A Critical Assessment of Extraction Methodologies for the Valorization of Agricultural Wastes: Polyphenolic Profile and Bioactivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Samples
2.3. Polyphenols Extraction
2.3.1. Maceration at Room Temperature (M20C)
2.3.2. Maceration at Higher Temperature (M60C)
2.3.3. Microwave-Assisted Extraction (MAE)
2.3.4. Subcritical Water Extraction (SWE)
2.4. Total Phenolic (TPC) and Total Flavonoid Content (TFC)
2.5. Radical Scavenging Activity
2.6. Ferric Reducing Antioxidant Power (FRAP)
2.7. HPLC–DAD Analysis
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corrado, S.; Caldeira, C.; Eriksson, M.; Hanssen, O.J.; Hauser, H.-E.; van Holsteijn, F.; Liu, G.; Östergren, K.; Parry, A.; Secondi, L.; et al. Food Waste Accounting Methodologies: Challenges, Opportunities, and Further Advancements. Glob. Food Secur. 2019, 20, 93–100. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO) Overview|Sustainable Development Goals|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/sustainable-development-goals/overview/en/ (accessed on 24 November 2022).
- Ueda, J.M.; Pedrosa, M.C.; Heleno, S.A.; Carocho, M.; Ferreira, I.C.F.R.; Barros, L. Food Additives from Fruit and Vegetable By-Products and Bio-Residues: A Comprehensive Review Focused on Sustainability. Sustainability 2022, 14, 5212. [Google Scholar] [CrossRef]
- Luque, R.; Clark, J.H. Valorisation of Food Residues: Waste to Wealth Using Green Chemical Technologies. Sustain. Chem. Process. 2013, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Saiwal, N.; Dahiya, M.; Dureja, H. Nutraceutical Insight into Vegetables and Their Potential for Nutrition Mediated Healthcare. Curr. Nutr. Food Sci. 2019, 15, 441–453. [Google Scholar] [CrossRef]
- Islam, A.; Alam, F.; Solayman, M.; Khalil, M.I.; Kamal, M.A.; Gan, S.H. Dietary Phytochemicals: Natural Swords Combating Inflammation and Oxidation-Mediated Degenerative Diseases. Oxidative Med. Cell. Longev. 2016, 2016, 9060649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quitério, E.; Grosso, C.; Ferraz, R.; Delerue-Matos, C.; Soares, C. A Critical Comparison of the Advanced Extraction Techniques Applied to Obtain Health-Promoting Compounds from Seaweeds. Mar. Drugs 2022, 20, 677. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, B.; Christen, P. Recent Extraction Techniques for Natural Products: Microwave-Assisted Extraction and Pressurised Solvent Extraction. Phytochem. Anal. 2002, 13, 105–113. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Amjad, S.; Ashraf, S.; Khawar, L.; Safdar, M.N.; Jabbar, S.; Nadeem, M.; Mahmood, S.; Murtaza, M.A. Extraction of Polyphenols from Apple and Pomegranate Peels Employing Different Extraction Techniques for the Development of Functional Date Bars. Int. J. Fruit Sci. 2020, 20, S1201–S1221. [Google Scholar] [CrossRef]
- Contini, M.; Baccelloni, S.; Massantini, R.; Anelli, G. Extraction of Natural Antioxidants from Hazelnut (Corylus Avellana L.) Shell and Skin Wastes by Long Maceration at Room Temperature. Food Chem. 2008, 110, 659–669. [Google Scholar] [CrossRef]
- Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. Maximizing Total Phenolics, Total Flavonoids Contents and Antioxidant Activity of Moringa Oleifera Leaf Extract by the Appropriate Extraction Method. Ind. Crop. Prod. 2013, 44, 566–571. [Google Scholar] [CrossRef]
- Fernández-Agulló, A.; Pereira, E.; Freire, M.S.; Valentão, P.; Andrade, P.B.; González-álvarez, J.; Pereira, J.A. Influence of Solvent on the Antioxidant and Antimicrobial Properties of Walnut (Juglans Regia L.) Green Husk Extracts. Ind. Crop. Prod. 2013, 42, 126–132. [Google Scholar] [CrossRef]
