Simple and Economical Downstream Process Development for Edible Oil Production from Oleaginous Yeast Lipomyces starkeyi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Growth Conditions
2.2. Crushing Treatment and Preparation of Emulsifying Solution
2.3. Solid-Liquid Filtration and Oil Extraction
2.4. Analysis of Fatty Acid Composition and Calculation of TAG Equivalent for Extracted Oil
2.5. Estimation for Oil Extraction Performances
2.6. Required Energy and Cost Estimation
2.7. Verification of Extraction Mechanism by Tracking Material Balance
2.8. Verification of Extraction Mechanism by Using Model Solution
2.9. Statistical Analysis
3. Results and Discussion
3.1. Oil Extraction with Hexane from Crushed L. starkeyi Culture
3.2. Oil Extraction with Pure Solvent after Nonwoven Filtration
3.3. Oil Extraction with Solvent Mixture after Nonwoven Filtration
3.4. TAG Extraction Efficiency and TAG Selectivity
3.5. Estimation of the Required Energy and Cost
3.6. Verification of Extraction Mechanism by Tracking Material Balance
3.7. Verification of Extraction Mechanism by Using Model Solution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oosterveer, P. Promoting Sustainable Palm Oil: Viewed from a Global Networks and Flows Perspective. J. Clean. Prod. 2015, 107, 146–153. [Google Scholar] [CrossRef]
- Wilcove, D.S.; Koh, L.P. Addressing the Threats to Biodiversity from Oil-Palm Agriculture. Biodivers. Conserv. 2010, 19, 999–1007. [Google Scholar] [CrossRef]
- Austin, K.G.; Schwantes, A.; Gu, Y.; Kasibhatla, P.S. What Causes Deforestation in Indonesia? Environ. Res. Lett. 2019, 14, 024007. [Google Scholar] [CrossRef]
- Roundtable on Sustainable Palm Oil (RSPO). Available online: https://rspo.org/ (accessed on 26 April 2023).
- Lin, J.; Shen, H.; Tan, H.; Zhao, X.; Wu, S.; Hu, C.; Zhao, Z.K. Lipid Production by Lipomyces starkeyi Cells in Glucose Solution without Auxiliary Nutrients. J. Biotechnol. 2011, 152, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Ratledge, C.; Wynn, J.P. The Biochemistry and Molecular Biology of Lipid Accumulation in Oleaginous Microorganisms. Adv. Appl. Microbiol. 2002, 51, 1–51. [Google Scholar]
- Sutanto, S.; Zullaikah, S.; Tran-Nguyen, P.L.; Ismadji, S.; Ju, Y.-H. Lipomyces starkeyi: Its Current Status as a Potential Oil Producer. Fuel Process. Technol. 2018, 177, 39–55. [Google Scholar] [CrossRef]
- Takaku, H.; Miyajima, A.; Kazama, H.; Sato, R.; Ara, S.; Matsuzawa, T.; Yaoi, K.; Araki, H.; Shida, Y.; Ogasawara, W.; et al. A Novel Electroporation Procedure for Highly Efficient Transformation of Lipomyces starkeyi. J. Microbiol. Methods 2020, 169, 105816. [Google Scholar] [CrossRef]
- Zhang, L.; Lim, E.; Loh, K.-C.; Dai, Y.; Tong, Y. Two-Stage Fermentation of Lipomyces starkeyi for Production of Microbial Lipids and Biodiesel. Microorganisms 2021, 9, 1724. [Google Scholar] [CrossRef]
- Tuhanioglu, A.; Alpas, H.; Cekmecelioglu, D. High Hydrostatic Pressure-assisted Extraction of Lipids from Lipomyces starkeyi Biomass. J. Food Sci. 2022, 87, 5029–5041. [Google Scholar] [CrossRef]
- Zhang, L.; Lee, J.T.E.; Ok, Y.S.; Dai, Y.; Tong, Y.W. Enhancing Microbial Lipids Yield for Biodiesel Production by Oleaginous Yeast Lipomyces starkeyi Fermentation: A Review. Bioresour. Technol. 2022, 344, 126294. [Google Scholar] [CrossRef]
- Mine, K.; Taki, H.; Ogura, J.; Aibe, K.; Shima, R.; Ikegami, K.; Sato, R.; Takaku, H. Development of Edible Alternative Palm Oil Produced by Oleaginous Yeast Lipomyces starkeyi. In Proceedings of the 2022 Annual Meeting of The Japan Society for Bioscience, Biotechnology, and Agrochemistry, Kyoto, Japan, 15–18 March 2022. [Google Scholar]
- Suzuki, T.; Takigawa, A.; Hasegawa, K. Lipid Extraction Methods for Lipomyces starkeyi. Agric. Biol. Chem. 1973, 37, 2653–2656. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Breil, C.; Abert Vian, M.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents. Int. J. Mol. Sci. 2017, 18, 708. [Google Scholar] [CrossRef]
- Probst, K.V.; Wales, M.D.; Rezac, M.E.; Vadlani, P.V. Evaluation of Green Solvents: Oil Extraction from Oleaginous Yeast Lipomyces starkeyi Using Cyclopentyl Methyl Ether (CPME). Biotechnol. Progress. 2017, 33, 1096–1103. [Google Scholar] [CrossRef]
