Subcritical Water Extraction of Mango Seed Kernels and Its Application for Cow Ghee Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mango Seed Sample
2.2. Subcritical Water Extraction
2.3. Experimental Design
2.4. Ultrasound-Assisted Extraction and Conventional Hot Water Extraction
2.5. Characterization of MSK Extract
2.5.1. Physicochemical Characterization
2.5.2. Analytical Characterization
2.5.3. Total Phenolic Content and Antioxidant Activity
2.6. Cow Ghee Preservation Studies
2.7. Software
3. Results and Discussions
3.1. Statistical Analysis of MSK Extract Production
3.1.1. Regression Analysis
3.1.2. Single-Factor Effects
3.1.3. Interaction Effects of the Extraction Variables
3.1.4. Process Optimization and Validation
3.2. Comparison with Ultrasonication and Conventional Hot Water Extraction
3.2.1. Extract Yield, TPC, and Antioxidant Activity
3.2.2. Physicochemical Characteristics and Fatty Acid Profile
3.2.3. Chemical Functionality of the Extracts
3.3. Cow Ghee Preservation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres-León, C.; Rojas, R.; Contreras-Esquivel, J.C.; Serna-Cock, L.; Belmares-Cerda, R.E.; Aguilar, C.N. Mango seed: Functional and nutritional properties. Trends Food Sci. Technol. 2016, 55, 109–117. [Google Scholar] [CrossRef]
- Saeed, E.E.; Sham, A.; AbuZarqa, A.; Al Shurafa, K.A.; Al Naqbi, T.S.; Iratni, R.; El-Tarabily, K.; AbuQamar, S.F. Detection and management of mango dieback disease in the United Arab Emirates. Int. J. Mol. Sci. 2017, 18, 2086. [Google Scholar] [CrossRef] [PubMed]
- Jahurul, M.H.A.; Zaidul, I.S.M.; Ghafoor, K.; Al-Juhaimi, F.Y.; Nyam, K.L.; Norulaini, N.A.N.; Sahena, F.; Mohd Omar, A.K. Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chem. 2015, 183, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Imran, M.; Khalique, A. Promising features of mango (Mangifera indica L.) kernel oil: A review. J. Food Sci. Technol. 2016, 53, 2185–2195. [Google Scholar] [CrossRef]
- Castro-Vargas, H.I.; Baumann, W.; Parada-Alfonso, F. Valorization of agroindustrial wastes: Identification by LC-MS and NMR of benzylglucosinolate from papaya (Carica papaya L.) seeds, a protective agent against lipid oxidation in edible oils. Electrophoresis 2016, 37, 1930–1937. [Google Scholar] [CrossRef]
- López-Cobo, A.; Verardo, V.; Diaz-de-Cerio, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Gómez-Caravaca, A.M. Use of HPLC-and GC-QTOF to determine hydrophilic and lipophilic phenols in mango fruit (Mangifera indica L.) and its by-products. Food Res. Int. 2017, 100, 423–434. [Google Scholar] [CrossRef]
- Oladipupo Kareem, M.; Edathil, A.A.; Rambabu, K.; Bharath, G.; Banat, F.; Nirmala, G.S.; Sathiyanarayanan, K. Extraction, characterization and optimization of high quality bio-oil derived from waste date seeds. Chem. Eng. Commun. 2021, 208, 801–811. [Google Scholar] [CrossRef]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical water extraction of bioactive compounds from waste onion skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- AlYammahi, J.; Rambabu, K.; Thanigaivelan, A.; Bharath, G.; Hasan, S.W.; Show, P.L.; Banat, F. Advances of non-conventional green technologies for phyto-saccharides extraction: Current status and future perspectives. Phytochem. Rev. 2022, 1–22. [Google Scholar] [CrossRef]
