Chemical and Biological Characterisation of Orange (Citrus sinensis) Peel Extracts Obtained by Subcritical Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals and Reagents
2.3. Subcritical Water Extraction
2.4. Total Extraction Yield
2.5. Total Phenolics Content (TPC)
2.6. Total Flavonoids Content (TFC)
2.7. Total Antioxidant Capacity
2.8. DPPH Radical Scavenging Activity
2.9. Total Carbohydrate Content
2.10. Pectin Content
2.11. Dietary Fibre Content
2.12. Phytochemical Screening Assay
2.12.1. Free Flavonoids
2.12.2. Anthocyanins
2.12.3. Total Tannins
2.12.4. Gallic Tannins
2.12.5. Reducing Sugars (Fehling’s Test)
2.12.6. Cardiac Glycosides
2.12.7. Alkaloids
2.12.8. Coumarins
2.12.9. Saponosides
2.12.10. O-Heterosides
2.12.11. C-Heterosides
2.13. Statistical Analysis
3. Results
3.1. SWE Samples
3.2. Total Extraction Yield and Polyphenol Content in Orange Peel Extracts
3.3. Antioxidant Capacity and DPPH Radical Scavenging Activity of Orange Peel Extracts
3.4. Carbohydrates in Orange Peel Extracts
3.5. Phytochemical Screening Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, J.; Ren, W.; Zhao, C.; Gao, W.; Tian, G.; Bao, Y.; Lian, Y.; Zheng, J. The structure-property relationships of acid- and alkali-extracted grapefruit peel pectines. Carbohyd. Polym. 2020, 229, 115524. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. Citrus Fruit Fresh and Processed; Statistical Bulletin 2016; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i8092e.pdf (accessed on 19 February 2023).
- Singh, B.; Pal Singh, J.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef] [PubMed]
- Negro, V.; Mancini, G.; Ruggeri, B.; Fino, D. Citrus waste as feedstock for biobased products recovery: Review on limonene case study and energy valorisation. Bioresour. Technol. 2016, 214, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Mahato, N.; Hwan Cho, M.; Rok Lee, Y. Converting citrus wastes into value-added products: Economic and environmentaly friendly approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef]
- Senit, J.J.; Velasco, D.; Manrique, A.G.; Sanchez-Barba, M.; Toledo, J.M.; Santos, V.E.; Garcia-Ochoa, F.; Yustos, P.; Ladero, M. Orange peel waste upstream integrated processing to terpenes, phenolics, pectin and monosaccharides: Optimization approaches. Ind. Crop. Prod. 2019, 134, 370–381. [Google Scholar] [CrossRef]
- Satari, B.; Karimi, K. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorisation. Resour. Conserv. Recycl. 2018, 129, 153–167. [Google Scholar] [CrossRef]
- Mandalari, G.; Bennett, R.N.; Bisignano, G.; Saija, A.; Dugo, G.; Lo Curto, R.B.; Waldron, K.W. Characterization of flavonoids and pectins from bergamot (Citrus bergamia Risso) peel, a major byproduct of essential oil extraction. J. Agr. Food Chem. 2006, 54, 197–203. [Google Scholar] [CrossRef]
- Liu, N.; Li, X.; Zhao, P.; Zhang, X.; Qiao, O.; Huang, L.; Guo, L.; Gao, W. A review of chemical constituents and health-promoting effects of citrus peels. Food Chem. 2021, 365, 130585. [Google Scholar] [CrossRef]
- Alvarez, J.; Hooshdaran, B.; Cortazar, M.; Amutio, M.; Lopez, G.; Freire, F.B.; Haghshenasfard, M.; Hosseini, S.H.; Olazar, M. Valorization of citrus wastes by fast pyrolysis in a conical spouted bed reactor. Fuel 2018, 224, 111–120. [Google Scholar] [CrossRef]
