pavement Design. Road Mater. Pavement Des. 2007, 8, 667–693. [Google Scholar] [CrossRef]
- Beshr, A.A.A.; Heneash, O.G.; Fawzy, H.E.-D.; El-Banna, M.M. Condition assessment of rigid pavement using terrestrial laser scanner observations. Int. J. Pavement Eng. 2021, 23, 4248–4259. [Google Scholar] [CrossRef]
- Beshr, A. Monitoring the Structural Deformation of Tanks; LAP LAMBERT Academic Publishing: Saarbrücken, Germany, 2012; ISBN 978-3-659-29943-8. [Google Scholar]
- Barbieri, G.; da Silva, F.P. Acquisition of 3D models with submillimeter-sized features from SEM images by use of photogrammetry: A dimensional comparison to microtomography. Micron 2019, 121, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Barbarella, M.; D’amico, F.; De Blasiis, M.R.; Di Benedetto, A.; Fiani, M. Use of Terrestrial Laser Scanner for Rigid Airport Pavement Management. Sensors 2017, 18, 44. [Google Scholar] [CrossRef]
- Feng, Z.; El Issaoui, A.; Lehtomäki, M.; Ingman, M.; Kaartinen, H.; Kukko, A.; Savela, J.; Hyyppä, H.; Hyyppä, J. Pavement Distress Detection Using Terrestrial Laser Scanning Point Clouds—Accuracy Evaluation and Algorithm Comparison. ISPRS Open. J. Photogramm. Remote. Sens. 2022, 3, 100010. [Google Scholar] [CrossRef]
- El Issaoui, A.; Feng, Z.; Lehtomäki, M.; Hyyppä, E.; Hyyppä, H.; Kaartinen, H.; Kukko, A.; Hyyppä, J. Feasibility of Mobile Laser Scanning towards Operational Accurate Road Rut Depth Measurements. Sensors 2021, 21, 1180. [Google Scholar] [CrossRef]
- Bitelli, G.; Simone, A.; Girardi, F.; Lantieri, C. Laser Scanning on Road Pavements: A New Approach for Characterizing Surface Texture. Sensors 2012, 12, 9110–9128. [Google Scholar] [CrossRef] [PubMed]
- Mitchell; Chang, J.-R.; Chang, K.-T.; Chen, D.-H. Application of 3D Laser Scanning on Measuring Pavement Roughness. J. Test. Eval. 2006, 34, 83–91. [Google Scholar] [CrossRef]
- Chang, K.T.; Chang, J.R.; Liu, J.K. Detection of Pavement Distresses Using 3D Laser Scanning Technology. In Proceedings of the International Conference on Computing in Civil Engineering 2005, Cancun, Mexico, 12–15 July 2005. [Google Scholar] [CrossRef]
- De Blasiis, M.R.; Di Benedetto, A.; Fiani, M. Mobile Laser Scanning Data for the Evaluation of Pavement Surface Distress. Remote Sens. 2020, 12, 942. [Google Scholar] [CrossRef]
- Lueangvilai, E. Development of Structure and Pavement Inspection Using Mobile Laser Scanning Point Clouds: A Case Study of Thailand Expressway. Ph.D. Thesis, Thammasat University, Bangkok, Thailand, 2022. [Google Scholar]
- Yi, T.J.; Ahmad, A.B. Quality Assessments of Unmanned Aerial Vehicle (UAV) and Terrestrial Laser Scanning (TLS) Methods in Road Cracks Mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 183–193. [Google Scholar] [CrossRef]
- Llopis-Castelló, D.; García-Segura, T.; Montalbán-Domingo, L.; Sanz-Benlloch, A.; Pellicer, E. Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration. Sustainability 2020, 12, 9717. [Google Scholar] [CrossRef]
- Tarawneh, S.; Sarireh, M. Causes of Cracks and Deterioration of Pavement on Highways in Jordan from Contractors’ Perspective. Civ. Environ. Res. 2013, 3, 16–27. [Google Scholar]
