A New Method for Mobility Logging Evaluation Based on Flowing Porosity in Shale Oil Reservoirs
Abstract
:1. Introduction
2. Background
3. Methods
3.1. Flowing Porosity Obtained by Core Samples
3.2. Establishment of Flowing Porosity Model
3.3. Flowing Porosity Model of Flushed Zone
3.4. Free Oil Porosity (FOP)
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daniel, A.; Brain, B.; Bobbi, J.C. Evaluation implication of hydraulic fracturing in shale gas reservoirs. In Proceedings of the SPE Americas E & P Environmental and Safety Conference, San Antonio, TX, USA, 23–25 March 2009. [Google Scholar]
- Sonnenberg, S.A.; Pramudito, A. Petroleum geology of the giant Elm coulee field, williston basin. AAPG Bull. 2009, 93, 1127–1153. [Google Scholar] [CrossRef]
- Aguilera, R.F.; Radetzki, M. Shale gas and oil: Fundamentally changing global energy markets. Oil Gas J. 2013, 111, 54–60. [Google Scholar]
- Emmanuel, O.O.; Sonnenberg, S.A. Geologic characterization and the depositional environment of the middle Devonian Marcellus shale, Appalachian Basin, NE USA. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 12–14 August 2013. [Google Scholar]
- Romero-Sarmiento, M.F.; Ducros, M.; Carpentier, B.; Lorant, F.; Cacas, M.C.; Pegaz-Fiornet, S.; Wolf, S.; Rohais, S.; Moretti, I. Quantitative evaluation of TOC, organic porosity and gas retention distribution in a gas shale play using petroleum system modeling: Application to the Mississippian Barnet shale. Mar. Pet. Geol. 2013, 45, 315–330. [Google Scholar] [CrossRef]
- Guo, X.S. The Enrichment Mechanism and Exploration Technology of Fuling Shale Gas Fields; Science Press: Beijing, China, 2014. [Google Scholar]
- Zhao, P.; Zhuang, W.; Sun, Z.; Wang, Z.; Luo, X.; Mao, Z.; Tong, Z. Methods for estimating petrophysical parameters from well logs in tight oil reservoirs: A case study. J. Geophys. Eng. 2016, 13, 78–85. [Google Scholar] [CrossRef]
- Tang, H.; Sun, Z.; He, Y.; Chai, Z.; Hasan, A.R.; Killough, J. Investigating the pre unconventional gas reservoirs. J. Pet. Sci. Eng. 2019, 176, 456–465. [Google Scholar] [CrossRef]
- Zhao, P.; Ostadhassan, M.; Shen, B.; Liu, W.; Abarghani, A.; Liu, K.; Luo, M.; Cai, J. Estimating thermal maturity of organic-rich shale from well logs: Case studies of two shale plays. Fuel 2019, 235, 1195–1206. [Google Scholar] [CrossRef]
- Wu, Y.; Tahmasebi, P.; Yu, H.; Lin, C.; Wu, H.; Dong, C. Pore-Scale 3D Dynamic Modeling and Characterization of Shale Samples: Considering the Effects of Thermal Maturation. JGR-Solid Earth 2020, 125, e2019JB018309. [Google Scholar] [CrossRef]
- Bai, L.H.; Liu, B.; Du, Y.J.; Wang, B.Y.; Tian, S.S.; Wang, L.; Xue, Z.Q. Distribution characteristics and oil mobility thresholds in lacustrine shale reservoir: Insights from N2 adsorption experiments on samples prior to and following hydrocarbon extraction. Pet. Sci. 2022, 19, 486–497. [Google Scholar] [CrossRef]
- Wang, F.Y.; Wang, L. Pore structure analysis and permeability prediction of shale oil reservoirs with HPMI and NMR: A case study of the Permian Lucaogou Formation in the Jimsar Sag, Junggar Basin, NW China. J. Pet. Sci. Eng. 2022, 214, 110503. [Google Scholar] [CrossRef]
- Li, C.L.; Yan, W.L.; Wu, H.L.; Tian, H.; Zheng, J.D.; Yu, J.; Feng, Z.; Xu, H.J. Calculation of oil saturation in clay-rich shale reservoirs: A case study of Qing 1 Member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China. Pet. Explor. Dev. 2022, 49, 1351–1363. [Google Scholar] [CrossRef]
- Piedrahita, J.; Aguilera, R. Geochemical Productivity Index (Igp): An Innovative Way to Identify Potential Zones with Moveable Oil in Shale Reservoirs. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 24–26 September 2018. [Google Scholar]
- Ahmed, U.; Meehan, D. Unconventional Oil and Gas Resources Exploitation and Development; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2016. [Google Scholar]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 1942, 146, 54–67. [Google Scholar] [CrossRef]
- Archie, G.E. Classification of carbonate reservoir rocks and petrophysical considerations. Am. Assoc. Petrol. Geo. Bull. 1952, 36, 278–298. [Google Scholar]