- Negro, V.; Ruggeri, B.; Fino, D.; Tonini, D. Life cycle assessment of orange peel waste management. Resour. Conserv. Recycl. 2017, 127, 148–158. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Sadaka, C.; Generalić Mekinić, I.; Garzoli, S.; Švarc-Gajić, J.; Rodrigues, F.; Morais, S.; Moreira, M.M.; Ferreira, E.; Spigno, G.; et al. The chemical variability, nutraceutical value, and food-industry and cosmetic applications of citrus plants: A critical Review. Antioxidants 2023, 12, 481. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Delisi, R.; Tamburino, A.; Carnaroglio, D.; Cravotto, G.; Ilharco, L.M.; Pagliaro, M. Controlling the degree of esterification of citrus pectin for demanding application by selection of the source. ACS Omega 2017, 2, 7991–7995. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Techol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Baseggio, A.M.; Mayanga-Torres, P.C.; Maróstica Junior, M.R.; Rostagno, M.A.; Martínez, J.; Forster-Carneiro, T. Subcritical water extraction of flavanones from defatted orange peel. J. Supercrit. Fluids 2018, 138, 7–16. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Baseggio, A.M.; Torres- Mayanga, P.C.; Ávila, P.F.; Tompsett, G.A.; Marostica, M.; Goldbeck, R.; Timko, M.T.; Rostagno, M.; Martinez, J.; et al. Sequential subcritical water process applied to orange peel for the recovery flavanones and sugars. J. Supercrit. Fluids 2020, 160, 104789. [Google Scholar] [CrossRef]
- Švarc-Gajić, J.; Cvetanović, A.; Segura-Carretero, A.; Linares, I.B.; Mašković, P. Characterisation of ginger extracts obtained by subcritical water. J. Supercrit. Fluids 2017, 123, 92–100. [Google Scholar] [CrossRef]
- Li, H.-B.; Cheng, K.-W.; Wong, C.-C.; Fan, K.-W.; Chen, F.; Jiang, Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007, 102, 771–776. [Google Scholar] [CrossRef]
- Benmerzoug, A.; Švarc-Gajić, J.; Nastić, N.; Guettaf, S.; Harzallah, D. Subcritical water extraction of polyphenols from endemic Algerian plants with medicinal properties. APTEFF Acta Period. Technol. 2020, 51, 191–206. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barroso, M.F.; Porto, J.V.; Ramalhosa, M.J.; Švarc-Gajić, J.; Estevinho, L.; Morais, S.; Delure-Matos, C. Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds. Sci. Total Environ. 2018, 634, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Benvenutti, L.; Ferreira Zielinski, A.A.; Salvador Ferreira, S.R. Subcritical water extraction (SWE) modified by deep eutectic solvent (DES) for pectin recovery from a Brazilian berry by-product. J. Supercrit. Fluids 2022, 189, 105729. [Google Scholar] [CrossRef]
- Bezus, B.; Esquivel, J.C.C.; Cavalitto, S.; Cavello, I. Pectin extraction from lime pomace by cold-active polygalacturonase-assisted method. Int. J. Biol. Macromol. 2022, 209, 290–298. [Google Scholar] [CrossRef] [PubMed]
- AOAC—Association of Official Analytical Chemists. International, Official Methods of Analysis of the Assosiation of Official Analytical Chemists International, 17th ed.; Association of Official Analytical Communities: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Redhouane, B.; Khaled, B.; Hadjira, B.; Imene, I.; Abderrezak, K.; Fethia, F.; Švarc-Gajić, J. Evaluation of some biological activities of phenolic compounds obtained from two Algerian medicinal plants: Mentha rotundifolia and Satureja calamintha. APTEFF Acta Period. Technol 2020, 51, 87–102. [Google Scholar] [CrossRef]