- Yuan, B.; Lu, M.; Eskridge, K.M.; Isom, L.D.; Hanna, M.A. Extraction, Identification, and Quantification of Antioxidant Phenolics from Hazelnut (Corylus Avellana L.) Shells. Food Chem. 2018, 244, 7–15. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhang, X.; Xu, H.; Xu, C.; Yuan, F.; Knez, Ž.; Novak, Z.; Gao, Y. Subcritical Water Extraction of Phenolic Compounds from Pomegranate (Punica Granatum L.) Seed Residues and Investigation into Their Antioxidant Activities with HPLC–ABTS+ Assay. Food Bioprod. Process. 2012, 90, 215–223. [Google Scholar] [CrossRef]
- Kim, S.-W.; Ko, M.-J.; Chung, M.-S. Extraction of the Flavonol Quercetin from Onion Waste by Combined Treatment with Intense Pulsed Light and Subcritical Water Extraction. J. Clean. Prod. 2019, 231, 1192–1199. [Google Scholar] [CrossRef]
- Jokić, S.; Gagić, T.; Knez, Ž.; Šubarić, D.; Škerget, M. Separation of Active Compounds from Food By-Product (Cocoa Shell) Using Subcritical Water Extraction. Molecules 2018, 23, 1408. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves Rodrigues, L.G.; Mazzutti, S.; Vitali, L.; Micke, G.A.; Ferreira, S.R.S. Recovery of Bioactive Phenolic Compounds from Papaya Seeds Agroindustrial Residue Using Subcritical Water Extraction. Biocatal. Agric. Biotechnol. 2019, 22, 101367. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barroso, M.F.; Boeykens, A.; Withouck, H.; Morais, S.; Delerue-Matos, C. Valorization of Apple Tree Wood Residues by Polyphenols Extraction: Comparison between Conventional and Microwave-Assisted Extraction. Ind. Crop. Prod. 2017, 104, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Mellinas, A.C.; Jiménez, A.; Garrigós, M.C. Optimization of Microwave-Assisted Extraction of Cocoa Bean Shell Waste and Evaluation of Its Antioxidant, Physicochemical and Functional Properties. LWT 2020, 127, 109361. [Google Scholar] [CrossRef]
- Florin Danet, A. Recent Advances in Antioxidant Capacity Assays. In Antioxidants—Benefits, Sources, Mechanisms of Action; IntechOpen: London, UK, 2021. [Google Scholar]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Leyva-Porras, C.; Román-Aguirre, M.; Cruz-Alcantar, P.; Pérez-Urizar, J.T.; Saavedra-Leos, M.Z. Application of Antioxidants as an Alternative Improving of Shelf Life in Foods. Polysaccharides 2021, 2, 594–607. [Google Scholar] [CrossRef]
- Vladić, J.; Janković, T.; Živković, J.; Tomić, M.; Zdunić, G.; Šavikin, K.; Vidović, S. Comparative Study of Subcritical Water and Microwave-Assisted Extraction Techniques Impact on the Phenolic Compounds and 5-Hydroxymethylfurfural Content in Pomegranate Peel. Plant Foods Hum. Nutr. 2020, 75, 553–560. [Google Scholar] [CrossRef]
- Radojković, M.; Moreira, M.M.; Soares, C.; Fátima Barroso, M.; Cvetanović, A.; Švarc-Gajić, J.; Morais, S.; Delerue-Matos, C. Microwave-Assisted Extraction of Phenolic Compounds from Morus Nigra Leaves: Optimization and Characterization of the Antioxidant Activity and Phenolic Composition. J. Chem. Technol. Biotechnol. 2018, 93, 1684–1693. [Google Scholar] [CrossRef] [Green Version]
- Švarc-Gajić, J.; Cerdà, V.; Clavijo, S.; Suárez, R.; Mašković, P.; Cvetanović, A.; Delerue-Matos, C.; Carvalho, A.P.; Novakov, V. Bioactive Compounds of Sweet and Sour Cherry Stems Obtained by Subcritical Water Extraction. J. Chem. Technol. Biotechnol. 2018, 93, 1627–1635. [Google Scholar] [CrossRef] [Green Version]