- Li, B.; Akram, M.; Al-Zuhair, S.; Elnajjar, E.; Munir, M.T. Subcritical water extraction of phenolics, antioxidants and dietary fibres from waste date pits. J. Environ. Chem. Eng. 2020, 8, 104490. [Google Scholar] [CrossRef]
- Rambabu, K.; AlYammahi, J.; Thanigaivelan, A.; Bharath, G.; Sivarajasekar, N.; Velu, S.; Banat, F. Sub-critical water extraction of reducing sugars and phenolic compounds from date palm fruit. Biomass Convers. Biorefinery 2022, 1–12. [Google Scholar] [CrossRef]
- Arumugham, T.; Rambabu, K.; Hasan, S.W.; Show, P.L.; Rinklebe, J.; Banat, F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications—A review. Chemosphere 2021, 271, 129525. [Google Scholar] [CrossRef] [PubMed]
- Massaya, J.; Chan, K.H.; Mills-Lamptey, B.; Chuck, C.J. Developing a biorefinery from spent coffee grounds using subcritical water and hydrothermal carbonisation. Biomass Convers. Biorefinery 2023, 13, 1279–1295. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N.L. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 2014, 123, 143–156. [Google Scholar] [CrossRef]
- Lee, I.-J.; Lee, Y.-S.; Han, G.-B. Effect of two-step thermo-disintegration on the enhancing solubilization and anaerobic biodegradability of excess waste sludge. Chem. Eng. J. 2017, 317, 742–750. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, H.; Chen, S.; Dichtl, N.; Dai, X.; Li, N. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chem. Eng. J. 2015, 264, 174–180. [Google Scholar] [CrossRef]
- Kazeem, R.A.; Fadare, D.A.; Ikumapayi, O.M.; Akinlabi, S.A.; Akinlabi, E.T. Evaluation of mango kernel seed (Mangifera indica) oil as cutting fluid in turning of AISI 1525 steel using the taguchi-grey relation analysis approach. Lubricants 2022, 10, 52. [Google Scholar] [CrossRef]
- Taha, S.; Abdel-Hamid, M.; Awad, A.; Elshaghabee, F. Extending the Shelf Life of Ghee Using Garden Cress and Jojoba Oils as Alternatives of Synthetic Antioxidants. Egypt. J. Chem. 2022, 65, 315–322. [Google Scholar] [CrossRef]
- Puravankara, D.; Boghra, V.; Sharma, R.S. Effect of antioxidant principles isolated from mango (Mangifera indica L) seed kernels on oxidative stability of buffalo ghee (butter-fat). J. Sci. Food Agric. 2000, 80, 522–526. [Google Scholar] [CrossRef]
- Rangaraj, V.M.; Rambabu, K.; Banat, F.; Mittal, V. Effect of date fruit waste extract as an antioxidant additive on the properties of active gelatin films. Food Chem. 2021, 355, 129631. [Google Scholar] [CrossRef]
- Erattemparambil, K.; Mohan, L.; Gnanasundaram, N.; Krishnamoorthy, R. Insights into adsorption theory of phenol removal using a circulating fluidized bed system. Arab. J. Chem. 2023, 16, 104750. [Google Scholar] [CrossRef]
- Muthusaravanan, S.; Balasubramani, K.; Suresh, R.; Ganesh, R.S.; Sivarajasekar, N.; Arul, H.; Rambabu, K.; Bharath, G.; Sathishkumar, V.E.; Murthy, A.P.; et al. Adsorptive removal of noxious atrazine using graphene oxide nanosheets: Insights to process optimization, equilibrium, kinetics, and density functional theory calculations. Environ. Res. 2021, 200, 111428. [Google Scholar] [CrossRef] [PubMed]
- Oza, S.; Prajapati, N.; Kodgire, P.; Kachhwaha, S.S. An ultrasound-assisted process for the optimization of biodiesel production from waste cottonseed cooking oil using response surface methodology. Water-Energy Nexus 2021, 4, 187–198. [Google Scholar] [CrossRef]
- Oniya, O.O.; Oyelade, J.O.; Ogunkunle, O.; Idowu, D.O. Optimization of solvent extraction of oil from sandbox kernels (Hura crepitans L.) by a response surface method. Energy Policy Res. 2017, 4, 36–43. [Google Scholar] [CrossRef]