- Waxman, M.H.; Smits, L.J.M. Electrical conductivities in oil-bearing shaly sands. Soc. Petrol. Eng. J. 1968, 8, 107–122. [Google Scholar] [CrossRef]
- Clavier, C.; Coates, G.; Dumanoir, J. Theoretical and experimental bases for the dual-water model for interpretation of shaly sands. Soc. Petrol. Eng. J. 1984, 24, 153–168. [Google Scholar] [CrossRef]
- Zeng, W. An Effective Log Analysis for Hydrocarbon Evaluation The Movable-water Method. Log Anal. 1981, 22, 3–13. [Google Scholar]
- Woodhouse, R. Accurate reservoir water saturation from oil-mud cores-questions and answers from Prudhoe Bay and Behind. Log. Anal. 1996, 39, 23–47. [Google Scholar]
- Hamada, G.M. Identification of Hydrocarbon Mobility and Type from Resistivity Logs. Pet. Sci. Technol. 2008, 26, 638–648. [Google Scholar] [CrossRef]
- Brown, R.; Gamson, B. Nuclear magnetism logging. J. Pet. Technol. 1960, 12, 199–207. [Google Scholar] [CrossRef]
- Vincent, B.; Fleury, M.; Santerre, Y.; Brigaud, B. NMR relaxation of neritic carbonates: An integrated petrophysical and petrographical approach. Appl. Geophys. 2011, 74, 38–58. [Google Scholar] [CrossRef]
- Souza, A.; Carneiro, G.; Zielinski, L.; Polinski, R.; Schwartz, L.; Hürlimann, M.D.; Boyd, A.; Rios, E.D.; Santos, B.C.C.; Trevizan, W.A.; et al. Permeability Prediction Improvement Using 2D NWR Diffusion-T2 Maps. In Proceedings of the SPWLA 54th Annual Logging Symposium, New Orleans, LA, USA, 22–26 June 2013. [Google Scholar]
- Mohammadlou, M.H.; Langeland, H.; Mørk, M.B. Use of the NMR and Resistivity Logs to Quantify Movable Hydrocarbon; Solution for the Tight and Low-Resistivity Carbonate Reservoirs. In Proceedings of the Paper presented at the SPE EUROPEC/EAGE Annual Conference and Exhibition, Vienna, Austria, 23–26 May 2011. [Google Scholar]
- Zhang, P.; Lu, S.; Li, J.; Chang, X. 1D and 2D Nuclear magnetic resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks. Mar. Pet. Geol. 2020, 114, 104210–104222. [Google Scholar] [CrossRef]
- Birdwell, J.E.; Washburn, K.E. Multivariate analysis relating oil shale geochemical. Energy Fuels 2015, 29, 2234–2243. [Google Scholar] [CrossRef]
- Fleury, M.; Kohler, E.; Norrant, F.; Gautier, S.; M’Hamdi, J.; Barre, L. Characterization and quantification in smectites with low field NMR. J. Phys. Chem. C 2013, 117, 4551–4560. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, C.; Wang, K.; Zhao, Z.; Zhong, K. Characteristics of micropores, pore throats, and movable fluids in the tight sandstone oil reservoirs of the Yanchang Formation in the southwestern Ordos Basin, China. AAPG Bull. 2019, 103, 2835–2859. [Google Scholar] [CrossRef]
- Shen, B.; Wu, D.; Wang, Z. A new method for permeability estimation from conventional well logs in glutenite reservoirs. J. Geophys. Eng. 2017, 14, 1268–1274. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Li, J.B.; Xu, L.; Zhang, J.X. The key parameter of shale oil resource evaluation: Oil content. Pet. Sci. 2022, 19, 1443–1459. [Google Scholar] [CrossRef]
- Ding, X.; Qu, J.; Imin, A.; Zha, M.; Su, Y.; Jiang, Z.; Jiang, H. Organic matter origin and accumulation in tuaceous shale of the lower Permian Lucaogou Formation, Jimsar Sag. J. Petrol. Sci. Eng. 2019, 179, 696–706. [Google Scholar] [CrossRef]
- Jiang, Y.; Hou, D.; Li, H. Impact of the paleoclimate, paleoenvironment, and algae bloom: Organic matter accumulation in the lacustrine Lucaogou formation of jimsar sag, Junggar Basin, NW China. Energies 2020, 13, 1488. [Google Scholar] [CrossRef]
- Jia, C.Z.; Pang, X.Q.; Song, Y. Whole petroleum system and ordered distribution pattern of conventional and unconventional oil and gas reservoirs. Pet. Sci. 2023, 20, 1–19. [Google Scholar] [CrossRef]
- Xi, K.L.; Zhang, Y.Y.; Cao, Y.C.; Gong, J.F.; Li, K.; Lin, M.R. Control of micro-wettability of pore-throat on shale oil occurrence: A case study of laminated shale of Permian Lucaogou Formation in Jimusar Sag, Junggar Basin, NW China. Pet. Explor. Dev. 2023, 50, 334–345. [Google Scholar] [CrossRef]
- Chen, Y.E.; Li, L.L.; Zhang, Z.R.; Paul, F.; Liu, Y.M. Biodegradation of occluded hydrocarbons and kerogen macromolecules of the Permian Lucaogou shales, Junggar Basin, NW China. Energy Geosci. 2023, 4, 179–184. [Google Scholar] [CrossRef]