- Nastić, N.; Lozano-Sánchez, J.; Borrás-Linares, I.; Švarc-Gajić, J.; Segura-Carretero, A. New Technological Approaches for Recovering Bioactive Food Constituents from Sweet Cherry (Prunus Avium L.) Stems. Phytochem. Anal. 2020, 31, 119–130. [Google Scholar] [CrossRef]
- Švarc-Gajić, J.; Cvetanović, A.; Segura-Carretero, A.; Linares, I.B.; Mašković, P. Characterisation of Ginger Extracts Obtained by Subcritical Water. J. Supercrit. Fluids 2017, 123, 92–100. [Google Scholar] [CrossRef]
- Cvetanović, A.; Švarc-Gajić, J.; Zeković, Z.; Jerković, J.; Zengin, G.; Gašić, U.; Tešić, Ž.; Mašković, P.; Soares, C.; Fatima Barroso, M.; et al. The Influence of the Extraction Temperature on Polyphenolic Profiles and Bioactivity of Chamomile (Matricaria Chamomilla L.) Subcritical Water Extracts. Food Chem. 2019, 271, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Nastić, N.; Švarc-Gajić, J.; Delerue-Matos, C.; Barroso, M.F.; Soares, C.; Moreira, M.M.; Morais, S.; Mašković, P.; Gaurina Srček, V.; Slivac, I.; et al. Subcritical Water Extraction as an Environmentally-Friendly Technique to Recover Bioactive Compounds from Traditional Serbian Medicinal Plants. Ind. Crop. Prod. 2018, 111, 579–589. [Google Scholar] [CrossRef] [Green Version]
- Barroso, M.F.; Ramalhosa, M.J.; Alves, R.C.; Dias, A.; Soares, C.M.D.; Oliva-Teles, M.T.; Delerue-Matos, C. Total Antioxidant Capacity of Plant Infusions: Assessment Using Electrochemical DNA-Based Biosensor and Spectrophotometric Methods. Food Control. 2016, 68, 153–161. [Google Scholar] [CrossRef]
- Mendes, M.; Carvalho, A.P.; Magalhães, J.M.C.S.; Moreira, M.; Guido, L.; Gomes, A.M.; Delerue-Matos, C. Response Surface Evaluation of Microwave-Assisted Extraction Conditions for Lycium Barbarum Bioactive Compounds. Innov. Food Sci. Emerg. Technol. 2016, 33, 319–326. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep – Analytical Greenness Metric for Sample Preparation. Trac Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Tobiszewski, M.; Wojnowski, W.; Psillakis, E. A Tutorial on AGREEprep an Analytical Greenness Metric for Sample Preparation. Adv. Sample Prep. 2022, 3, 100025. [Google Scholar] [CrossRef]
- Afonso, S.; Oliveira, I.V.; Meyer, A.S.; Aires, A.; Saavedra, M.J.; Gonçalves, B. Phenolic Profile and Bioactive Potential of Stems and Seed Kernels of Sweet Cherry Fruit. Antioxidants 2020, 9, 1295. [Google Scholar] [CrossRef]
- Babotă, M.; Voştinaru, O.; Păltinean, R.; Mihali, C.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R.; Mocan, A.; Crişan, O.; Nicula, C.; et al. Chemical Composition, Diuretic, and Antityrosinase Activity of Traditionally Used Romanian Cerasorum Stipites. Front. Pharmacol. 2021, 12, 647947. [Google Scholar] [CrossRef]
- Dulyanska, Y.; Cruz-Lopes, L.P.; Esteves, B.; Ferreira, J.V.; Domingos, I.; Lima, M.J.; Correia, P.M.R.; Ferreira, M.; Fragata, A.; Barroca, M.J.; et al. Extraction of Phenolic Compounds from Cherry Seeds: A Preliminary Study. Agronomy 2022, 12, 1227. [Google Scholar] [CrossRef]
- Žugić, A.; Dordević, S.; Arsić, I.; Marković, G.; Živković, J.; Jovanović, S.; Tadić, V. Antioxidant Activity and Phenolic Compounds in 10 Selected Herbs from Vrujci Spa, Serbia. Ind. Crop. Prod. 2014, 52, 519–527. [Google Scholar] [CrossRef]
- Yu, Y.; Li, H.; Zhang, B.; Wang, J.; Shi, X.; Huang, J.; Yang, J.; Zhang, Y.; Deng, Z. Nutritional and Functional Components of Mulberry Leaves from Different Varieties: Evaluation of Their Potential as Food Materials. Int. J. Food Prop. 2018, 21, 1495–1507. [Google Scholar] [CrossRef] [Green Version]