- Jisieike, C.F.; Betiku, E. Rubber seed oil extraction: Effects of solvent polarity, extraction time and solid-solvent ratio on its yield and quality. Biocatal. Agric. Biotechnol. 2020, 24, 101522. [Google Scholar] [CrossRef]
- Okeleye, A.A.; Betiku, E. Kariya (Hildegardia barteri) seed oil extraction: Comparative evaluation of solvents, modeling, and optimization techniques. Chem. Eng. Commun. 2019, 206, 1181–1198. [Google Scholar] [CrossRef]
- Švarc-Gajić, J.; Brezo-Borjan, T.; Gosselink, R.J.A.; Slaghek, T.M.; Šojić-Merkulov, D.; Ivetić, T.; Bognár, S.; Stojanović, Z. Optimization and Potentials of Kraft Lignin Hydrolysates Obtained by Subcritical Water at Moderate Temperatures. Processes 2022, 10, 2049. [Google Scholar] [CrossRef]
- Kim, S.-J.; Matsushita, Y.; Fukushima, K.; Aoki, D.; Yagami, S.; Yuk, H.-G.; Lee, S.-C. Antioxidant activity of a hydrothermal extract from watermelons. LWT-Food Sci. Technol. 2014, 59, 361–368. [Google Scholar] [CrossRef]
- Giombelli, C.; Iwassa, I.J.; da Silva, C.; Barros, B.C.B. Valorization of peach palm by-product through subcritical water extraction of soluble sugars and phenolic compounds. J. Supercrit. Fluids 2020, 165, 104985. [Google Scholar] [CrossRef]
- Khuwijitjaru, P.; Plernjit, J.; Suaylam, B.; Samuhaseneetoo, S.; Pongsawatmanit, R.; Adachi, S. Degradation kinetics of some phenolic compounds in subcritical water and radical scavenging activity of their degradation products. Can. J. Chem. Eng. 2014, 92, 810–815. [Google Scholar] [CrossRef]
- Arumugham, T.; AlYammahi, J.; Rambabu, K.; Hassan, S.W.; Banat, F. Supercritical CO2 pretreatment of date fruit biomass for enhanced recovery of fruit sugars. Sustain. Energy Technol. Assess. 2022, 52, 102231. [Google Scholar] [CrossRef]
- Xie, P.; Huang, L.; Zhang, C.; Deng, Y.; Wang, X.; Cheng, J. Enhanced extraction of hydroxytyrosol, maslinic acid and oleanolic acid from olive pomace: Process parameters, kinetics and thermodynamics, and greenness assessment. Food Chem. 2019, 276, 662–674. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.-J.; Veriansyah, B.; Lee, Y.-W.; Kim, J.; Kim, J.-D. Extraction of mangiferin from Mahkota Dewa (Phaleria macrocarpa) using subcritical water. J. Ind. Eng. Chem. 2010, 16, 425–430. [Google Scholar] [CrossRef]
- Mikucka, W.; Zielinska, M.; Bulkowska, K.; Witonska, I. Subcritical water extraction of bioactive phenolic compounds from distillery stillage. J. Environ. Manag. 2022, 318, 115548. [Google Scholar] [CrossRef]
- Ohale, P.E.; Uzoh, C.F.; Onukwuli, O.D. Optimal factor evaluation for the dissolution of alumina from Azaraegbelu clay in acid solution using RSM and ANN comparative analysis. S. Afr. J. Chem. Eng. 2017, 24, 43–54. [Google Scholar] [CrossRef]
- Ohale, P.E.; Nwajiobi, O.J.; Onu, C.E.; Madiebo, E.M.; Ohale, N.J. Solvent extraction of oil from three cultivars of Nigerian mango seed kernel: Process modeling, GA-optimization, nonlinear kinetics and comparative characterization. Appl. Food Res. 2022, 2, 100227. [Google Scholar] [CrossRef]
- Radojković, M.; Moreira, M.M.; Soares, C.; Fátima Barroso, M.; Cvetanović, A.; Švarc-Gajić, J.; Morais, S.; Delerue-Matos, C. Microwave-assisted extraction of phenolic compounds from Morus nigra leaves: Optimization and characterization of the antioxidant activity and phenolic composition. J. Chem. Technol. Biotechnol. 2018, 93, 1684–1693. [Google Scholar] [CrossRef]