- Drévillon, L.; Koubaa, M.; Nicaud, J.-M.; Vorobiev, E. Cell Disruption Pre-Treatments towards an Effective Recovery of Oil from Yarrowia lipolytica Oleaginous Yeast. Biomass Bioenergy 2019, 128, 105320. [Google Scholar] [CrossRef]
- Kim, J.; Lee, E.-J.; Lee, K.-E.; Nho, Y.-H.; Ryu, J.; Kim, S.Y.; Yoo, J.K.; Kang, S.; Seo, S.W. Lipid Extract Derived from Newly Isolated Rhodotorula toruloides LAB-07 for Cosmetic Applications. Comput. Struct. Biotechnol. J. 2023, 21, 2009–2017. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Okuda, T.; Ando, A.; Hatano, A.; Kikukawa, H.; Ogawa, J. Isolation and Characterization of the Ω3-Docosapentaenoic Acid-Producing Microorganism Aurantiochytrium sp. T7. J. Biosci. Bioeng. 2022, 133, 229–234. [Google Scholar] [CrossRef]
- Watsuntorn, W.; Chuengcharoenphanich, N.; Niltaya, P.; Butkumchote, C.; Theerachat, M.; Glinwong, C.; Qi, W.; Wang, Z.; Chulalaksananukul, W. A Novel Oleaginous Yeast Saccharomyces cerevisiae CU-TPD4 for Lipid and Biodiesel Production. Chemosphere 2021, 280, 130782. [Google Scholar] [CrossRef]
- Georget, E.; Miller, B.; Callanan, M.; Heinz, V.; Mathys, A. (Ultra) High Pressure Homogenization for Continuous High-Pressure Sterilization of Pumpable Foods—A Review. Front. Nutr. 2014, 1, 15. [Google Scholar] [CrossRef]
- Willis, R.M.; McCurdy, A.T.; Ogborn, M.K.; Wahlen, B.D.; Quinn, J.C.; Pease, L.F.; Seefeldt, L.C. Improving Energetics of Triacylglyceride Extraction from Wet Oleaginous Microbes. Bioresour. Technol. 2014, 167, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Education, Culture, Sports, Science and Technology. Standard Tables of Food Composition in Japan-2020-, 8th ed.; Tsutatomo Printing Co., Ltd.: Nagano, Japan, 2020; pp. 1–660.
- Bonturi, N.; Matsakas, L.; Nilsson, R.; Christakopoulos, P.; Miranda, E.; Berglund, K.; Rova, U. Single Cell Oil Producing Yeasts Lipomyces starkeyi and Rhodosporidium toruloides: Selection of Extraction Strategies and Biodiesel Property Prediction. Energies 2015, 8, 5040–5052. [Google Scholar] [CrossRef]
Sample | Oil Recovery Ratio (%) | ||
---|---|---|---|
Original Solution | Centrifugation | Vacuum Freeze-Drying | |
Crushed L. starkeyi culture | 0 | 0 | 46.6 ± 10.6 |
Extraction | Oil Recovery Ratio (%) | |
---|---|---|
Solvent | With Filtration | Without Filtration |
Hexane | 7.28 ± 3.09 | 0 |
Ethanol | 67.8 ± 14.3 | 0 |
2-Propanol | 67.5 ± 7.7 | 0 |
Extraction Solvent | Total Amount of Extracted Oil (mg) | TAG (mg) | TAG Extraction Efficiency (mg TAG/mL Solvent) | TAG Selectivity (%mg TAG/mg Oil) |
---|---|---|---|---|
Chloroform/methanol/water (1:2:0.8) | 257 ± 12 | 213 ± 14 | 21.3 ± 1.4 | 82.8 ± 2.9 |
Hexane | 60.0 ± 10 | 52.7 ± 9.4 | 5.27 ± 0.94 | 87.7 ± 1.8 |
Ethanol | 197 ± 42 | 27.6 ± 3.3 | 2.75 ± 0.33 | 14.3 ± 2.4 |
2-Propanol | 307 ± 87 | 98.5 ± 7.8 | 9.85 ± 0.78 | 33.8 ± 9.1 |
Hexane/ethanol (3:1) | 233 ± 58 | 174 ± 19 | 17.4 ± 1.9 | 74.6 ± 9.6 |
Sample | Oil Recovery Ratio (%) | |
---|---|---|
Vacuum Freeze-Drying | Filtration | |
Model solution (10% dry cells) | 79.2 ± 6.0 | 67.2 ± 20.5 |
L. starkeyi culture | 46.6 ± 10.6 | 7.28 ± 3.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taki, H.; Mine, K.; Matsuo, S.; Kumagai, K.; Matsuyama, H. Simple and Economical Downstream Process Development for Edible Oil Production from Oleaginous Yeast Lipomyces starkeyi. Processes 2023, 11, 1458. https://doi.org/10.3390/pr11051458
Taki H, Mine K, Matsuo S, Kumagai K, Matsuyama H. Simple and Economical Downstream Process Development for Edible Oil Production from Oleaginous Yeast Lipomyces starkeyi. Processes. 2023; 11(5):1458. https://doi.org/10.3390/pr11051458
Chicago/Turabian StyleTaki, Hiroya, Kentaro Mine, Shinji Matsuo, Kazuo Kumagai, and Hideto Matsuyama. 2023. "Simple and Economical Downstream Process Development for Edible Oil Production from Oleaginous Yeast Lipomyces starkeyi" Processes 11, no. 5: 1458. https://doi.org/10.3390/pr11051458
APA StyleTaki, H., Mine, K., Matsuo, S., Kumagai, K., & Matsuyama, H. (2023). Simple and Economical Downstream Process Development for Edible Oil Production from Oleaginous Yeast Lipomyces starkeyi. Processes, 11(5), 1458. https://doi.org/10.3390/pr11051458