- Radojković, M.; Jokic, S.; Vidovic, S. Determination of Optimal Extraction Parameters of Mulberry Leaves Using Response Surface Methodology (RSM). Application of Innovative Techniques of the Extraction of Bioactive Components from by-Products of Plant Origin View Project Novel Extracts and Bioactive Compounds from under-Utilized Resources for High-Value Applications (BioUtilize) View Project. Rom. Biotechnol. Lett. 2012, 17, 7295–7308. [Google Scholar]
- Panyatip, P.; Padumanonda, T.; Yongram, C.; Kasikorn, T.; Sungthong, B.; Puthongking, P. Impact of Tea Processing on Tryptophan, Melatonin, Phenolic and Flavonoid Contents in Mulberry (Morus Alba L.) Leaves: Quantitative Analysis by LC-MS/MS. Molecules 2022, 27, 4979. [Google Scholar] [CrossRef] [PubMed]
- Agulló-Chazarra, L.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A.; Micol, V.; Herranz-López, M.; Barrajón-Catalán, E. Sweet Cherry Byproducts Processed by Green Extraction Techniques as a Source of Bioactive Compounds with Antiaging Properties. Antioxidants 2020, 9, 418. [Google Scholar] [CrossRef]
- Dulyanska, Y.; Cruz-Lopes, L.; Esteves, B.; Ferreira, J.V.; Domingos, I.; Lima, M.J.; Correia, P.M.R.; Ferreira, M.; Fragata, A.; Barroca, M.J.; et al. Evaluation of the Antioxidant Activity of Extracts Obtained Form Cherry Seeds. J. Hyg. Eng. Des. 2022, 40, 221–226. [Google Scholar]
- Alexandre, E.M.C.; Araújo, P.; Duarte, M.F.; de Freitas, V.; Pintado, M.; Saraiva, J.A. Experimental Design, Modeling, and Optimization of High-Pressure-Assisted Extraction of Bioactive Compounds from Pomegranate Peel. Food Bioprocess Technol. 2017, 10, 886–900. [Google Scholar] [CrossRef]
- Himel, M.A.R.; Ahmed, T.; Hossain, M.A.; Moazzem, M.S. Response Surface Optimization to Extract Antioxidants from Freeze-Dried Seeds and Peel of Pomegranate (Punica Granatum L.). Biomass Convers Biorefin 2022, 1, 1–16. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Gilbert-López, B.; Mendiola, J.A.; Quirantes-Piné, R.; Segura-Carretero, A.; Ibáñez, E. Optimization of Microwave-Assisted Extraction and Pressurized Liquid Extraction of Phenolic Compounds from Moringa Oleifera Leaves by Multiresponse Surface Methodology. Electrophoresis 2016, 37, 1938–1946. [Google Scholar] [CrossRef]
- Çelik, S.E.; Özyürek, M.; Güçlü, K.; Apak, R. Solvent Effects on the Antioxidant Capacity of Lipophilic and Hydrophilic Antioxidants Measured by CUPRAC, ABTS/Persulphate and FRAP Methods. Talanta 2010, 81, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant Mechanism of Tea Polyphenols and Its Impact on Health Benefits. Anim. Nutr. 2020, 6, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Hunyadi, A. The Mechanism(s) of Action of Antioxidants: From Scavenging Reactive Oxygen/Nitrogen Species to Redox Signaling and the Generation of Bioactive Secondary Metabolites. Med. Res. Rev. 2019, 39, 2505–2533. [Google Scholar] [CrossRef] [Green Version]
- Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of Antioxidant Potency of Commonly Consumed Polyphenol-Rich Beverages in the United States. J. Agric. Food Chem. 2008, 56, 1415–1422. [Google Scholar] [CrossRef]
- Huang, D.; Boxin, O.U.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Zhang, D.; Chu, L.; Liu, Y.; Wang, A.; Ji, B.; Wu, W.; Zhou, F.; Wei, Y.; Cheng, Q.; Cai, S.; et al. Analysis of the Antioxidant Capacities of Flavonoids under Different Spectrophotometric Assays Using Cyclic Voltammetry and Density Functional Theory. J. Agric. Food Chem. 2011, 59, 10277–10285. [Google Scholar] [CrossRef]