- Tsai, Y.; Wu, Y.; Doan, J. A critical assessment of jointed plain concrete pavement (JPCP) using sensing technology”—A case study on I-285. In Proceedings of the 9th International Conference on Managing Pavement Assets, Alexandria, VA, USA, 18–22 May 2015. [Google Scholar]
- Darter, M.; Khazanovich, L.; Yu, T.; Mallela, J. Reliability Analysis of Cracking and Faulting Prediction in the New Mechanistic–Empirical Pavement Design Procedure. Transp. Res. Rec. 2005, 1936, 150–160. [Google Scholar] [CrossRef]
- Tsai, Y.J.; Wu, Y.; Ai, C. Feasibility study of measuring concrete joint faulting using 3d continuous pavement profile data 2. In Proceedings of the Transportation Research Board 90th Annual Meeting, Washington, DC, USA, 23–27 January2011. [Google Scholar]
- McGhee, K.H. Automated Pavement Distress Collection Techniques; Transportation Research Board: Washington, DC, USA, 2004. [Google Scholar]
- Jung, Y.S.; Zollinger, D.G. New Laboratory-Based Mechanistic–Empirical Model for Faulting in Jointed Concrete Pavement. Transp. Res. Rec. 2011, 2226, 60–70. [Google Scholar] [CrossRef]
- Mraz, A.; Nazef, A.; Lee, H.; Holzschuher, C.; Choubane, B. Precision of Florida Methods for Automated and Manual Faulting Measurements. Transp. Res. Rec. 2012, 2306, 131–137. [Google Scholar] [CrossRef]
- Available online: https://topconsokkia.ind.in/topcon-brand/laser-scanner/software/magnet-collage (accessed on 11 April 2023).
- Khullar, R.; Mishra, G.; Sharma, G.; Prakash, B.; Gehlot, M.; Huse, V.; Mishra, S. A polygon laser scanning micrometer for magnet size measurement studies. J. Instrum. 2014, 9, T05003. [Google Scholar] [CrossRef]
- ECP Egyptian Code of Practice for Urban and Rural Roadspart 10: Road Maintenance; Housing and Building National Research Center: Dokki, Egypt, 2018.
- Loprencipe, G.; Pantuso, A.; Di Mascio, P. Sustainable Pavement Management System in Urban Areas Considering the Vehicle Operating Costs. Sustainability 2017, 9, 453. [Google Scholar] [CrossRef]
- Karballaeezadeh, N.; Zaremotekhases, F.; Shamshirband, S.; Mosavi, A.; Nabipour, N.; Csiba, P.; Várkonyi-Kóczy, A.R. Intelligent Road Inspection with Advanced Machine Learning; Hybrid Prediction Models for Smart Mobility and Transportation Maintenance Systems. Energies 2020, 13, 1718. [Google Scholar] [CrossRef]
- Karballaeezadeh, N.; Mohammadzadeh, S.D.; Moazemi, D.; Band, S.S.; Mosavi, A.; Reuter, U. Smart Structural Health Monitoring of Flexible Pavements Using Machine Learning Methods. Coatings 2020, 10, 1100. [Google Scholar] [CrossRef]
Laser Scanner Positions | TLS Mode of Scan | Scan Resolution/Distance | Scan Time (min) | Distance (From the Beginning of Road), km |
---|---|---|---|---|
First | Road mode | 3.1 mm/40 m | 1.53 | 0.00 (From Kafr El-Sheikh city) |
Second (1) | 1.6 mm/25 m | 3.43 | 5.89 | |
Second (2) | Standard mode | 1.2 mm/10 m | 3.24 | 5.89 |
Second (3) | Standard mode | 9.50 | 5.89 | |
Third | Road mode | 1.6 mm/25 m | 6.34 | 6.574 |
Fourth | 3.1 mm/40 m | 2.50 | 7.117 | |