- Rambabu, K.; Edathil, A.A.; Nirmala, G.S.; Hasan, S.W.; Yousef, A.F.; Show, P.L.; Banat, F. Date-fruit syrup waste extract as a natural additive for soap production with enhanced antioxidant and antibacterial activity. Environ. Technol. Innov. 2020, 20, 101153. [Google Scholar] [CrossRef]
- Buelvas-Puello, L.M.; Franco-Arnedo, G.; Martínez-Correa, H.A.; Ballesteros-Vivas, D.; Sánchez-Camargo, A.d.P.; Miranda-Lasprilla, D.; Narváez-Cuenca, C.-E.; Parada-Alfonso, F. Supercritical fluid extraction of phenolic compounds from mango (Mangifera indica L.) seed kernels and their application as an antioxidant in an edible oil. Molecules 2021, 26, 7516. [Google Scholar] [CrossRef]
- Uuh-Narváez, J.; Castañeda-Pérez, E.; Chel-Guerrero, L.; Hernández- Martínez, D.M.; Betancur-Ancona, D. Assessment of bioactive compounds and antioxidant capacity of peels and seeds from Mangifera indica L cv Ataulfo waste. Eur. Food Res. Technol. 2023, 1–8. [Google Scholar] [CrossRef]
- Marcillo-Parra, V.; Anaguano, M.; Molina, M.; Tupuna-Yerovi, D.S.; Ruales, J. Characterization and quantification of bioactive compounds and antioxidant activity in three different varieties of mango (Mangifera indica L.) peel from the Ecuadorian region using HPLC-UV/VIS and UPLC-PDA. NFS J. 2021, 23, 1–7. [Google Scholar] [CrossRef]
- Kittiphoom, S.; Sutasinee, S. Mango seed kernel oil and its physicochemical properties. Int. Food Res. J. 2013, 20, 1145. [Google Scholar]
- Dionisio, K.L.; Phillips, K.; Price, P.S.; Grulke, C.M.; Williams, A.; Biryol, D.; Hong, T.; Isaacs, K.K. The Chemical and Products Database, a resource for exposure-relevant data on chemicals in consumer products. Sci. Data 2018, 5, 180125. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.S.; Gomathi, T.; Sudha, P.N.; Deepa, M.; Rambabu, K.; Banat, F. Biosilica/Silk Fibroin/Polyurethane biocomposite for toxic heavy metals removal from aqueous streams. Environ. Technol. Innov. 2022, 28, 102741. [Google Scholar] [CrossRef]
- Rambabu, K.; Bharath, G.; Sivarajasekar, N.; Velu, S.; Sudha, P.N.; Wongsakulphasatch, S.; Banat, F. Sustainable production of bio-jet fuel and green gasoline from date palm seed oil via hydroprocessing over tantalum phosphate. Fuel 2023, 331, 125688. [Google Scholar] [CrossRef]
Operating Variables | Code | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Solvent-to-feed ratio | A | 10 | 20 | 30 |
Temperature (°C) | B | 100 | 120 | 140 |
Time (min) | C | 20 | 40 | 60 |
Run Number | Solvent-to-Feed Ratio [A] | Temperature (°C) [B] | Time (min.) [C] | MSK Extract Yield (%) | |
---|---|---|---|---|---|
Experimental | Predicted | ||||
1 | 30 | 120 | 20 | 35.84 | 36.75 |
2 | 20 | 100 | 60 | 45.96 | 46.81 |
3 | 10 | 100 | 40 | 39.85 | 39.91 |
4 | 20 | 120 | 40 | 52.16 | 51.57 |
5 | 30 | 100 | 40 | 35.88 | 34.68 |
6 | 20 | 140 | 60 | 33.67 | 33.38 |
7 | 30 | 140 | 40 | 36.71 | 36.65 |
8 | 20 | 100 | 20 | 36.38 | 36.67 |
9 | 10 | 120 | 60 | 37.61 | 36.71 |
10 | 10 | 120 | 20 | 44.94 | 44.59 |
11 | 20 | 120 | 40 | 50.89 | 51.57 |
12 | 10 | 140 | 40 | 28.52 | 29.72 |
13 | 20 | 120 | 40 | 51.65 | 51.57 |
14 | 30 | 120 | 60 | 45.91 | 46.26 |
15 | 20 | 140 | 20 | 42.73 | 41.88 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 9 | 709.794 | 78.866 | 54.90 | 0.000 |
Linear | 3 | 36.575 | 12.192 | 8.49 | 0.021 |
A | 1 | 1.462 | 1.462 | 1.02 | 0.359 |