- Kelley, D.; Adkins, Y.; Laugero, K. A Review of the Health Benefits of Cherries. Nutrients 2018, 10, 368. [Google Scholar] [CrossRef] [Green Version]
- Hooman, N.; Mojab, F.; Nickavar, B.; Pouryousefi-Kermani, P. Diuretic Effect of Powdered Cerasus Avium (Cherry) Tails on Healthy Volunteers—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/19783515/ (accessed on 17 January 2023).
- Lim, S.; Choi, C.-I. Pharmacological Properties of Morus Nigra L. (Black Mulberry) as A Promising Nutraceutical Resource. Nutrients 2019, 11, 437. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, A.; Hooshmand, S. Protective Effects of Morus Nigra and Its Phytochemicals against Hepatotoxicity: A Review of Preclinical Studies. Pharmacology 2021, 106, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Eghbali, S.; Askari, S.F.; Avan, R.; Sahebkar, A. Therapeutic Effects of Punica Granatum (Pomegranate): An Updated Review of Clinical Trials. J. Nutr. Metab. 2021, 2021, 97162. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escarpa, A.; González, M.C. Approach to the Content of Total Extractable Phenolic Compounds from Different Food Samples by Comparison of Chromatographic and Spectrophotometric Methods. Anal. Chim. Acta 2001, 427, 119–127. [Google Scholar] [CrossRef]
- Aires, A.; Dias, C.; Carvalho, R.; Saavedra, M.J. Analysis of Glycosylated Flavonoids Extracted from Sweet-Cherry Stems, as Antibacterial Agents against Pathogenic Escherichia Coli Isolates. Acta Biochim. Pol. 2017, 64, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Radojković, M.; Zeković, Z.; Mašković, P.; Vidović, S.; Mandić, A.; Mišan, A.; Đurović, S. Biological Activities and Chemical Composition of Morus Leaves Extracts Obtained by Maceration and Supercritical Fluid Extraction. J. Supercrit. Fluids 2016, 117, 50–58. [Google Scholar] [CrossRef]
- Kaderides, K.; Kyriakoudi, A.; Mourtzinos, I.; Goula, A.M. Potential of Pomegranate Peel Extract as a Natural Additive in Foods. Trends Food Sci. Technol. 2021, 115, 380–390. [Google Scholar] [CrossRef]
- Casazza, A.A.; Aliakbarian, B.; Mantegna, S.; Cravotto, G.; Perego, P. Extraction of Phenolics from Vitis Vinifera Wastes Using Non-Conventional Techniques. J. Food Eng. 2010, 100, 50–55. [Google Scholar] [CrossRef]
- Jarić, A.M.; Šeremet, D.; Cebin, A.V.; Jokić, S.; Komes, D. The Multiple-Response Modeling of Heat-Assisted, Microwave-Assisted and Subcritical Water Extraction on Selected Phenolics from Traditional Plant Species Teucrium Montanum. Prep. Biochem. Biotechnol. 2021, 52, 809–822. [Google Scholar] [CrossRef]
- Rodrigues, L.G.G.; Mazzutti, S.; Siddique, I.; da Silva, M.; Vitali, L.; Ferreira, S.R.S. Subcritical Water Extraction and Microwave-Assisted Extraction Applied for the Recovery of Bioactive Components from Chaya (Cnidoscolus Aconitifolius Mill.). J Supercrit Fluids 2020, 165, 104976. [Google Scholar] [CrossRef]
Samples | Temperature (°C) | Pressure (bar) | Ratio (g/mL) |
---|---|---|---|
Mulberry leaves | 130 | 50 | 1:40 |
Pomegranate peels | 145 | 45 | 1:40 |
Cherries stems | 120 | 30 | 1:10 |
White cherries seeds | 120 | 30 | 1:10 |
Black cherries seeds | 120 | 30 | 1:10 |
Compound | Calibration Equation | R2 | LOD mg/L | LOQ mg/L |
---|---|---|---|---|
gallic acid | 50,706 (±214) − 6217 (±5928) | 0.9999 | 0.55 | 1.83 |
protocatechuic acid | 33,664 (±661) − 21,592 (±19,863) | 0.9988 | 2.77 | 4.24 |
(+)-catechin | 13,105 (±138) + 2406 (±3573) | 0.9997 | 1.28 | 4.27 |
chlorogenic acid | 56,066 (±556) − 32,375 (±14,629) | 0.9997 | 1.23 | 4.09 |
vanillic acid | 35,314 (±321) − 931 (±7773) | 0.9998 | 1.03 | 3.45 |