Fifth | 7.00 | 10.277 | ||
Sixth | 1.6 mm/25 m | 5.59 | 15.476 | |
Seventh | 6.46 | 15.888 | ||
Eighth | 6.45 | 20.125 |
Distress Type | TLS Positions (Direction Kafr el Sheikh City to Tanta City) | TLS Positions (Direction Tanta to Kafr el Sheikh) | |||||||
---|---|---|---|---|---|---|---|---|---|
Pos 1 | Pos 2 Left | Pos 3 | Pos 4 | Pos 5 | Pos 2 Right | Pos 6 | Pos 7 | Pos 8 | |
1. Cracking | |||||||||
Alligator cracking | Yes | Yes | Yes | ||||||
Block cracking | Yes | Yes | Yes | ||||||
Edge cracking | Yes | Yes | Yes | Yes | |||||
Longitudinal cracking | Yes | Yes | Yes | Yes | Yes | Yes | |||
Transverse cracking | Yes | Yes | |||||||
Slidage cracking | Yes | Yes | Yes | ||||||
2. Surface deformation | |||||||||
Rutting | Yes | ||||||||
Depression | |||||||||
Shoving | Yes | Yes | Yes | Yes | Yes | ||||
Corrugations | |||||||||
Swelling | |||||||||
Sags and bumps | Yes | ||||||||
Lane-to-shoulder dropoff | Yes | Yes | Yes | ||||||
3. Roughness | |||||||||
Bleeding | Yes | Yes | Yes | ||||||
Polished aggregate | Yes | Yes | |||||||
4. Miscellaneous distresses | |||||||||
Raveling | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Potholes | Yes | Yes | Yes | Yes | Yes | ||||
Patching | Yes |
Position/Road Section No. | Type of Defect | Defect Value | Error | |
---|---|---|---|---|
Visual Inspection | TLS Observations | |||
Pos.1/Sec. 1 | Longitudinal cracking | 1.90 m | 1.929 m | 0.029 m |
Transverse cracking | 2.25 m | 2.287 m | 0.037 m | |
Bleeding | 5.5 m2 | 5.896 m2 | 0.396 m2 | |
Raveling | 29.7 m2 | 29.355 m2 | 0.345 m2 | |
Potholes | 3 Potholes | (0.46, 0.31, 0.73) m2 | NA | |
Pos.2/Sec. 2 | Edge Cracking | 4 m | 10.441 m | 6.441 m |
Longitudinal cracking | (2 m × 1 cm) | 14.199 m | NA | |
Slidage cracking | 16.85 m2 | 16.962 m2 | 0.112 m2 | |
Shoving | 4.20 m | 4.226 m | 0.026 m | |
Lane-to-shoulder drop-off | 10.2 m | 10.990 m | 0.79 m | |
Polished aggregate | 288 m2 | 288.12 m2 | 0.12 m2 | |
Raveling | 27.5 m2 | 28.30 m2 | 0.80 m2 | |
Potholes | 2 Potholes | (0.26, 0.45) m2 | NA | |
Rutting | 6 mm | 6.226 mm | 0.226 mm | |
Pos.3/Sec. 3 | Block cracking | 2.73 m2 | 2.735 m2 | 0.005 m2 |
Longitudinal cracking | 2.40 m | 2.420 m | 0.020 m | |
Transverse cracking | 2.50 m | 2.532 m | 0.032 m | |
Raveling | 12.97 m2 | 12.835 m2 | 0.135 m2 | |
Potholes | 3 Potholes | 0.21, 0.37, 0.19 m2 | NA | |
Edge cracking | 12.60 m | 12.615 m | 0.015 m | |
Pos.4/Sec. 4 | Alligator cracking | 54 m2 | 54.125 m2 | 0.125 m2 |
Block cracking | 1.15 m2 | 1.150 m2 | 0.0 | |
Bleeding | 83.1 m2 | 82.280 m2 | 0.82 m2 | |
Longitudinal cracking | 15.40 m | 15.477 m | 0.077 m | |
Shoving | 7 mm | 7.845 mm | 0.845 mm | |
Pos.5/Sec. 5 | Alligator cracking | 6.40 m2 | 6.436 m2 | 0.036 m2 |
Longitudinal cracking | 4.10 m | 4.140 m | 0.040 m | |
Raveling | 6.4 m2 | 6.536 m2 | 0.136 m2 | |
Potholes | 1 Pothole | 0.36 m2 | NA | |
Patching | 1 Patching | 28.738 m2 | NA | |
Pos.6/Sec. 6 | Alligator cracking | 60.70 m2 | 60.737 m2 | 0.037 m2 |
Edge cracking | 7.20 m | 7.251 m | 0.051 m | |
Raveling | 65.70 m2 | 65.745 m2 | 0.045 m2 | |