- Shehata, M.G.; Awad, T.S.; Asker, D.; El Sohaimy, S.A.; Abd El-Aziz, N.M.; Youssef, M.M. Antioxidant and antimicrobial activities and UPLC-ESI-MS/MS polyphenolic profile of sweet orange peel extracts. Curr. Res. Food Sci. 2021, 4, 326–335. [Google Scholar] [CrossRef]
- Tomás-Navaro, M.; Vallejo, F.; Tomás-Barberán, F.A. Bioavailability and metabolism of citrus fruit beverage flavanones in humans. In Polyphenols in Human Health and Disease; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Elesvier: Amsterdam, The Netherlands, 2014; Volume 1, pp. 537–551. [Google Scholar]
- Pontifex, M.G.; Malik, M.; Connell, E.; Muller, M.; Vauzour, D. Citrus polyphenols in brain health and disease: Current perspectives. Front. Neurosci. 2021, 15, 640648. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Larrauri, J.A.; Rupérez, P.; Saura-Calixto, F. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem. 1997, 45, 1390–1393. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of temperatures on polyphenols during extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Palma, M.; Piñeiro, Z.; Barroso, C.G. Stability of phenolic compounds during extraction with superheated solvents. J. Chromatogr. A 2001, 921, 169–174. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Pérez-Jiménez, J.; Torres, J.L.; Agosin, E.; Pérez-Correa, J.R. Effects of temperature and time on polyphenolic content and antioxidant activity in the pressurized hot water extraction of deodorized thyme (Thymus vulgaris). J. Agric. Food Chem. 2012, 60, 10920–10929. [Google Scholar] [CrossRef]
- Álvarez-Casas, M.; García-Jares, C.; Llompart, M.; Lores, M. Effect of experimental parameters in the pressurized solvent extractionof polyphenolic compounds from white grape marc. Food Chem. 2014, 157, 524–532. [Google Scholar] [CrossRef]
- Omboa, O.S.; Obafaye, R.O.; Salawu, S.O.; Boligon, A.A.; Athayde, M.L. HPLC-DAD phenolic caracterization and antioxidant activities of ripe and unripe sweet orange peels. Antioxidants 2015, 4, 498–512. [Google Scholar] [CrossRef] [Green Version]
- Nayak, B.; Dahmoune, F.; Moussi, K.; Remini, H.; Dairi, S.; Aoun, O.; Khodir, M. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chem. 2015, 187, 507–516. [Google Scholar] [CrossRef]
- Lee, G.J.; Lee, S.Y.; Kang, N.-G.; Jin, M.H. A multi-faceted comparison of phytochemicals in seven citrus peels and improvement of chemical composition and antioxidant activity by steaming. LWT Food Sci. Technol. 2022, 160, 113297. [Google Scholar] [CrossRef]
- Selahvarzi, A.; Ramezan, Y.; Sanjabi, M.R.; Namdar, B.; Akbarmivehie, M.; Mirsaeedghazi, H.; Azarikia, F. Optimization of ultrasonic-assisted extraction of phenolic compounds from pomegranate and orange peels and their antioxidant activity in a functional drink. Food Biosci. 2022, 49, 101918. [Google Scholar] [CrossRef]
- Gómez-Urios, C.; Viñas-Ospino, A.; Puchades-Colera, P.; Blesa, J.; López-Malo, D.; Frígola, A.; Esteve, M.J. Choline chloride-based natural deep eutectic solvents for the extraction and stability of phenolic compounds, ascorbic acid, and antioxidant capacity from Citrus sinensis peel. LWT Food Sci. Technol. 2023, 177, 114595. [Google Scholar] [CrossRef]