caffeic acid | 106,608 (±566) − 16,156 (±13,030) | 0.9999 | 0.57 | 1.91 |
(−)-epicatechin | 69,040 (±491) − 25,251 (±12,141) | 0.9998 | 0.83 | 2.75 |
syringic acid | 21,490 (±574) + 16,716 (±14,077) | 0.998 | 3.08 | 5.26 |
β-resorcylic acid | 12,308 (±49) − 423 (±1368) | 0.9999 | 0.52 | 1.74 |
p-coumaric acid | 127,784 (±937) − 3060 (±23,418) | 0.9998 | 0.86 | 2.87 |
ferulic acid | 107,272 (±902) − 9853 (±22,762) | 0.9998 | 1.00 | 3.32 |
sinapic acid | 95,532 (±1417) − 8888 (±36,837) | 0.9993 | 1.81 | 6.04 |
naringin | 33,168 (±49) + 616 (±1247) | 0.9999 | 0.18 | 0.59 |
rutin | 31,543 (±79) + 1460 (±1971) | 0.9999 | 0.29 | 0.98 |
cinnamic acid | 163,683 (±393) + 19,094 (±11,379) | 0.9999 | 0.33 | 1.09 |
naringenin | 62,404 (±494) + 12,483 (±12,394) | 0.9998 | 0.93 | 3.11 |
quercetin | 64,868 (±1312) − 42,618 (±31,783) | 0.9988 | 2.30 | 5.67 |
kaempferol | 73,460 (±1244) + 14,914 (±30,308) | 0.9991 | 1.94 | 6.46 |
Methods | Extraction | Cherry Stems (CSs) | White Cherry Seeds (WCSs) | Black Cherry Seeds (BCSs) | Mulberry Leaves (MLs) | Pomegranate Peels (PPs) |
---|---|---|---|---|---|---|
TPC (mg GAE/g dw) | SWE MAE M20C M60C | 14.1 ± 1.3 A;a 48.7 ± 4.6 C;b 13.8 ± 1.2 A;b 31.8 ± 3.0 B;c | 17.0 ± 1.7 C;a,b 17.2 ± 1.5 C;d 6.67 ± 0.46 A;a 8.81 ± 0.85 B;a | 13.2 ± 1.3 C;a 15.6 ± 1.4 D;a 7.09 ± 0.64 A;a 10.8 ± 1.0 B;a | 20.7 ± 2.7 B;b 21.4 ± 1.8 B;a 13.1 ± 1.2 A;b 19.8 ± 1.6 B;c | 92.5 ± 8.1 A;c 310 ± 28 C;c 254 ± 24 B;c 313 ± 24 C;d |
TFC (mg EE/g dw) | SWE MAE M20C M60C | 5.86 ± 0.50 B;b 24.5 ± 2.0 C;c 1.79 ± 0.17 A;b 24.1 ± 2.2 C;d | 3.61 ± 6.30 C;a,b 5.54 ± 0.46 D;a 1.19 ± 0.11 A;b 2.92 ± 0.29 B;a | 3.08 ± 0.27 B;a 5.41 ± 0.53 D;a 2.27 ± 0.21 A;c 4.73 ± 0.36 C;b | 9.72 ± 0.64 B;c 10.6 ± 1.0 C;b 0.56 ± 0.03 A;a 10.0 ± 0.7 C;c | 15.2 ± 1.4 A;d 36.0 ± 2.8 D;d 27.1 ± 1.6 B;d 30.7 ± 2.5 C;e |
FRAP (mg AAE/g dw) | SWE MAE M20C M60C | 18.7 ± 1.5 A;a 74.6 ± 2.6 D;b 41.0 ± 2.9 B;d 45.1 ± 3.5 C;b | 19.5 ± 1.1 B;a 19.4 ± 1.5 B;a 6.08 ± 0.53 A;a 5.60 ± 0.49 A;a | 18.4 ± 1.6 A;a 18.5 ± 1.6 B;a 7.46 ± 0.56 A;b 6.69 ± 0.57 A;a | 36.4 ± 3.4 B;b 19.0 ± 1.9 B;a 9.91 ± 0.86 A;c 10.4 ± 0.7 A;a | 283 ± 14 C;c 683 ± 25 D;c 728 ± 36 B,C;e 740 ± 67 C;c |
ABTS (mg TE/g dw) | SWE MAE M20C M60C | 12.8 ± 1.2 A;b 63.0 ± 3.3 D;d 37.1 ± 3.3 B;d 44.9 ± 2.7 C;b,c | 8.59 ± 0.85 A;a 20.1 ± 1.6 C;c 7.89 ± 0.45 A;a 13.6 ± 1.2 B;a | 8.35 ± 0.82 A;a 15.7 ± 1.1 D;b 10.3 ± 0.9 B;b 12.3 ± 1.2 C;a | 37.4 ± 3.3 C;c 9.37 ± 0.91 A;a 18.8 ± 1.2 B;c 20.0 ± 1.6 B;c | 220 ± 19 A;d 618 ± 30 B,C;e 572 ± 44 B;e 628 ± 27 C;d |
Method | Extraction | Cherry Stems | White Cherry Seeds | Black Cherry Seeds | Mulberry Leaves | Pomegranate Peels |
---|---|---|---|---|---|---|
FRAP index (%) | SWE | 2.53 | 2.63 | 2.48 | 4.92 | 38.3 |
MAE | 10.1 | 2.63 | 2.50 | 2.58 | 92.4 | |
M20C | 5.55 | 0.822 | 1.01 | 1.34 | 98.4 | |
M60C | 6.18 | 0.758 | 0.905 | 1.40 | 100 | |
ABTS index (%) | SWE | 2.03 | 1.37 | 1.33 | 5.96 | 35.0 |
MAE | 10.0 | 3.20 | 2.49 | 1.49 | 97.8 | |
M20C | 5.91 | 1.26 | 1.65 | 2.99 | 91.0 | |
M60C | 7.14 | 2.16 | 1.95 | 3.18 | 100 | |
APCI (%) * | 6.18 | 1.85 | 1.79 | 2.98 | 81.6 | APCI (%) * |
Compound | SWE | MAE | M20C | M60C |
---|---|---|---|---|
Cherry stems | ||||
gallic acid | 1190 ± 56 C;c | 723 ± 19 B;b | 47.8 ± 1.9 A,B;a | 48.8 ± 1.9 A,B;a |
protocatechuic acid | 73.6 ± 4.2 B;b | 180 ± 14 B;c | 16.2 ± 0.3 A;a | 11.1 ± 0.3 A;a |
(+)-catechin | 43.7 ± 2.2 D;b | 52.3 ± 3.7 B;c | 21.9 ± 0.7 A;a | 18.6 ± 0.7 B;a |
chlorogenic acid | 30.5 ± 2.2 A;c | 19.3 ± 1.7 A;b | n.d. | 7.57 ± 0.17 A;a |
vanillic acid | 16.0 ± 0.8 B;b | 26.3 ± 2.1 B;c | 10.2 ± 0.3 C;a | 15.6 ± 0.7 B;b |