- Liu, S.J.; Gao, G.; Gang, W.Z.; Xiang, B.L.; Wang, M. Differences in geochemistry and hydrocarbon generation of source-rock samples dominated by telalginite and lamalginite: A case study on the Permian saline lacustrine source rocks in the Jimusaer Sag, NW China. Pet. Sci. 2023, 20, 141–160. [Google Scholar] [CrossRef]
- Su, Y.; Zha, M.; Ding, X.; Qu, J.; Wang, X.; Yang, C.; Iglauer, S. Pore type and pore size distribution of tight reservoirs in the Permian Lucaogou Formation of the Jimsar sag, Junggar basin, NW China. Mar. Petrol. Geol. 2018, 89, 761–774. [Google Scholar] [CrossRef]
- Qu, C.S.; Qiu, L.W.; Yang, Y.C.; Yang, Y.Q.; Yu, K.H. Sedimentary environment and the controlling factors of organic-rich rocks in the Lucaogou formation of the jimusar sag, Junggar Basin, NW China. Petrol. Sci. 2019, 16, 763–775. [Google Scholar] [CrossRef]
- Sun, L.; Zou, C.; Jia, A.; Wei, Y.; Zhu, R.; Wu, S.; Guo, Z. Development characteristics and orientation of tight oil and gas in China. Petrol. Explor. Dev. 2019, 46, 1073–1087. [Google Scholar] [CrossRef]
- Zha, M.; Wang, S.; Ding, X.; Feng, Q.; Xue, H.; Su, Y. Tight oil accumulation mechanisms of the Lucaogou Formation in the Jimsar Sag, NW China: Insights from pore network modeling and physical experiments. J. Asian Earth Sci. 2019, 178, 204–215. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, L.; Liu, J.; Zhang, X.; Zhang, F.; Zhang, B. Acid-base alternation diagenesis and its influence on shale reservoirs in the permian Lucaogou formation, jimusar sag, Junggar Basin, NW China. Petrol. Explor. Dev. 2020, 47, 962–976. [Google Scholar] [CrossRef]
- Zou, C.; Qiu, Z. Preface: New advances in unconventional Petroleum Sedimentology in China. Acta Sedimentol. Sin. 2021, 39, 1–8. [Google Scholar]
- Winsauer, W.O.; Shearin, H.M.; Masson, P.H.; William, M. Resistivity of brinesaturated sands in relation to pore geometry. Bull. Am. Assoc. Pet. Geol. 1952, 36, 253–277. [Google Scholar]
- Pirson, S.J. Geologic Well Log Analysis; Gulf Publishing: Houston, TX, USA, 1983. [Google Scholar]
- Katsube, T.J. Review of Formation Resistivity Factor Equations Related to New Pore-Structure Concepts; Geological Survey of Canada: Ottawa, ON, Canada, 2010. [Google Scholar]
- Ziarani, A.S.; Aguilera, R. Pore-throat radius and tortuosity estimation from formation resistivity data for tight-gas sandstone reservoirs. J. Appl. Geophys. 2012, 83, 65–73. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism, 3rd ed.; Clarendon Press Republished by Dover Publications, Inc.: New York, NY, USA, 1954. [Google Scholar]
- Fricke, H. A mathematical treatment of the electric conductivity and capacity of disperse systems. Phys. Rev. 1924, 24, 575–587. [Google Scholar] [CrossRef]
- Candelario, P.R. On the Relationship between Formation Resistivity Factor and Porosity. Soc. Pet. Eng. J. 1982, 9, 531–536. [Google Scholar]
- Worthington, D.F. Improved Quantification of Fit for Purpose Saturation Exponents. SPEREE 2004, 7, 270–284. [Google Scholar] [CrossRef]
Criteria | FOP_C | FOP_L |
---|---|---|
Coefficient of determination | 0.774 | 0.773 |
Average absolute error | 1.06 | 1.12 |
Root mean square error | 1.43 | 1.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, B.; Tao, Y.; Wang, G.; Fan, H.; Wang, X.; Sun, K. A New Method for Mobility Logging Evaluation Based on Flowing Porosity in Shale Oil Reservoirs. Processes 2023, 11, 1466. https://doi.org/10.3390/pr11051466
Shen B, Tao Y, Wang G, Fan H, Wang X, Sun K. A New Method for Mobility Logging Evaluation Based on Flowing Porosity in Shale Oil Reservoirs. Processes. 2023; 11(5):1466. https://doi.org/10.3390/pr11051466
Chicago/Turabian StyleShen, Bo, Yunhe Tao, Gang Wang, Haitao Fan, Xindong Wang, and Ke Sun. 2023. "A New Method for Mobility Logging Evaluation Based on Flowing Porosity in Shale Oil Reservoirs" Processes 11, no. 5: 1466. https://doi.org/10.3390/pr11051466
APA StyleShen, B., Tao, Y., Wang, G., Fan, H., Wang, X., & Sun, K. (2023). A New Method for Mobility Logging Evaluation Based on Flowing Porosity in Shale Oil Reservoirs. Processes, 11(5), 1466. https://doi.org/10.3390/pr11051466