B | 1 | 33.784 | 33.784 | 23.52 | 0.005 |
C | 1 | 1.328 | 1.328 | 0.92 | 0.380 |
Square | 3 | 473.700 | 157.900 | 109.93 | 0.000 |
A2 | 1 | 205.942 | 205.942 | 143.37 | 0.000 |
B2 | 1 | 289.736 | 289.736 | 201.70 | 0.000 |
C2 | 1 | 33.750 | 33.750 | 23.50 | 0.005 |
Two-Way Interaction | 3 | 199.519 | 66.506 | 46.30 | 0.000 |
AB | 1 | 36.966 | 36.966 | 25.73 | 0.004 |
AC | 1 | 75.690 | 75.690 | 52.69 | 0.001 |
BC | 1 | 86.862 | 86.862 | 60.47 | 0.001 |
Error | 5 | 7.182 | 1.436 | - | - |
Lack-of-Fit | 3 | 6.365 | 2.122 | 5.19 | 0.166 |
Pure Error | 2 | 0.817 | 0.408 | - | - |
Total | 14 | 716.976 | - | - | - |
Extraction Method | MSK Extract Yield (%) | TPC (mg GAE/100 g) | DPPH Radical Scavenging (%) | ABTS Radical Scavenging (%) |
---|---|---|---|---|
SCWE a | 52.3 ± 0.6 | 79.2 ± 1.4 | 91.2 ± 0.9 | 97.3 ± 1.1 |
USA b | 41.9 ± 1.3 | 52.5 ± 1.9 | 82.3 ± 1.2 | 86.4 ± 0.8 |
CHW b | 36.2 ± 2.1 | 19.6 ± 1.5 | 70.6 ± 0.6 | 72.6 ± 1.3 |
Property | SCWE | USAE | CHWE |
---|---|---|---|
Density (kg/m3) | 920 ± 2 | 899 ± 3 | 862 ± 3 |
Refractive index at 20 °C | 1.36 ± 0.02 | 1.31 ± 0.03 | 1.28 ± 0.01 |
Viscosity at 20 °C (mPa s) | 15.4 ± 0.2 | 16.1 ± 0.2 | 15.9 ± 0.2 |
Peroxide value (mg/g MSE) | 2.25 ± 0.03 | 3.67 ± 0.09 | 4.82 ± 0.14 |
Acid value (mg KOH/g) | 12.32 ± 0.12 | 16.58 ± 0.32 | 19.36 ± 0.41 |
Iodine value (g I2/100 g) | 21.36 ± 1.36 | 24.12 ± 1.04 | 25.27 ± 0.63 |
Saponification index (mg KOH/g MSE) | 126.45 ± 3.73 | 157.49 ± 2.61 | 170.38 ± 1.92 |
Free fatty acid (%) | 5.92 ± 0.31 | 8.36 ± 0.27 | 10.41 ± 0.19 |
Fatty acid profile (in wt.%) | |||
Lauric acid (C12:0) | 2.41 | 3.32 | 4.38 |
Myristic acid (C14:0) | 19.64 | 16.67 | 14.38 |
Palmitic (C16:0) | 42.11 | 36.74 | 38.19 |
Palmitoleic (C16:1) | 1.53 | 2.49 | 3.85 |
Stearic (C18:0) | 10.69 | 11.93 | 9.72 |
Oleic acid (C18:1) | 15.56 | 16.82 | 14.76 |
Linoleic acid (C18:2) | 2.19 | 3.65 | 4.92 |
Others | 5.87 | 8.38 | 9.8 |
Saturated content | ~74.85 | ~68.66 | ~66.67 |
Unsaturated content | ~19.28 | ~22.96 | ~23.53 |
Samples | Day 1 | Day 5 | Day 10 | Day 15 | Day 20 |
---|---|---|---|---|---|
Control | 2.08 ± 0.05 | 4.91 ± 0.12 | 10.2 ± 0.06 | 14.36 ± 0.3 | 21.38 ± 0.54 |
BHA loaded | 0.86 ± 0.07 | 1.03 ± 0.09 | 1.93 ± 0.08 | 2.45 ± 0.15 | 2.97 ± 0.23 |
5% MSK extract | 1.27 ± 0.03 | 1.62 ± 0.08 | 2.96 ± 0.11 | 4.29 ± 0.21 | 8.13 ± 0.29 |
10% MSK extract | 1.03 ± 0.06 | 1.41 ± 0.05 | 2.37 ± 0.09 | 3.54 ± 0.29 | 5.83 ± 0.31 |
20% MSK extract | 0.81 ± 0.04 | 1.15 ± 0.07 | 2.02 ± 0.1 | 2.68 ± 0.18 | 4.37 ± 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnamoorthy, R.; Hai, A.; Banat, F. Subcritical Water Extraction of Mango Seed Kernels and Its Application for Cow Ghee Preservation. Processes 2023, 11, 1379. https://doi.org/10.3390/pr11051379
Krishnamoorthy R, Hai A, Banat F. Subcritical Water Extraction of Mango Seed Kernels and Its Application for Cow Ghee Preservation. Processes. 2023; 11(5):1379. https://doi.org/10.3390/pr11051379
Chicago/Turabian StyleKrishnamoorthy, Rambabu, Abdul Hai, and Fawzi Banat. 2023. "Subcritical Water Extraction of Mango Seed Kernels and Its Application for Cow Ghee Preservation" Processes 11, no. 5: 1379. https://doi.org/10.3390/pr11051379
APA StyleKrishnamoorthy, R., Hai, A., & Banat, F. (2023). Subcritical Water Extraction of Mango Seed Kernels and Its Application for Cow Ghee Preservation. Processes, 11(5), 1379. https://doi.org/10.3390/pr11051379