caffeic acid | 8.77 ± 0.27 A;a | 14.5 ± 1.0 C;c | 10.8 ± 0.9 B;a,b | 11.1 ± 0.9 B;b |
(−)-epicatechin | n.d. | n.d. | n.d. | n.d. |
syringic acid | n.d. | 5.92 ± 0.45 A;a | 18.4 ± 0.5 B;b | 17.6 ± 0.5 B;b |
β-resorcylic acid | n.d. | n.d. | n.d. | n.d. |
p-coumaric acid | 7.85 ± 0.22 C;c | 5.07 ± 0.38 B;b | 4.04 ± 0.29 C;a | 4.19 ± 0.08 C;a |
ferulic acid | n.d. | 10.4 ± 0.9 A | n.d. | n.d. |
sinapic acid | n.d. | 9.67 ± 0.50 A | n.d. | n.d. |
naringin | 5.01 ± 0.35 A;a | n.d. | 8.60 ± 0.29 A;b | 4.57 ± 0.29 A;a |
rutin | n.d. | n.d. | n.d. | n.d. |
cinnamic acid | 7.57 ± 0.17 A | n.d. | n.d. | n.d. |
naringenin | 4.87 ± 0.46 A;b | 3.75 ± 0.15 A;a | 3.93 ± 0.15 A;a | 4.09 ± 0.16 A;a |
quercetin | 1.70 ± 0.04 A;a | 35.1 ± 1.5 B;b | 36.4 ± 1.5 C;b | 35.4 ± 1.5 C;b |
kaempferol | 0.360 ± 0.030 A;a | 4.90 ± 0.10 A;b | 5.52 ± 0.13 A;c | 5.29 ± 0.13 A;c |
Total | 1390 | 1090 | 184 | 184 |
White cherry seeds | ||||
gallic acid | 839 ± 39 B;c | 278 ± 19 A;b | 171 ± 10 B;a | 151 ± 10 B;a |
protocatechuic acid | n.d. | n.d. | n.d. | n.d. |
(+)-catechin | 20.7 ± 1.5 B;c | 15.3 ± 0.7 A;b | 5.40 ± 0.37 A;a | 5.67 ± 0.40 A;;a |
chlorogenic acid | n.d. | n.d. | n.d. | n.d. |
vanillic acid | 11.4 ± 0.6 A;c | 7.29 ± 0.30 A;b | 4.09 ± 0.27 A,B;a | 4.65 ± 0.27 A;a |
caffeic acid | 17.6 ± 1.9 B;c | 12.6 ± 0.9 B,C;b | 5.24 ± 0.09 A;a | 5.61 ± 0.09 A;a |
(−)-epicatechin | 8.37 ± 0.29 A | n.d. | n.d. | n.d. |
syringic acid | n.d. | n.d. | n.d. | n.d. |
β-resorcylic acid | n.d. | n.d. | n.d. | n.d. |
p-coumaric acid | n.d. | 7.51 ± 0.76 C;b | 4.38 ± 0.38 C;a | 4.07 ± 0.08 C;a |
ferulic acid | 12.1 ± 0.9 B;a | 48.0 ± 3.4 B,C;c | 28.0 ± 0.9 D;b | 25.6 ± 0.9 C;b |
sinapic acid | 3.55 ± 0.21 A;a | 29.8 ± 1.0 C;c | 16.1 ± 1.0 C;b | 15.5 ± 1.0 A;b |
naringin | 15.2 ± 0.6 C | n.d. | n.d. | n.d. |
rutin | n.d. | n.d. | n.d. | n.d. |
cinnamic acid | n.d. | n.d. | n.d. | n.d. |
naringenin | n.d. | n.d. | n.d. | n.d. |
quercetin | n.d. | n.d. | n.d. | n.d. |
kaempferol | n.d. | n.d. | n.d. | n.d. |
Total | 928 | 398 | 234 | 212 |
Black cherry seeds | ||||
gallic acid | 945 ± 39 B;c | 191 ± 15 A;b | 131 ± 10 A,B;a | 155 ± 10 B;a,b |
protocatechuic acid | n.d. | n.d. | n.d. | n.d. |
(+)-catechin | 38.3 ± 1.5 C;c | 14.8 ± 0.74 A;b | 8.09 ± 0.37 A;a | 5.94 ± 0.37 A;a |
chlorogenic acid | n.d. | n.d. | n.d. | n.d. |
vanillic acid | 14.9 ± 0.6 B;c | 7.12 ± 0.27 A;b | 6.67 ± 0.27 B;a,b | 6.07 ± 0.30 A;a |
caffeic acid | 20.1 ± 1.9 B;c | 12.0 ± 0.9 B;b | 6.01 ± 0.45 A;a | 6.62 ± 0.45 A;a |
(−)-epicatechin | 7.83 ± 0.29 A | n.d. | n.d. | n.d. |
syringic acid | n.d. | n.d. | n.d. | n.d. |
β-resorcylic acid | n.d. | n.d. | n.d. | n.d. |
p-coumaric acid | n.d. | 2.81 ± 0.09 A;b | 2.01 ± 0.08 B;a | 2.14 ± 0.08 B;a |
ferulic acid | 40.6 ± 1.9 C;c | 37.3 ± 0.9 B;b | 24.4 ± 0.9 C;a | 27.2 ± 0.9 C;a |
sinapic acid | 15.4 ± 1.1 B;a | 19.0 ± 1.1 B;b | 13.6 ± 1.0 B;a | 14.8 ± 1.0 A;a |
naringin | 8.97 ± 0.60 C | n.d. | n.d. | n.d. |
rutin | n.d. | n.d. | n.d. | n.d. |
cinnamic acid | n.d. | n.d. | n.d. | n.d. |
naringenin | n.d. | n.d. | n.d. | n.d. |
quercetin | n.d. | n.d. | n.d. | n.d. |
kaempferol | n.d. | n.d. | n.d. | n.d. |
Total | 1091 | 284 | 192 | 218 |
Mulberry leaves | ||||
gallic acid | 91.4 ± 5.7 A;c | 71.8 ± 1.9 A;b | 26.2 ± 1.9 A;a | 19.6 ± 1.5 A;a |
protocatechuic acid | 28.7 ± 2.4 A;a | 38.5 ± 2.9 A;b | n.d. | n.d. |
(+)-catechin | 9.13 ± 0.61 A;a,b | 10.3 ± 0.72 A;b | 8.37 ± 0.74 A;a | 8.74 ± 0.70 A;a,b |
chlorogenic acid | 60.8 ± 1.4 B;a | 43.5 ± 1.7 B;a | 141 ± 9 A;b | 181 ± 13 B;c |