Shoving | 10 mm | 10.036 mm | 0.036 mm | |
Pos.7/Sec. 7 | Block cracking | 250 m2 | 256.52 m2 | 1.52 m2 |
Raveling | 230 m2 | 235.68 m2 | 5.68 m2 | |
Pos.8/Sec. 8 | Slidage cracking | 80.6 m2 | 79.277 m2 | 1.323 m2 |
Shoving | 5 mm | 5.994 mm | 0.994 mm | |
Sags and pumps | 14 m2 | 14.968 m2 | 0.968 m2 | |
Lane-to-shoulder drop-off | 3.5 m | 3.564 m | 0.064 m | |
Raveling | 15 m2 | 15.964 m2 | 0.964 m2 |
Positions (Sections) of TLS | Average of Road Width, (m) | Average Shoulder Width, (m) |
---|---|---|
Pos.1 | 7.213 | 1.711 |
Pos.2 | 7.501 | 1.470 |
Pos.3 | 7.402 | 1.453 |
Pos.4 | 7.412 | 1.513 |
Pos.5 | 7.532 | 1.632 |
Pos.6 | 7.497 | 1.515 |
Pos.7 | 7.499 | 1.598 |
Pos.8 | 7.513 | 1.498 |
Distance | Direction (From–to) | Longitudinal Slope Angle | Cross Section Slope Angle |
---|---|---|---|
Pos. 1 (0.00) km | Kafr el sheikh–Tanta | 0°57′7.20″ | 7°5′56.4″ |
Pos. 2 (5.89) km | Intersection | 1°17′13.20″ | 0°51′21.60″ |
Pos. 3 (6.574) km | Kafr el sheikh–Tanta | 0°9′46.8″ | 5°15′8″ |
Pos. 4 (7.117) km | Tanta–Kafr el sheikh | 0°18′7.2″ | 3°11′37.2″ |
Pos. 5 (10.277) km | Kafr el sheikh–Tanta | 0°12′28.80″ | 4°7′33.6″ |
Pos. 6 (15.467) km | Tanta–Kafr el sheikh | 0°39′25.2″ | 1°45′2″ |
Pos. 7 (15.888) km | Kafr el sheikh–Tanta | 0°22′51.6″ | 3°0′14.6″ |
Pos. 8 (25.177) km | Tanta–Kafr el sheikh | 0°5′46.2″ | 2°46′41.2″ |
Section (Position) No. | Average PCI Value | Pavement Condition | |
---|---|---|---|
TLS Observations | Visual Inspection | ||
1 | Very good | 71 | 73 |
2 | Very poor | 10 | 11 |
3 | Very good | 71 | 70 |
4 | Very good | 70 | 70 |
5 | Very poor | 21 | 23 |
6 | Very good | 70 | 73 |
7 | Very good | 71 | 70 |
8 | Very good | 72 | 70 |
TLS Section (Position) No. | Maximum Deformation, (mm) | Minimum Deformation, (mm) | Average Deformation, (mm) |
---|---|---|---|
Pos.1 | 11.23 | 2.25 | 7.293 |
Pos.2 | 50.74 | 3.35 | 28.07 |
Pos.3 | 24.77 | 3.69 | 13.67 |
Pos.4 | 31.16 | 3.85 | 18.59 |
Pos.5 | 35.24 | 2.26 | 18.37 |
Pos.6 | 38.80 | 3.31 | 21.02 |
Pos.7 | 42.12 | 2.91 | 22.96 |
Pos.8 | 44.13 | 2.05 | 24.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azam, A.; Alshehri, A.H.; Alharthai, M.; El-Banna, M.M.; Yosri, A.M.; Beshr, A.A.A. Applications of Terrestrial Laser Scanner in Detecting Pavement Surface Defects. Processes 2023, 11, 1370. https://doi.org/10.3390/pr11051370
Azam A, Alshehri AH, Alharthai M, El-Banna MM, Yosri AM, Beshr AAA. Applications of Terrestrial Laser Scanner in Detecting Pavement Surface Defects. Processes. 2023; 11(5):1370. https://doi.org/10.3390/pr11051370
Chicago/Turabian StyleAzam, Abdelhalim, Abdulaziz H. Alshehri, Mohammad Alharthai, Mona M. El-Banna, Ahmed M. Yosri, and Ashraf A. A. Beshr. 2023. "Applications of Terrestrial Laser Scanner in Detecting Pavement Surface Defects" Processes 11, no. 5: 1370. https://doi.org/10.3390/pr11051370
APA StyleAzam, A., Alshehri, A. H., Alharthai, M., El-Banna, M. M., Yosri, A. M., & Beshr, A. A. A. (2023). Applications of Terrestrial Laser Scanner in Detecting Pavement Surface Defects. Processes, 11(5), 1370. https://doi.org/10.3390/pr11051370