- Makni, M.; Jemai, R.; Kriaa, W.; Chtourou, Y.; Fetovi, H. Citrus limon from Tunisia: Phytochemical and physicochemical properties and biological activities. BioMed Res. Int. 2018, 2018, 6251546. [Google Scholar] [CrossRef] [Green Version]
- Rizaldy, D.; Insanu, M.; Sabila, N.; Haniffadly, A.; Zahra, A.A.; Pratiwi, S.N.E.; Mudrika, S.N.; Hartati, R.; Fidrianny, I. Lemon (Citrus limon L.): Antioxidative activity and its marker compound. Biointerface Res. Appl. Chem. 2023, 13, 21. [Google Scholar]
- Wang, F.; Chen, L.; Chen, H.; Chen, S.; Liu, Y. Analysis of flavonoid methabolites in citrus peels (Citrus reticulata “Dahongpao”) using UPLC-ESI-MS/MS. Molecules 2019, 24, 2680. [Google Scholar] [CrossRef] [Green Version]
- Castro-Vazquez, L.; Alañón, M.E.; Rodríguez-Robledo, V.; Pérez-Coello, M.S.; Hermosín-Gutierrez, I.; Díaz-Maroto, M.C.; Jordán, J.; Galindo, M.F.; Arroyo-Jiménez, M.d.M. Bioactive flavonoids, antioxidant behaviour, and cytoprotective effects of dried grapefruit peels (Citrus paradisi Macf.). Oxid. Med. Cell. Longev. 2016, 2016, 8915729. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.A.M.; Hussein, S.M. Chemical and technological studies on pink grapefruit (Citrus paradise L.) peels. 1-Effect of storage conditions on gross chemical composition, phytochemical components and oil stability of pink grapefruit peels. World J. Dairy Food Sci. 2017, 12, 115–123. [Google Scholar]
- Ibañez, E.; Kubátová, A.; Señoráns, F.J.; Cavero, S.; Reglero, U.; Hawthorne, S.B. Subcritical water extraction of antioxidant compounds from rosemary plants. J. Agric. Food Chem. 2003, 51, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Andrew, J.; Masetlwa, J.; Tesfaye, T.; Sithole, B. Beneficiation of eucalyptus tree barks in the context of an integrated biorefinery—Optimisation of accelerated solvent extraction (ASE) of polyphenolic compounds using response surface methodology. Sustain. Chem. Pharm. 2020, 18, 100327. [Google Scholar] [CrossRef]
- Hossain, M.B.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Optimisation of accelerated solvent extraction of antioxidant compounds from rosemary (Rosmarinus officinalis L.), marjoram (Origanum majorana L.) and oregano (Origanum vulgare L.) using response surface methodology. Food Chem. 2011, 126, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Budrat, P.; Shotipruk, A. Enhanced recovery of phenolic compounds from bitter melon (Momordica charantia) by subcritical water extraction. Sep. Purif. Technol. 2009, 66, 125–129. [Google Scholar] [CrossRef]
- Repajić, M.; Cegledi, E.; Kruk, V.; Pedisić, S.; Çinar, F.; Kovačević, D.B.; Žutić, I.; Dragojević-Uzelac, V. Accelerated solvent extraction as a green tool for the recovery of polyphenols and pigments from wild nettle leaves. Processes 2020, 8, 803. [Google Scholar] [CrossRef]
- Amo-Mensah, J.; Darko, G.; Borquaye, L.S. Anti-inflammatory and antioxidant activities of the root and bark extracts of Vitex grandifolia (Verbanaceae). Sci. Afr. 2020, 10, e00586. [Google Scholar] [CrossRef]
- Umdale, S.; Mahadik, R.; Otari, P.; Gore, N.; Mundala, P.; Ahire, M. Phytochemical composition, and antioxidant potential of Frerea indica Dalz.: A critically endangered, endemic and monotypic genus of the Western Ghats of India. Biocatal. Agric. Biotechnol. 2021, 35, 102080. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Sarikurkcu, C.; Kocak, M.S.; Calapoglu, M.; Uren, M.C.; Ceylan, O. Plantago lanceolata as a source of health-beneficial phytochemicals: Phenolics profile and antioxidant capacity. Food Biosci. 2020, 34, 100536. [Google Scholar] [CrossRef]