vanillic acid | n.d. | n.d. | n.d. | n.d. |
caffeic acid | 28.6 ± 0.8 C;c | 8.47 ± 0.90 A;a | 14.2 ± 0.9 C;b | 16.1 ± 0.9 C;b |
(−)-epicatechin | 8.58 ± 0.58 A;a | 20.5 ± 1.4 A;b | n.d. | n.d. |
syringic acid | n.d. | 15.1 ± 0.4 B;b | 14.9 ± 0.5 A;b | 13.3 ± 0.5 A;a |
β-resorcylic acid | n.d. | 41.6 ± 3.2 A;b | 20.9 ± 0.8 A;a | 22.9 ± 0.8 A;a |
p-coumaric acid | 1.24 ± 0.06 A;b | 1.45 ± 0.08 A;c | 0.892 ± 0.080 A;a | 1.65 ± 0.08 A;d |
ferulic acid | 1.76 ± 0.07 A;a | 2.04 ± 0.10 A;b | 4.76 ± 0.09 B;c | 4.64 ± 0.10 A;c |
sinapic acid | n.d. | n.d. | n.d. | n.d. |
naringin | n.d. | n.d. | n.d. | n.d. |
rutin | 32.1 ± 2.5 A;a | 84.8 ± 4 A;b | 128 ± 3 B;c | 157 ± 3 B;d |
cinnamic acid | n.d. | 4.68 ± 0.59 A | n.d. | n.d. |
naringenin | n.d. | n.d. | n.d. | n.d. |
quercetin | n.d. | 6.87 ± 0.15 A;a | 11.1 ± 0.7 A;b | 12.5 ± 1.0 B;b |
kaempferol | n.d. | n.d. | n.d. | n.d. |
Total | 262 | 350 | 370 | 437 |
Pomegranate peels | ||||
gallic acid | 5851 ± 79 D;c | 3330 ± 190 C;b | 1154 ± 110 C;a | 1152 ± 95 C;a |
protocatechuic acid | 105 ± 2 C;a | 910 ± 29 C;b | 4493 ± 286 B;d | 2688 ± 286 B;c |
(+)-catechin | 39.1 ± 3 D,C;a | 276 ± 7 C;b | 652 ± 37 B;c | 237 ± 7 C;b |
chlorogenic acid | n.d. | n.d. | n.d. | n.d. |
vanillic acid | 32.5 ± 2 C;a | 73.6 ± 3 C;c | 117 ± 3 D;d | 48.3 ± 3 C;b |
caffeic acid | 9.45 ± 0.75 A;b | 43.7 ± 0.9 D;d | 34.8 ± 0.9 D;c | 6.17 ± 0.43 A;a |
(−)-epicatechin | n.d. | n.d. | n.d. | n.d. |
syringic acid | n.d. | n.d. | n.d. | n.d. |
β-resorcylic acid | 5.36 ± 0.32 A;a | 477 ± 39 B;c | 566 ± 39 B;d | 332 ± 8 B;b |
p-coumaric acid | 4.74 ± 0.3 B;a | 11.1 ± 0.8 D;b | 10.5 ± 0.8 D;b | 5.86 ± 0.38 D;a |
ferulic acid | 12.3 ± 0.8 B;b | 51.3 ± 9.0 C;c | 2.41 ± 0.07 A;a | 16.4 ± 0.9 B;b |
sinapic acid | 26.2 ± 0.8 C;b | 29.0 ± 1.0 C;c | 3.83 ± 0.10 A;a | 39.5 ± 1.0 B;d |
naringin | 37.5 ± 2.4 D;a | 50.0 ± 2.9 A;b | 31.6 ± 2.9 B;a | 34.4 ± 2.2 B;a |
rutin | 167 ± 13 B;c | 127 ± 3 B;b | 116 ± 3 A;a,b | 108 ± 3 A;a |
cinnamic acid | n.d. | n.d. | n.d. | n.d. |
naringenin | n.d. | n.d. | n.d. | n.d. |
quercetin | n.d. | 78.8 ± 7.4 C;c | 13.6 ± 0.7 B;a | 7.14 ± 0.15 A;a |
kaempferol | n.d. | 5.70 ± 0.50 B | n.d. | n.d. |
Total | 6290 | 5463 | 7195 | 4675 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, C.; Moreira, M.M.; Ramos, S.; Ramalhosa, M.J.; Correia, M.; Svarc-Gajić, J.; Delerue-Matos, C.; Barroso, M.F. A Critical Assessment of Extraction Methodologies for the Valorization of Agricultural Wastes: Polyphenolic Profile and Bioactivity. Processes 2023, 11, 1767. https://doi.org/10.3390/pr11061767
Soares C, Moreira MM, Ramos S, Ramalhosa MJ, Correia M, Svarc-Gajić J, Delerue-Matos C, Barroso MF. A Critical Assessment of Extraction Methodologies for the Valorization of Agricultural Wastes: Polyphenolic Profile and Bioactivity. Processes. 2023; 11(6):1767. https://doi.org/10.3390/pr11061767
Chicago/Turabian StyleSoares, Cristina, Manuela M. Moreira, Sandra Ramos, M. J. Ramalhosa, Manuela Correia, Jaroslava Svarc-Gajić, Cristina Delerue-Matos, and M. Fátima Barroso. 2023. "A Critical Assessment of Extraction Methodologies for the Valorization of Agricultural Wastes: Polyphenolic Profile and Bioactivity" Processes 11, no. 6: 1767. https://doi.org/10.3390/pr11061767
APA StyleSoares, C., Moreira, M. M., Ramos, S., Ramalhosa, M. J., Correia, M., Svarc-Gajić, J., Delerue-Matos, C., & Barroso, M. F. (2023). A Critical Assessment of Extraction Methodologies for the Valorization of Agricultural Wastes: Polyphenolic Profile and Bioactivity. Processes, 11(6), 1767. https://doi.org/10.3390/pr11061767