- Da Cruz, J.D.; Mpalantinos, M.A.; Ramos, A.d.S.; Ferreira, J.L.P.; De Oliveira, A.A.; Netto Júnior, N.L.; Silva, J.R.d.A. Chemical standardization, antioxidant activity and phenolic contents of cultivated Alpinia zerumbet preparations. Ind. Crops Prod. 2020, 151, 112495. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, Q.; Fan, D.; Xiao, J.; Zhao, Y.; Cheng, K.-W.; Wang, M. Novel roles of hydrocolloids in foods: Inhibition of toxic maillard reaction and their harmful effects. Trends Food Techol. 2021, 111, 706–715. [Google Scholar] [CrossRef]
- Wu, B.; Chai, X.; He, A.; Huang, Z.; Chen, S.; Rao, P.; Ke, L.; Xiang, L. Inhibition of acrylamide toxicity in vivo by arginine-glucose maillard reaction products. Food Chem. Toxicol. 2021, 154, 112315. [Google Scholar] [CrossRef]
- Jia, W.; Guo, A.; Zhang, R.; Shi, L. Mechanism of natural antioxidants regulating advanced glycosylation end products of maillard reaction. Food Chem. 2023, 404, 134541. [Google Scholar] [CrossRef]
- Barrales, F.M.; Silveira, P.; Barbosa, P.d.P.M.; Ruviaro, R.; Paulino, B.N.; Pastore, G.M.; Macedo, G.A.; Martinez, J. Recovery of phenolic compounds from citrus by-products using pressurized liquids-an application to orange peel. Food Bioprod. Process. 2018, 112, 9–21. [Google Scholar] [CrossRef]
- Kroh, L.W. Caramelisation in food and beverages. Food Chem. 1994, 51, 373–379. [Google Scholar] [CrossRef]
- Chen, J.; Liu, F.; Ismail, B.B.; Wang, W.; Xu, E.; Pan, H.; Ye, X.; Liu, D.; Cheng, H. Effects of ethephon and low-temperature treatments on blood oranges (Citrus sinensis L. Osbeck): Anthocyanin accumulation and volatile profile changes during storage. Food Chem. 2022, 393, 133381. [Google Scholar] [CrossRef]
- De Melo, L.F.M.; Aquino-Martins, V.G.D.Q.; Da Silva, A.P.; Rocha, H.A.O.; Scortecci, K.C. Biological and pharmacological aspects of tannins and potential biotechnological applications. Food Chem. 2023, 414, 135645. [Google Scholar] [CrossRef]
- Lyndem, S.; Sarmah, S.; Das, S.; Roy, A.S. Coumarin derivatives: Biomedical properties and interactions with carrier proteins. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 73, pp. 173–220. [Google Scholar]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medicinal aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
Orange Peel Extract | Extraction Temperature (°C) | Extraction Time (min) |
---|---|---|
Extract 1 | 200 | 60 |
Extract 2 | 180 | 60 |
Extract 3 | 150 | 60 |
Extract 4 | 150 | 35 |
Extract 5 | 120 | 5 |
Orange Peel Extract | Yield (%) | TPC (mg GAE/g) | TFC (mg RE/g) |
---|---|---|---|
Extract 1 | 45.56 ± 0.53 a | 27.58 ± 0.38 d | 3.94 ± 0.03 e |
Extract 2 | 44.68 ± 0.43 b | 29.43 ± 0.11 c | 5.29 ± 0.07 d |
Extract 3 | 43.65 ± 0.39 c | 36.16 ± 0.28 b | 8.18 ± 0.08 b |
Extract 4 | 42.26 ± 0.47 c | 36.59 ± 0.56 b | 7.88 ± 0.06 c |
Extract 5 | 41.28 ± 0.46 d | 45.45 ± 0.28 a | 9.29 ± 0.08 a |
Orange Peel Extract | TCC (g GE/g) | Pectin Content (%) | DFC (%) |
---|---|---|---|
Extract 1 | 0.14 ± 0.01 e | 5.78 ± 0.55 e | 0.47 a |
Extract 2 | 0.30 ± 0.01 d | 7.24 ± 0.84 d | n.d. |
Extract 3 | 0.48 ± 0.02 a | 15.05 ± 0.82 c | n.d. |
Extract 4 | 0.38 ± 0.02 c | 17.06 ± 1.64 b | 0.24 b |
Extract 5 | 0.43 ± 0.01 b | 23.09 ± 0.90 a | 0.26 b |
Orange Peel Extract | |||||
---|---|---|---|---|---|
Chemical Classes | Extract 1 | Extract 2 | Extract 3 | Extract 4 | Extract 5 |
Free Flavonoids | + | ++ | +++ | +++ | +++ |
Anthocyanins | - | - | - | - | - |
Total Tannins | +++ | +++ | +++ | +++ | +++ |
Gallic Tannins | +++ | +++ | +++ | +++ | +++ |
Reducing Sugars | +++ | +++ | +++ | +++ | +++ |
Cardiac Glycosides | ++ | ++ | ++ | ++ | ++ |
Alkaloids | + | + | ++ | ++ | - |
Coumarins | + | + | + | + | + |
Saponosides | - | - | - | - | - |
O-Heterosides | +++ | +++ | +++ | +++ | +++ |
C-Heterosides | +++ | +++ | +++ | +++ | +++ |
Extraction Technique | TPC (mg GAE/g DW *) | TFC | Yield (%) | Reference |
---|---|---|---|---|
Orange peel | ||||
Decoction (water) | 9.40 | 4.20 mg QE/g DW | - | [35] |
MAE (aqueous acetone) | 12.09 | - | - | [36] |
UAE (aqueous acetone) | 10.35 | - | ||
ASE (aqueous acetone) | 6.26 | - | ||
CSE (aqueous acetone) | 10.21 | - | ||
Maceration (water) | 2.56 | 0.52 mg CE/g DW | 9.40 | [26] |
Maceration (ethanol) | 3.45 | 0.80 | 10.90 | |
Maceration (methanol) | 3.24 | 0.52 | 15.56 | |
Maceration (acetone) | 3.06 | 0.58 | 8.23 | |
Maceration (petroleum ether) | 1.90 | 0.45 | 10.16 | |
Maceration (hexane) | 1.53 | 0.40 | 11.80 | |
High-temperature pretreatment; extraction with methanol | 22.4 | 12.7 mg RE/g DW | - | [37] |
UAE (aqueous ethanol) | 1.86 | - | 11.00 | [38] |
NADES (choline chloride-malic acid) | 10.53 | 0.95 mg CE/g DW | - | [39] |
SWE | 45.45 | 9.29 mg RE/g DW | 41.28–45.56 | This work |
Lemon peel | ||||
Hydroethanolic extracts | 105–204 | 27–56 mg QE/g | 10.64–14.33 | [40] |
Ethanolic, n-hexane, ethylacetate extracts | 8.9–15.2 | 2.49–28.9 mg QE/g | - | [41] |
Tangerine peel | ||||
Methanolic extract | 122.5 | - | - | [42] |
Grapefruit peel | ||||
Accelerated solvent extraction | 28–85 | - | - | [43] |
Hexane:methanol:acetone (2:1:1) | 10.78 | - | - | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brezo-Borjan, T.; Švarc-Gajić, J.; Morais, S.; Delerue-Matos, C.; Rodrigues, F.; Lončarević, I.; Pajin, B. Chemical and Biological Characterisation of Orange (Citrus sinensis) Peel Extracts Obtained by Subcritical Water. Processes 2023, 11, 1766. https://doi.org/10.3390/pr11061766
Brezo-Borjan T, Švarc-Gajić J, Morais S, Delerue-Matos C, Rodrigues F, Lončarević I, Pajin B. Chemical and Biological Characterisation of Orange (Citrus sinensis) Peel Extracts Obtained by Subcritical Water. Processes. 2023; 11(6):1766. https://doi.org/10.3390/pr11061766
Chicago/Turabian StyleBrezo-Borjan, Tanja, Jaroslava Švarc-Gajić, Simone Morais, Cristina Delerue-Matos, Francisca Rodrigues, Ivana Lončarević, and Biljana Pajin. 2023. "Chemical and Biological Characterisation of Orange (Citrus sinensis) Peel Extracts Obtained by Subcritical Water" Processes 11, no. 6: 1766. https://doi.org/10.3390/pr11061766
APA StyleBrezo-Borjan, T., Švarc-Gajić, J., Morais, S., Delerue-Matos, C., Rodrigues, F., Lončarević, I., & Pajin, B. (2023). Chemical and Biological Characterisation of Orange (Citrus sinensis) Peel Extracts Obtained by Subcritical Water. Processes, 11(6), 1766. https://doi.org/10.3390/pr11061766